
54 communications of the acm | march 2012 | vol. 55 | no. 3

contributed articles

Smart mobile devices are the gateway for personal
services in the emerging pervasive environment,
enabling context-aware applications involving
personal sensor networks with sensor devices on the
human body and/or surrounding spaces. Diverse
sensors function as tools applications use to acquire
user context, or current individual status, without
user intervention24 (see Table 1); for example, physical
contexts (such as heart rate) are recognized through
biomedical devices (such as electrocardiogram,
or ECG, galvanic skin response, or GSR, and blood
volume pulse, or BVP, sensors) and gait is derived
through accelerometers and gyroscopes. Likewise,
environmental status can be obtained from light/
temperature/dust sensors, GPS, RFID,3,8 and related
networks. Diverse contexts enable mobile applications
to proactively provide users customized personal

services. Such applications are emerg-
ing in diverse research domains, in-
cluding health care, elderly support,12
dietary monitoring, daily life assis-
tance, and sports training.

Context-monitoring semantics are
different from the context-recognition
semantics in early context middle-
ware,5,19 aiming to identify a person’s
context at a specific moment in time.
Context monitoring often involves con-
tinuous execution of complex, simulta-
neous, multi-step operations (such as
feature extraction and context recogni-
tion across mobile and sensor devices).
However, individual applications have
difficulty performing context-moni-
toring processing on their own, espe-
cially over shared devices with limited
resources. A common monitoring plat-
form is essential for effective context
monitoring.

Enabling mobile context monitor-
ing involves multiple applications, us-
ers, devices, and techniques, as well as
different contexts reflecting different
degrees of awareness and accuracy. Us-
ers have different requirements and
preferences for such services, as well
as privacy concerns. Efficient resource
utilization and management are also
important for continuous context
monitoring. Enabling diverse context-
aware applications requires infrastruc-
ture, including a platform to process
multiple streams of sensor data and

MobiCon:
A Mobile
Context-Monitoring
Platform

doi:10.1145/2093548.2093567

User context is defined by data generated
through everyday physical activity in sensor-
rich, resource-limited mobile environments.

By Youngki Lee, S.S. Iyengar, Chulhong Min,
Younghyun Ju, Seungwoo Kang, Taiwoo Park,
Jinwon Lee, Yunseok Rhee, and Junehwa Song

 key insights

 � �Understanding the physical context
in users’ everyday activity promises
a new proactive, automated model for
mobile applications beyond conventional
user-initiated, reactive services.

 � �MobiCon middleware lets mobile-
application developers leverage diverse
user contexts without concern for the
precision of context recognition or the
battery and computational resources
of smartphones and other sensor
devices in context monitoring.

 � �MobiCon translates physical context
into the most energy-and-processing-
efficient combination of resources
at runtime—the kind of technology
needed by practical context-monitoring
platforms or applications.

march 2012 | vol. 55 | no. 3 | communications of the acm 55

coordinate multiple applications.
Here, we cover four major areas:

Artificial intelligence and machine
learning. Many related efforts recog-
nize user context automatically, fo-
cusing on recognition accuracy and
context extraction through sophis-
ticated sensors (such as cameras for
arm tracking and face-gesture detec-
tion). They attempt to address chal-
lenges in context recognition (such
as preprocessing, feature extraction,
segmentation, and recognition algo-
rithms); for example, some systems
extract the most useful features neces-
sary for accurate recognition (such as
mel-frequency cepstral coefficients for
sound modeling for audio and statisti-
cal, or frequency-domain features, for
detecting physical activity3) from raw
sensing data (such as from cameras,
microphones, and biomedical and
motion sensors). Others automatically
segment sensor data or feature data
corresponding to valid context vocab-
ularies (such as probability-based seg-
mentation) without user intervention.
Most important, diverse context-rec-
ognition algorithms have been devel-
oped to accurately classify segmented
features into defined context vocabu-
laries (such as hidden Markov models
for speech and gesture recognition, de-
cision trees for physical-activity recog-
nition,3,8 and support vector machine
for face recognition). They are effective
handling context uncertainty, as most
are based on probabilistic inference
and reasoning. However, in practice,

applying research systems to real mo-
bile environments is time consuming
and raises even more technical chal-
lenges. In general, context monitor-
ing should be performed in resource-
constrained sensor-enabled mobile
platforms, especially those with lim-
ited battery and computing power.
Continuous processing of complex
AI and machine-learning algorithm-
based context monitoring imposes a
heavy workload on mobile platforms,
limiting their practicality.

Mobile and sensor systems. Previous
research addressed the challenges of
limited resources on mobile and sen-
sor systems, including: OS and system
middleware providing system func-
tionality for executing mobile and sen-
sor applications in a resource-aware/
adaptive manner (such as ECOSystem26
and Odyssey16 for mobile systems and
Pixie14 and Eon22 for sensor systems);
component techniques for resource
efficiency optimizing resource utili-
zation, especially energy consump-
tion;4,21,23,25 and distributed resource
management across multiple devices
or applications (such as load balanc-
ing in sensor networks and adaptive
node selection in dynamic networks).
Unfortunately, as most such work
has not focused on emerging context-
monitoring applications, their archi-
tectures and mechanisms are not fully
optimized for them.

Context-aware applications. Diverse
context-aware applications have been
proposed in health care and medicine,

sports training, and activity/motion
analysis,3 tapping application-specific
contexts (such as location, activity,
and biomedical response). However,
despite providing useful functionality,
they are limited as a general platform
for multiple applications involving di-
verse sensors and associated contexts.
In addition, application-specific plat-
forms have not fully addressed resource
limitations, since they are not designed
for sharing multiple applications.

Context middleware. Some projects
have proposed middleware to support
context-aware applications, aiming to
hide the complexity of context infer-
ence to help identify contexts of inter-
est. However, they are generally limited
in terms of continuous monitoring in
sensor-rich, resource-limited environ-
ments. Most early examples were de-
signed to run in server environments5
so did not deal with the inherent re-
source constraints of mobile and sen-
sor environments. Some context-aware
middleware is designed for mobile de-
vices20 but does not consider the tens
or even hundreds of sensors in person-
al-area networks or the processing and
power limitations of mobile devices
and sensors.

Research Objective
Our aim is to implement a practical
context-monitoring system for con-
text-aware applications in sensor-rich,
resource-limited mobile environments
(see Figure 1), so it must address the
challenges of emerging sensor-rich

Figure 1. Challenges in mobile context processing.

Tens/hundreds
of heterogeneous
sensors

Continuous data updates
(thousands of updates/sec)

U-Secretary

Location-based Services

Health Monitoring

U-Learning

U-Trainer

Diet Diary

U-Reminder

Behavior CorrectionEnergy
Problem

Scalability
Problem

Resource Limitation
(battery, processor, memory, bandwidth)

Hundreds/thousands of long-running
monitoring requests to detect context changes

Vital Sign
Information

Environmental
Information

Location/Activity
Information

Resource
Management

56 communications of the acm | march 2012 | vol. 55 | no. 3

contributed articles

mobile environments. First, it must
be able to continuously run multi-step
computation over mobile and sensor
devices to ensure accurate context rec-
ognition. Such computation requires
significant computing resources, of-
ten involving high-rate data sampling
from multiple sensors, continuous fea-
ture extraction and context recognition
over massive amounts of sensor data,
and transmission of intermediate re-
sults among devices.

Second, it must concurrently sup-
port a number of complicated requests
from multiple applications as a shared
underlying platform, further com-
plicating management of limited re-
sources. It must also be able to resolve
potential conflicts among multiple ap-
plication resources. Finally, it must ad-
dress the dynamic availability of wear-
able or space-embedded sensors and
their resource status in continuous
monitoring for seamless service.

Table 2 lists the resource availabil-
ity of example sensor motes. In prac-
tice, available computing resources
(such as CPUs and memory in sensor
devices) are often short of the capacity
required for individual context-moni-
toring requests; for example, a MicaZ
wireless sensor mote has an 8MHz
CPU and 4KB RAM but is incapable of
running a light FFT library, kiss_fft,9
used to monitor activity. In addition,
limited battery capacity could compro-
mise continuous monitoring, possibly
resulting in early shutdown of relevant
applications. Table 3 lists average en-
ergy consumption of example tasks
performed on a Knode wireless sensor
mote. Given the limited battery capac-
ity of Knode, 250mAh, useful time is
about 21.5 hours for fall detection and
heartbeat monitoring (the third case
in the table). Concurrent execution of
additional tasks makes energy con-
sumption even more critical. Lorincz
et al.14 wrote about energy deficiency
with the SHIMMER sensor, a coin-size
wireless sensor for motion analysis,
in which the worst-case lifetime was
9.2 hours for motion analysis, includ-
ing continuous sampling and logging
of accelerometer and gyroscope data,
maintaining time sync, and raw sam-
ple transmission.

We have, since 2007, been devel-
oping MobiCon, a novel mobile con-
text-monitoring framework intended
to address the resource challenges
of sensor-rich mobile environments
in support of context-aware applica-
tions. Though the research efforts we
outlined earlier provide basic tech-
niques for context monitoring, con-
sideration of other techniques is es-
sential for addressing the emerging
interdisciplinary challenges involved
in practical context-monitoring sys-
tems. MobiCon research can be
viewed as an initial step toward bridg-

Table 2. Resource availability of example sensor motes.

Sensor node MCU Comm. Flash memory Onboard sensor Optional sensor Battery

SHIMMER14 TI MSP430 CC2420 (802.15.4,
2.4GHz, 256Kbps)

3GB Triple-axis accelerometer Gyroscope,
ECG, EMG

250mAh Li-polymer
rechargeable

Knode Atmega128
(8MHz CPU)
(4KB RAM)

1MB Triple-axis accelerometer,
dual-axis gyroscope, light

Gyroscope
(to cover 3D), SpO2

250mAh Li-polymer
rechargeable

USS2400
(MicaZ clone)

None None Dual-axis
accelerometer,
thermometer

2 x 1200mAh alkaline

Table 1. Example contexts and applications.

Category Context Application Sensor

Health Fall Elder care12 Accelerometer, gyroscope,
microphone

Motion, gait Patient monitoring
(such as for Parkinson’s
disease)14

Accelerometer, gyroscope

Heart condition
(such as interbeat
interval and heart rate)

Heart monitor, jogging
support

ECG sensor, BVP sensor, SpO2
sensor

Calories Activity-based calorie
monitor

Accelerometer

Activity/Status Affective status SympaThings8 BVP sensor, GSR sensor

Activity Activity-based calorie
monitor, activity-based
service initiation

Accelerometer, gyroscope,
camera, RFID (object-attached)

Gesture User interaction17,18 Accelerometer, gyroscope,
camera

Sleep pattern Sleep monitoring Accelerometer, microphone

Location Outdoor Navigation, traffic
monitoring,
microblogging, mobile
advertising, personal
logging

GPS, accelerometer

Indoor WiFi, infrared sensor, ultrasound
sensor

Place Mood, crowdedness,
noise, illumination

Recommendation,
social networking, party
thermometer

Microphone, camera,
illuminometer, GPS, WiFi

Environment Weather Weather monitoring Thermometer, hygrometer,
anemometer

Pollution City pollution
monitoring

CO2 sensor, O3 sensor,
S sensor, dust sensor

Sports Training Golf swing Virtual golf trainer Accelerometer

Swim posture Wearable swim
assistant2

Accelerometer

Treadmill SwanBoat1 Proximity sensor, accelerometer

Companion Number, relationship Advertising, groupware Microphone, proximity sensor

contributed articles

march 2012 | vol. 55 | no. 3 | communications of the acm 57

ing the gap between these efforts for
context monitoring. Note that many
design details and techniques are cov-
ered in Ahn et al.,1 Kang et al.,7 Kang et
al.,8 and Lee et al.11

Framework Development
The MobiCon middleware framework
mediates context-aware applications
and personal sensor networks (see
Figure 2), providing application pro-
gramming interfaces (APIs) (see Table
4) and a runtime environment for
applications. Multiple applications
requiring context monitoring can be
developed through the APIs and run
concurrently atop MobiCon, with Mo-
biCon functioning as a shell above
personal-area networks, providing a
neat interface for users receiving and
processing sensor data and control-
ling sensors.

It includes five components: Con-
text Processor, Sensor Manager, Re-
source Coordinator, Application Bro-
ker, and Sensor Broker. Applications
initiate context monitoring by reg-
istering context-monitoring queries
through the Application Broker. The
Context Processor performs context
monitoring by evaluating the que-
ries over data delivered by the Sensor
Broker, with monitoring results then
forwarded to applications. In this pro-
cess, the Sensor Manager finds a mini-
mal set of sensors needed to evaluate
all registered queries, forcing unneces-
sary sensors to stop transmitting data
to MobiCon. In addition, the Resource
Coordinator mediates potential con-
flicts among low-power sensor nodes
when handling multiple requests from
concurrent applications. It also sup-
ports adaptation to the dynamic sen-
sor join/leave.

The MobiCon architecture proto-
type runs on Java based on an Android
OS (version 2.3) from Google.

Hardware. Deploying MobiCon re-
quires two sets of hardware—mobile
devices and sensors—on three mobile
devices—a Sony Vaio UX27LN with In-
tel U1500 1.33GHz CPU and 1GB RAM,
a custom-designed wearable device
with Marvell PXA270 processor and
128MB RAM, and a NexusOne smart-
phone with 1GHz Scorpion CPU and
512MB RAM.

We incorporated as many sensors as
we could to increase MobiCon’s cover-

Figure 2. MobiCon architecture.

Table 3. Energy consumption of applications on a watch-type Knode sensor mote.

Application Tasks running on Knode
Avg. energy

consumption (mJ/s)

Fall detection 1 Sensing: 30Hz from 3D accelerometers
Feature extraction: “norm”
Transmission: 6Hz to a mobile device

3.6

Fall detection 2 Sensing: 30Hz from 3D accelerometers and 2D
gyroscopes
Feature extraction: FFT with window size of
64 and sliding window of 32
Transmission: 1.07Hz to a mobile device

13.1

Fall detection 1 +
heartbeat monitor

Tasks for Fall detection 1 +
Sensing: 60Hz from SpO2 sensor
Feature extraction: peak detection and count
Transmission: 1Hz to mobile devices

33.8

Base energy consumption (no task) 8.8

Table 4. MobiCon API.

Functionality API List

Context monitoring-related APIs registerCMQ (CMQ_statement)

deregisterCMQ (CMQ_ID)

Query translation map-related APIs createMAP ([Parent_Map_ID])

deleteMAP (Map_ID)

browseMAP ()

Application Broker

Application
Interface

CMQ Index

CMQ Table

Feature Extractor

data/status report

Wireless
Communications

(such as ZigBee)

Personal Mobile Device
(such as PDA, smartphone, UMPC)

sensor detection/
control

Plan Generator

Plan Selector

Resource Monitor

Resource Coordinator

Access
Controller

Context
Translator

Context Processor

Msg. Interpreter

Sensor Detector

Communication Mgr.

ESS Calculator

Sensor Controller

Sensor ManagerSensor Broker

MobiCon

Application Programming
Interface

58 communications of the acm | march 2012 | vol. 55 | no. 3

contributed articles

age and accuracy of context monitor-
ing. We selected small-size control-
lable sensors with processing and
wireless communication capabilities
appropriate for mobile environments.
Deployed in compact, portable form,
the sensors work easily with Mobi-
Con’s sensor-control mechanism.

The prototype mainly uses two
types of MicaZ clone sensor nodes—
USS-2400 and Knode—on eight USS-
2400 sensor nodes—four dual-axis
accelerometers and two light and two
temperature/humidity sensors. We de-
signed Knode to support diverse sens-
ing modalities in a single mote; Knode
includes the Atmega 128L microcon-
troller unit (MCU), or low-power CMOS
eight-bit microcontroller based on the
AVR enhanced RISC architecture, 1G
flash memory, CC2420 RF transceiver
supporting 2.4GHz band ZigBee pro-
tocol, and TinyOS operating system.
Also included are a triple-axis accel-
erometer, dual-axis gyroscope, and
support extensions, as are additional
sensors that provide context types not

supported by the MicaZ clone sensor
nodes, including three biomedical sen-
sors—ECG, BVP, and GSR—as well as a
Bluetooth-enabled GPS sensor to posi-
tion outdoor location. We also devel-
oped two wearable sensor devices with
different form factors: Sensor-Bracelet
(with basic Knode) and U-Jacket (with
BVP and GSR sensors).

Translation-based Approach
We devised a translation-based ap-
proach to facilitate context-aware ap-
plication development and resource
management over dynamic resource-
limited sensor-rich environments.
Figure 3a outlines the flow of a con-
ventional non-MobiCon context-mon-
itoring process, usually proceeding
in one direction through a pipeline
with multiple stages: preprocessing,
feature extraction, and context clas-
sification/inference, as defined by a
programmer. Context monitoring is
more than a single-step recognition
task, continuously recognizing a con-
text of interest and detecting changes

as an ongoing task. In non-MobiCon
approaches, change detection is per-
formed in the final step, following fi-
nal classification of a context. It usu-
ally supports a single or small number
of monitoring requests through a
small number of sensors within a gen-
eral computing environment with suf-
ficient resources to sense, transmit,
and process related data.

Unlike MobiCon, such approaches
include a computation-intensive pro-
cessing pipeline for each context. As
a result, they are not efficient enough
to handle concurrent monitoring re-
quests on mobile platforms or on sen-
sors with limited resources. Moreover,
applications generally use resources
in a greedy manner, further straining
resource availability. With a limited
view of system status, individual appli-
cations have more difficulty address-
ing resource contention. Moreover,
they are unable to achieve global effi-
ciency, shared resource use, and com-
putation on their own. Applications
must also be able to adapt themselves
according to dynamic resource avail-
ability. In essence, the fixed process-
ing defined by programmers before
an application is put to use restricts
diverse attempts to mediate between
a system and its applications.

Addressing limited resource coor-
dination in a conventional approach,
we proposed a translation-based ap-
proach for MobiCon in 2008,8 ex-
tending it in 2010.7 MobiCon-based
applications specify the monitoring
requests of interest in a high-level
language, submitting them to the
platform. MobiCon translates each re-
quest to a lower-level representation.
When translated, the lower-level repre-
sentation gives the platform a detailed
understanding of application require-
ments, as well as the low-level status
of associated sensor resources. In ad-
dition, detailed resource status can be
analyzed dynamically in light of appli-
cation requirements. With this under-
standing, MobiCon supports a feed-
back path between each application
and its lower-level processing and fur-
ther extends the computational stages
in the processing pipeline, saving com-
putational, as well as energy, overhead.
MobiCon also takes an active role in
orchestrating application requests and
system resources, significantly improv-

Figure 3. (a) Non-MobiCon context-monitoring process; (b) Translation-based approach to
context monitoring.

Change detection

Change recognition

Preprocessing/
Feature extraction

Change
detection

Query
Transition

Notifications

Notification

Context

Feature
data

Feature
data

Query
Registration

Plan 1

Preprocessing/
Feature extraction

ESS-based
Sensor control

Applications

. . .

. . .

Applications

. . .

Sensors

Raw Sensor Data Raw Sensor Data

Resource
status

Sensors

.

contributed articles

march 2012 | vol. 55 | no. 3 | communications of the acm 59

ing overall system performance.
This translation-based approach

lets each application inform the sys-
tem of its requirements so it gains a
comprehensive understanding of each
application, especially in terms of re-
source and computational demands.
Taking a holistic view of system status,
including resource availability and
running applications, it determines
a globally optimized translation for
each monitoring request. As a result,
resource use is orchestrated among
competing applications in highly dy-
namic and resource-constrained en-
vironments; for example, it mediates
applications to achieve a systemwide
goal (such as energy balancing) not
necessarily accomplished through
application-level strategies.

Figure 3b outlines the flow of a
translation-based context-monitoring
process, with the system adaptively de-
termining an appropriate resource-use
plan for an application’s monitoring
request according to dynamic resource
availability. Note that the system pre-
pares (in advance) several alternative
plans for each monitoring context. Un-
like non-MobiCon processes, it sup-
ports system-level optimization in both
resource use and computation and
could also reorganize processing stag-
es so context changes are identified
early in the processing pipeline. Early
change detection is contrary to the
conventional way of detecting changes
only after inferring them through an
algorithm (such as decision-tree logic).
However, such costly operations can be
avoided if a change of activity is detect-
ed early on through a change in feature
values from accelerometers.

In terms of processing efficiency, the
MobiCon translation-based approach
also helps developers devise a shared,
incremental sensor data processor for
context processing. Some dependence
among seemingly unrelated contexts is
often exposed by the translation, with
related contexts grouped together. The
system can then compose a shared
processing operator, through which
the grouped requests are evaluated
in a single run. Shared processing is
achieved at different stages of context
monitoring, including context recog-
nition, feature extraction, and sensor
reading. The feature-extraction speci-
fication also lets MobiCon take advan-

tage of continuity of contexts and local-
ity in sensor readings. MobiCon also
delivers an incremental processing
method to accelerate the successive
monitoring processes exploiting local-
ity in streams of input data.

MobiCon includes an efficient sen-
sor-control mechanism to enhance the
energy efficiency of sensors and mo-
bile devices. The key idea is that given
a number of queries and sensors, only
a subset of sensors may be sufficient
for answering context-monitoring que-
ries; for example, a query regarding
the context “studying in the library”
would be answered without having to
activate an accelerometer to recognize
user activity, assuming, say, MobiCon
knows the user is not in the library. The
feature-level specification of requests
gives MobiCon a better way to identify
the sensors required to process an ap-
plication’s monitoring requests. Mo-
biCon thus develops a sensor-control
method to compute and activate a
small set of sensors we call the Essen-
tial Sensor Set, or ESS, limiting wire-
less communication between sensors
and mobile devices and saving energy.

The translation-based approach
also relieves developers from having to
devise their own context-recognition
methods requiring special expertise.
Finally, it enables the sharing of com-
mon context vocabularies, spurring
quicker development of new personal-
context applications.

Application Interfaces
Like MobiCon, any context-monitor-
ing platform must give application
developers intuitive, generic context-
monitoring APIs. These APIs should
facilitate applications to delegate
complex context-monitoring tasks to
the platform while focusing on appli-
cation-specific logics (such as UI) be-
yond context monitoring. Applications
need not specify which sensors to use,
data to collect, how often to collect the
data, feature-extraction and classifica-
tion modules to apply, or computing
resources to use to execute modules.

As a middleware foundation for
context-monitoring APIs, MobiCon in-
cludes the Context Monitoring Query,
or CMQ, declarative query language
supporting rich semantics for monitor-
ing a range of contexts while abstract-
ing device details. It also proactively

To be practical,
any mobile
context-monitoring
platform, including
MobiCon, must
be able to achieve
energy efficiency in
its use of sensors.

60 communications of the acm | march 2012 | vol. 55 | no. 3

contributed articles

detects changes in user context. CMQ
specifies three conditions: context,
alarm, and duration. Alarm determines
when MobiCon delivers an alarm event
to an application, and duration speci-
fies the amount of time MobiCon must
evaluate a registered CMQ. The follow-
ing code is an example CMQ

CONTEXT (location == library)
		 AND (activity == sleeping)
	 AND (time == evening)
ALARM F → T
DURATION 120 days

and is registered or deregistered by a
set of APIs supported by MobiCon (see
Table 4).

CMQ translation (bridging logical and
physical resources). CMQ translation is
a key to using MobiCon’s translation-
based approach to developing and
running context-aware applications.
Bridging the gap between high-level
(logical) application requests and low-
level (physical) resource utilization,
CMQ translation enables efficient con-
text monitoring and resource orches-
tration. The CMQ translation process
converts CMQs specified in context-
level semantics into range predicates
over continuous feature data, along
with associated sensors and corre-
sponding resource demands. Here is
an example

Original CMQ:
	 �CONTEXT (activity == running)
AND (temp == hot)

		 AND (humidity == wet)
	 ALARM F → T
	 DURATION l month

Translated CMQ:
	 �CONTEXT (acc1 _ y _ energy > 52)
AND (acc3 _ x _ dc < 500)

		� AND (temp > 86) AND
(humidity > 80)

	 ALARM F → T
	 DURATION 1 month

MobiCon maps context types specified
in a registered CMQ to one or more fea-
tures and their associated sensors; for
example, it converts an activity context
type into multiple features like direct
current derived from accelerometers.3
A context value is then transformed
into numerical value ranges for corre-
sponding features; for example, “hu-

midity == wet” can be mapped to “80%
< humidity.” Mobicon also maps re-
source demands for computing feature
data. Feature computation can be per-
formed on sensor or mobile devices,
so corresponding resource demands
may be different. They are collected
through either offline profiling of tasks
or online hardware/program state trac-
ing. MobiCon maintains a context-
translation map to support the CMQ
translation;8 note the cost of transla-
tion is negligible since it is a simple
one-time operation performed upon
query registration.

Resource Coordination
Context monitoring with only a few
dynamic and resource-limited sensor
devices is a challenge for any system,
and greedy, careless use of resources
aggravates contention for resources
among applications, possibly reduc-
ing system capacity. Most sensor devic-
es have less capacity than required for
context-monitoring tasks. Moreover,
the availability of the devices changes
dynamically due to their wearable
form, as well as to user mobility. With-
out system-level support, an individual
application might find it impossible
to address the challenge of resource
management. Applications have only
a limited view of resource use of other
concurrent applications and cannot
negotiate with them for coordinated
resource use.

In many mobile and sensor systems
(such as Chameleon,14 Pixie,15 and Od-
yssey16) resource management is based
mainly on application-driven deci-
sions involving resource allocation or
passive resource-use management.
They expose APIs to applications that
determine the type and amount of re-
sources required to execute program
code and explicitly request resources
through APIs; for example, Pixie pro-
vides resource tickets (such as <En-
ergy, 700mJ, 10sec>), and Chameleon
provides systems calls (such as set-
speed()) to control CPU speed directly.
They then allocate the requested re-
sources if available. If not, the related
applications would change their re-
source use according to predefined
code blocks (such as by trading off
data or functional fidelity). However,
these approaches to passive resource-
use management impose a huge time

MobiCon supports
applications without
having to activate
all potentially
available sensors
by exploiting the
characteristics of
personal context
and application
requirements.

contributed articles

march 2012 | vol. 55 | no. 3 | communications of the acm 61

and intellectual burden on program-
mers, and their flexibility cannot be
utilized in practice since applications
find it almost impossible to estimate
dynamic resource status and prepare
code blocks for all cases.

MobiCon takes an active resource-
use-orchestration approach in which
the system explores the use of alter-
native resources.7 The translation-
based approach is a key method for
enabling active resource coordination
at the system level. Each application
submits a high-level context specifica-
tion to MobiCon while delegating the
decision of how to process the con-
text through available resources. That
is, the approach decouples resource
selection and binding from the ap-
plication’s logical resource demands.
The system then actively finds the best
combination of resources to process
context specifications through current
resources and applications.

The MobiCon approach to orches-
trating resource use can be charac-
terized in three steps (see Figure 4):
MobiCon first generates multiple alter-
native resource-use plans to process a
high-level context from an application;
the alternatives result from the diver-
sity of semantic translation. A context
can be derived from a variety of pro-
cessing methods; for example, when
the context-quality level required by an
application is conditionally tolerable,
MobiCon monitors a “running” con-
text through diverse methods (such as
direct current and energy features from
acceleration data or statistical features
from GPS location data). MobiCon
then dynamically and holistically se-
lects a set of plans to execute at run-
time, reflecting resource availability,
application requests, and system-level
policy. MobiCon thus resolves conten-
tions and maximizes the sharing of
resources in multiple applications. It
also supports systemwide policy for
resource use (such as minimizing total
energy consumption).

Finally, MobiCon continuously
changes executed resource-use plans
to adapt to the dynamic system envi-
ronment. A set of plans selected by
MobiCon may not persistently ensure
optimal use of resources since re-
source availability and application re-
quests are constantly changing. Upon
a change of application request or

sensor availability, MobiCon updates
existing plans and reselects plans that
result in resource use that still meets
systemwide policy under the changed
system conditions. Such flexibility en-
ables MobiCon to support multiple ap-
plications as long as possible in inher-
ently dynamic environments.

Shared Evaluation of
Context-Monitoring Requests
Much research effort has sought to ac-
celerate a single processing pipeline of
context recognition consisting of fea-
ture-extraction and pattern-classifica-
tion steps. Here are three representa-
tive examples: First, feature-reduction
methods were proposed for reducing
the number of features that might
increase processing time (such as Se-
quential Forward and Backward Search
and Linear Discriminant Analysis).
Second, feature quantization is ben-
eficial for reducing the computational
cost of context-recognition algorithms
through only a few discrete feature val-
ues, rather than continuous feature
values. Finally, context-recognition al-
gorithms are widely used to optimize
the context-processing pipeline; the
processing time of non-stochastic al-
gorithms (such as Decision Tree and
support vector machine) is much less
than that of stochastic algorithms
(such as Bayesian networks and neural
networks). Hence, developers prefer
non-stochastic algorithms if both types

of algorithm produce similar recogni-
tion accuracy. While these techniques
complement the MobiCon approach,
MobiCon is further tuned to speed up
multiple processing pipelines for mon-
itoring user contexts.

Addressing multiple processing
pipelines, MobiCon is designed to
manage shared evaluation of multiple
application requests,9 looking into
requests from different applications
and exploring their potential depen-
dence. This system-driven approach
represents a significant advantage
over application-driven approaches
in which each application handles its
own requests. Shared evaluation can
be exploited in many ways; for exam-
ple, several applications might want to
monitor the exact same context simul-
taneously. Intermediate results within
a processing pipeline, even in different
contexts, can be shared, at least in part.

MobiCon also takes advantage of
potential dependencies between re-
peated monitoring processes. The
monitoring process for each sensor-
data input can be considered not as
independent but as part of successive
data inputs. Thus, MobiCon’s process-
ing steps can be streamlined to use
such dependencies and speed up con-
tinuous processes. A useful approach
to speed up is exploitation of locality
in sensor-data streams. Consecutive
sensor readings usually show gradual
changes, especially for sensing physi-

Figure 4. Active-resource-use-orchestration approach. Figure 4. Active-resource-use-orchestration approach.

Resources

Applications

Resource
Use Plans

Plan A-1

Plan A-2

Plan B-1

Plan B-2

Plan C-1

Plan C-2

Plan C-3

Context A

Context B

Context C

Selected
Plans

Plan A-1

Plan B-2

Plan C-3

Orchestration
policy

Resource
status

App.
requirementsApp. requests

Changes in
available
resources

(e.g. running)

Plan
SelectionPlan

Generations

Plan
Execution

62 communications of the acm | march 2012 | vol. 55 | no. 3

contributed articles

cal phenomenon (such as a person’s
physical activity and the pollution level
of the nearby environment).

MobiCon automatically generates
a shared index of context-monitoring
requests we call CMQ-Index; upon the
arrival of each sensing data, all CMQs
are processed with a single evalua-
tion. Incremental processing exploits
the locality and consequent overlaps
between successive evaluations. To
support incremental processing, Mo-
biCon manages the CMQ-Index as
a stateful index and remembers the
state of the most recent evaluation.
The evaluation for new data input pro-
ceeds from the stored state.

Consider the following example of
CMQ-Index evaluation: A CMQ-Index
is created for five CMQs by building a
linked list data structure (see Figure
5); MobiCon already translates each
CMQ into features and thus has a
range (such as energy > 52). The figure
shows a simple case, with each trans-
lated CMQ containing a single feature
type. Rather than evaluate each CMQ
separately, a CMQ-Index enables
shared evaluation upon arrival of a
new feature data value. Moreover, the
pointer in the feature table enables
incremental processing by remem-
bering the state of the previous evalu-
ation. In Figure 5, the pointer stores
the computation ended at N4 at the
last evaluation with data vt−1. With
new data vt, the computation starts
from N4 and proceeds to N2. While pro-

ceeding from N4 to N2, state-changed
CMQs are quickly identified; that is,
CMQ2, CMQ3, and CMQ4 become
false, and CMQ5 becomes true. Due
to the locality of consecutive feature
values, such traversal is often quick,
significantly accelerating repeated
CMQ-Index evaluation. The CMQ-
Index approach outperforms state-of-
the-art query indexing mechanisms
by orders of magnitude.11 Moreover,
the structure is memory efficient,
since it stores only the differences be-
tween queries over successive ranges
without replication.

Energy-Efficient Sensor Use
Low-energy sensors carrying out con-
tinuous operations (such as sensing,
filtering, feature extraction, and trans-
mission) in context monitoring quick-
ly drain their batteries, significantly
compromising the full functioning of
context monitoring. Thus, to be prac-
tical, any mobile context-monitoring
platform, including MobiCon, must be
able to achieve energy efficiency in its
use of sensors.

Approaches to energy efficiency
in sensor and mobile systems in pre-
vious research include hierarchical
sensor management, energy-fidelity
trade-offs, interest-aware sensor man-
agement, sampling-rate adjustment,
and sensor-data compression. Here we
review these approaches, comparing
them to the MobiCon solution.

Hierarchical sensor management

reduces energy consumption by ex-
ploiting a low-power tier that con-
sumes less energy, thus avoiding con-
tinuous operation of a high-power tier
that drains energy. Different types of
hierarchical relationships include, for
example, Turducken23 who exploited
the hierarchy between low-power de-
vices and high-power devices, while
Mercury14 exploited the hierarchy be-
tween different sensors in a single-
sensor device; that is, a gyroscope
consumes much more energy than an
accelerometer.

Techniques based on an energy-
fidelity trade-off involve several levels
of fidelity associated with different
rates of energy consumption and al-
ternatively select an appropriate level
for the sake of saving energy; for ex-
ample, Eon22 allows applications to
select from multiple program flows
associated with different fidelity lev-
els for different energy states (such as
high-power and low-power). Likewise,
applications in Levels10 provide alter-
native code blocks for different energy
levels. Selecting from the alternatives,
runtime systems determine an appro-
priate level of fidelity that can be sup-
ported under given conditions of en-
ergy availability.

Interest-aware on-the-fly sensor
management activates only the sen-
sors necessary to generate contexts or
data only when applications are inter-
ested, avoiding unnecessary energy
consumption by other sensors (such
as SeeMon8 and EEMS25). Techniques
leveraging sampling-rate adjustment
reduce the data-sampling rate as much
as possible without affecting recogni-
tion accuracy, thus saving energy for
sensing data.4 Moreover, sensor-data
compression reduces the amount of
transmitted data, saving energy that
would otherwise be consumed for ra-
dio transmission.20

MobiCon’s solution to energy effi-
ciency involves interest-aware sensor
management using a minimal set of
sensors to extract the contexts of ap-
plication interest. MobiCon supports
applications without having to acti-
vate all potentially available sensors
by exploiting the characteristics of per-
sonal context and application require-
ments.8 It also employs a novel sensor-
control method—the ESS—to leverage
the structure of context-monitoring

Figure 5. CMQ-Index, showing query borders for feature F1 and five CMQs.

Feature Table

List of query
borders for F1

Beginning of
true-state CMQs

End of
true-state

{CMQ5} {CMQ2} {CMQ1}

{CMQ2}

CMQ1
CMQ2

CMQ5

CMQ3
CMQ4

{CMQ3}

{CMQ3,
CMQ4}

{CMQ1,
CMQ4}

{CMQ5}

Registered
CMQs

ID

F1

…

Pointer

b0

N1

b1 vt vt – 1

N2

b2

N3

b3

N4

b4

N5

b5

N6

b7

¥N7

contributed articles

march 2012 | vol. 55 | no. 3 | communications of the acm 63

queries and their co-dependence. The
key idea is that only a small number of
sensors is likely to be enough to deliver
responses for all context-monitoring
queries. The ESS changes depending
on the current context and registered
monitoring requests. However, a us-
er’s context often remains the same
once calibrated to the user’s particular
situation. Likewise, the ESS does not
change abruptly.

ESS-based sensor control. Calculat-
ing the ESS is complicated, ideally
including only a minimal number of
sensors to limit overall system energy
use. MobiCon’s selection of ESS sen-
sors should also consider sensor data-
transmission rates.

Consider a CMQ represented in
conjunctive normal form—mul-
tiple conditional clauses connected
through an “and” operation—of con-
text elements. As described earlier,
CMQ evaluation aims to detect wheth-
er the states of CMQs change, since
CMQ semantics aim to deliver the re-
sults only upon a change in context.
During that evaluation, a CMQ is in
one of three states:

True-state. The state of a true-state
CMQ changes to false if the state of
its single context element changes to
false. MobiCon must monitor all con-
text elements to see if the CMQ state
changes, and all sensors related to the
context elements must be included in
the ESS;

Undecided-state. An undecided-state
CMQ is managed the same way. Mobi-
Con checks the states of all context ele-
ments, and all related sensors must be
included in the ESS; and

False-state. Monitoring any single
context element in a false state is
sufficient, as long as that state is un-
changed; only when it does change
must the states of the other elements
be monitored.

The ESS-calculation challenge in-
volves computing the minimum-cost
ESS for the false-state CMQs. However,
false-state CMQs are also an opportu-
nity to advance energy efficiency, with
MobiCon choosing a false-state con-
text element associated with the most
energy-efficient sensors. Formulated
as “minimum cost false query covering
sensor selection,” or MCFSS,8 the prob-
lem is NP-complete, proved by reduc-
ing another well-known NP-complete

problem, “minimum cost set cover,”
or MCSC, to the MCFSS problem. Ac-
cordingly, with MobiCon employing a
heuristic algorithm—Greedy-MCFSS,8
now consider a MobiCon operation
example with four sensors—S0, S1, S2,
and S3—and three queries—A, B, and
C—where

A = (2<F0<15),
B = (F0<5) ^ (F1<15) ^ (F3<20), and
C = (12<F1<18) ^ (1<F2< 20) ^ (10<F3<34).

F0, F1, F2, and F3 are features calculated
from the values of S0, S1, S2, S3, respec-
tively, and have 7, 31, 2, and 15 as their

current feature values, and A is a true-
state CMQ. Thus, sensor S0 related to
the context element of A should be in
the ESS and update data. The other
queries—B and C—are false; for ex-
ample, the state of query B can be de-
termined through either S0 or S1. Sen-
sor S0 and S1 are therefore sufficient for
evaluating all registered CMQs; that is,
ESS = {S0, S1}.

Applications
Consider the following three MobiCon-
supported applications:

Swan Boat. Designed to make tread-
mill running less boring, Swan Boat,1,17

Figure 6. Applications: (a) Swan Boat: (a1) player screenshot, (a2) gameplay; (b) U-theater:
(b1) Smash the Beehive!, (b2) gameplay; and (c) SympaThings: (c1) use case, (c2) changing
picture images in a frame, (c3) changing lamp colors.

64 communications of the acm | march 2012 | vol. 55 | no. 3

contributed articles

is a step toward applying the MobiCon
framework to pervasive games reflect-
ing users’ contexts and physical ac-
tions (see Figure 6a(1)). Basically, two
players in a team collaboratively con-
trol a boat, with the difference in run-
ning speed between team members de-
termining the boat’s direction. Hand
gestures are also used as input for ad-
ditional game interaction. Players can
also attack opponents by punching
(see Figure 6a(2)). MobiCon simpli-
fies development of pervasive games
so game developers need only define
game rules and design user interfaces.
In Swan Boat, MobiCon manages com-
plexities (such as processing accel-
eration data and recognizing motion)
through a simple CMQ registration.

U-theater. U-theater is a group-in-
teractive gaming application for pub-
lic places, like movie theaters, with
large screens. Related games are likely
played by dozens of players (see Figure
6b(2)) wearing sensors on their wrists,
watching the screen, and interacting
through body motion. Leveraging Mo-
biCon and its APIs, developers imple-
ment applications without having to
know much about sensor-data acquisi-
tion, feature extraction, or motion pro-

cessing; consequently, they are better
able to concentrate on game content.
Three MobiCon-supported games
have been developed for U-theater:
Cheer Together!, Smash the Beehive!
(see Figure 6b(1)), and Jump, Jump! In
Smash the Beehive!, a beehive is swarm-
ing with bees when, suddenly, the bees
are gone. Players then punch the bee-
hive, with the quickest to do so win-
ning the game.

SympaThings. Inspired by affective
computing and running on wearable
devices, the object of SympaThings is
to get nearby smart objects to “sympa-
thize” with a user’s affective context;
for example, a picture frame might
change the picture it frames, and a
lighting fixture might adjust its color
(such as red for strain and yellow for
ease). Efficient processing is crucial,
including high-rate data from BVP
and GSR sensors and multiple queries
for smart objects. MobiCon’s shared,
incremental processing is essential
for satisfying these requirements.
SympaThings is a collaboration of the
Human Computer Interaction Lab
and the Semiconductor System Lab of
the Korea Advanced Institute of Sci-
ence and Technology, Daejeon, Korea.

Experiments
In their experiments, MobiCon de-
velopers used a data workload from
raw data generated by eight sensors
over the course of a student’s day
on the Daejeon campus. Sensors in-
cluded five USS-2400 nodes devel-
oped by Huins Inc.—a light sensor,
a temperature/humidity sensor, and
three dual-axis acceleration sen-
sors—along with a GPS sensor and
two software sensors for time and
indoor locations. The total data rate
for all was 291.74Hz. MobiCon de-
velopers also synthetically generated
CMQs to simulate various monitor-
ing conditions in different contexts.
Each CMQ included four context el-
ements, with uniform distributions
applied to selecting context types and
values in context elements. For all ex-
periments, MobiCon ran on Sony’s
UX27LN ultra-mobile PC, with CPU
frequency scaled down to 200MHz
to validate the platform within a re-
source-limited mobile environment.

CMQ-Index-based context monitor-
ing. Here, we outline the performance
benefit of the CMQ-Index-based con-
text monitoring method, comparing
its performance against an alternative
approach—context recognition-based
monitoring—that models non-Mobi-
Con context middleware.20 The con-
text recognition-based monitoring
method continuously receives sensor
data, processes it to recognize con-
texts, and evaluates queries to detect
specified context changes; individual
queries are evaluated separately.

Figure 7a outlines average process-
ing time per data tuple with increas-
ing numbers of registered CMQs.
MobiCon shows significant process-
ing efficiency compared to alternative
context-recognition-based monitoring
platforms. It also scales well with in-
creasing numbers of queries. Process-
ing time of MobiCon for 1,024 queries
is orders of magnitude shorter than in
the context-recognition-based moni-
toring approach.

ESS-based sensor control. The per-
formance of ESS-based sensor control
demonstrates MobiCon’s potential
for energy efficiency. As a metric, Mo-
biCon uses the Transmission Reduc-
tion Ratio (TRR), defined as a ratio of
the reduced number of transmissions
to the total expected number of trans-

Figure 7. Experiment results: (a) average processing time per data tuple; (b) TRR of each
sensor device with different sensing modules: id 0 (illuminometer); id 1 (thermometer); id 2
(hygrometer); and id 3~8 (accelerometers).

  MobiCon     Context recognition-based monitoring method

  # of CMQs: 16     # of CMQs: 256     # of CMQs: 4096

8

7

6

5

4

3

2

1

0

1

0.8

0.6

0.4

0.2

0

4

0 1 2 3 4 5 6 7 8

16 64 128

of CMQs

Sensor ID

A
ve

ra
g

e
p

ro
ce

ss
in

g
 t

im
e

p
er

 d
at

a
tu

p
le

 (
m

s)

T
R

R

256 512 1024

(a)

(b)

contributed articles

march 2012 | vol. 55 | no. 3 | communications of the acm 65

missions of sensor devices, measuring
TRR for eight sensing sources deployed
on five USS-2400 sensor nodes.

Figure 7b lists the TRR of 10 mea-
surements for each sensing source,
with acceleration sensors producing a
much higher TRR than other sensors.
Due to their high transmission rates,
ESS-based sensor-control mechanisms
frequently exclude acceleration sen-
sors from the ESS. On average, Mobi-
Con eliminates over 90% of sensor-
data transmissions when the number
of CMQs is fewer than 256. Moreover,
~63% of sensor-data transmissions are
eliminated even with 4,096 queries. As
the number of CMQs increases, the
TRR decreases because the number of
true-state CMQs increases.

Conclusion
The theoretical foundation and imple-
mented technology described here
support a number of heterogeneous
applications for simultaneously run-
ning and sharing limited dynamic
resources. We showed that non-Mo-
biCon context-monitoring processes
are inadequate for dynamic situations,
while MobiCon promises new sens-
ing devices, mobile and sensor system
technologies, data processing technol-
ogies, and mobile service models, as
well as human computer interaction in
everyday mobile environments.

Acknowledgments
This work is supported in part by a
Korea Research Foundation Grant
funded by the Korean Government
(KRF-2008-220-D00113), by the Fu-
ture-based Technology Development
Program through the National Re-
search Foundation of Korea funded
by the Ministry of Education, Science,
and Technology (20100020729), and
by the Ministry of Knowledge Econ-
omy, Korea, under the Information
Technology Research Center-support
program supervised by the National
IT Industry Promotion Agency (NIPA-
2010-(C1090-1011-0004)), the U.S. Na-
tional Science Foundation (grant #
CNS-0963793), U.S. Department of De-
fense ONR (grant # N0014-08-1-0856),
Hankuk University of Foreign Studies
(grant # 2011-1079001), and Louisi-
ana Board of Regents (grant # LEQSF-
2007-12-ENH-P-KSFI-PRS-03). We are
also grateful to the Korea Advanced

Institute of Science and Technology’s
Ubiquitous Fashionable Computer
project for its collaboration. We give
special thanks to Kyuho Park, Geehyuk
Lee, Hoi-Jun Yoo of KAIST, Xin Lin
and Srivathsan Srinivasagopalan of
Louisiana State University and to Mani
Chandy of CalTech. 	

References
1.	A hn, M. et al. SwanBoat: Pervasive social game to

enhance treadmill running. In Proceedings of ACM
Multimedia Technical Demonstrations (Beijing, Oct.
19–23). ACM Press, New York, 2009, 997–998.

2.	B ächlin, M. et al. SwimMaster: A wearable assistant
for swimmers. In Proceedings of the International
Conference on Ubiquitous Computing (Orlando,
FL, Sept. 30–Oct. 3). ACM Press, New York, 2009,
215–224.

3.	B ao, L. and Intille, S.S. Activity recognition from
user-annotated acceleration data. In Proceedings of
the International Conference on Pervasive Computing
(Vienna, Austria, Apr. 21–23). Springer, Berlin/
Heidelberg, 2004, 1–17.

4.	B haratula, N.B. et al. Empirical study of design choices
in multi-sensor context-recognition systems. In
Proceedings of the International Forum on Applied
Wearable Computing (Zürich, Mar. 17–18). VDE Verlag,
Berlin, 2005, 79–93.

5.	 Fahy, P. and Clarke, S. CASS: A middleware for
mobile context-aware applications. In Proceedings
of the Workshop on Context Awareness, part of
the International Conference on Mobile Systems,
Applications, and Services (Boston, June 6, 2004).

6.	 Iyengar, S.S., Parameshwaran, N., Phoha, V.V.,
Balakrishnan, N., and Okoye, C.D. Fundamentals of
Sensor Network Programming: Applications and
Technology. Wiley-IEEE Press, Hoboken, NJ, Dec. 2010.

7.	 Kang, S. et al. Orchestrator: An active resource
orchestration framework for mobile context
monitoring in sensor-rich mobile environments. In
Proceedings of the IEEE International Conference
on Pervasive Computing and Communications
(Mannheim, Germany, Mar. 29–Apr. 2). IEEE Computer
Society, Washington, D.C., 2010, 135–144.

8.	 Kang, S. et al. SeeMon: Scalable and energy-efficient
context-monitoring framework for sensor-rich mobile
environments. In Proceedings of the International
Conference on Mobile Systems, Applications, and
Services (Breckenridge, CO, June 17–20). ACM Press,
New York, 2008, 267–280.

9.	 KISS FFT, http://kissfft.sourceforge.net/
10.	L achenmann, A., Marrón, P.J., Minder, D., and

Rothermel, K. Meeting lifetime goals with energy
levels. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (Sydney, Nov.
6–9). ACM Press, New York, 2007, 131–144.

11.	 Lee, J. et al. BMQ-processor: A high-performance
border-crossing event-detection framework for large-
scale monitoring applications. IEEE Transactions on
Knowledge and Data Engineering 21, 2 (Feb. 2009),
234–252.

12.	L i, Q. et al. Accurate, fast fall detection using
gyroscopes and accelerometer-derived posture
information. In Proceedings of the International
Workshop on Wearable and Implantable Body Sensor
Networks (Berkeley, CA, June 3–5). IEEE Computer
Society Press, Washington, D.C., 2009, 138–143.

13.	L iu, X., Shenoy, P., and Corner, M.D. Chameleon:
Application-level power management. IEEE
Transactions on Mobile Computing 7, 8 (Aug. 2008),
995–1010.

14.	L orincz, K. et al. Mercury: A wearable sensor
network platform for high-fidelity motion analysis.
In Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (Berkeley, CA, Nov. 4–6).
ACM Press, New York, 2009, 183–196.

15.	L orincz, K., Chen, B., Waterman, J., Allen, G.W., and
Welsh, M. Resource-aware programming in the
Pixie OS. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (Raleigh, NC,
Nov. 5–7). ACM Press, New York, 2008, 211–224.

16.	N oble, B.D. et al. Agile application-aware adaptation
for mobility. In Proceedings of the ACM Symposium on
Operating Systems Principles (Saint-Malo, France, Oct.
5–8). ACM Press, New York, 1997, 276–287.

17.	 Park, T., Yoo, C., Choe, S.P., Park, B., and Song, J.
Transforming solitary exercises into social exergames.
In Proceedings of the ACM Conference on Computer
Supported Cooperative Work (Seattle, Feb. 11–15).
ACM Press, New York, 2012.

18.	 Park, T., Lee, J., Hwang, I., Yoo, C., Nachman, L., and
Song, J. E-Gesture: A collaborative architecture for
energy-efficient gesture recognition with hand-worn
sensor and mobile devices. In Proceedings of the ACM
Conference on Embedded Networked Sensor Systems
(Seattle, Nov. 1–4). ACM Press, New York, 2011,
260–273.

19.	R affa, G. et al. Don’t slow me down: Bringing energy
efficiency to continuous gesture recognition. In
Proceedings of the International Symposium on
Wearable Computers (Seoul, Oct. 10–13). IEEE
Computer Society Press, Washington, D.C., 2010, 1–8.

20.	R iva, O. Contory: A middleware for the provisioning of
context information on smart phones. In Proceedings of
the International Middleware Conference (Melbourne,
Australia, Nov. 27–Dec. 1). Springer, 2006, 219–239.

21.	S adler, C.M. et al. Data-compression algorithms
for energy-constrained devices in delay-tolerant
networks. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (Boulder, CO,
Oct. 31–Nov. 3). ACM Press, New York, 2006, 265–278.

22.	S orber, J. et al. Eon: A language and runtime system
for perpetual systems. In Proceedings of the ACM
Conference on Embedded Networked Sensor Systems
(Sydney, Nov. 6–9). ACM Press, New York, 2007,
161–174.

23.	S orber, J. et al. Turducken: Hierarchical power
management for mobile devices. In Proceedings of
the International Conference on Mobile Systems,
Applications, and Services (Seattle, June 6–8). ACM
Press, New York, 2005, 261–274.

24.	 Vert, G., Iyengar, S.S., and Phoha, V. Introduction to
Contextual Processing: Theory and Applications. CRC
Press, Boca Raton, FL, Fall 2010.

25.	 Wang, Y. et al. A framework of energy-efficient mobile
sensing for automatic user state recognition. In
Proceedings of the International Conference on Mobile
Systems, Applications, and Services (Krakow, Poland,
June 22–25). ACM Press, New York, 2009, 179–192.

26.	 Zeng, H., Fan, X., Ellis, C.S., Lebeck, A., and Vahdat,
A. ECOSystem: Managing energy as a first-class
operating system resource. In Proceedings of the
International Conference on Architectural Support
for Programming Languages and Operating Systems
(San Jose, CA, Oct. 5–9). ACM Press, New York,
2002, 123–132.

Youngki Lee (youngki@nclab.kaist.ac.kr) is a Ph.D.
student in the Department of Computer Science of the
Korea Advanced Institute of Science and Technology,
Daejeon, Korea.

S.S. Iyengar (iyengar@csc.lsu.edu) is a professor in
the Department of Computer Science of Louisiana State
University, Baton Rouge, LA.

Chulhong Min (chulhong@nclab.kaist.ac.kr) is a Ph.D.
student in the Department of Computer Science of the
Korea Advanced Institute of Science and Technology,
Daejeon, Korea.

Younghyun Ju (yhju@nclab.kaist.ac.kr) is a Ph.D. student
in the Department of Computer Science of the Korea
Advanced Institute of Science and Technology, Daejeon,
Korea.

Seungwoo Kang (swkang@nclab.kaist.ac.kr) is a post-
doctoral researcher in the Department of Computer
Science of the Korea Advanced Institute of Science and
Technology, Daejeon, Korea.

Taiwoo Park (twpark@nclab.kaist.ac.kr) is a Ph.D. student
in the Department of Computer Science of the Korea
Advanced Institute of Science and Technology, Daejeon,
Korea.

Jinwon Lee (jcircle@nclab.kaist.ac.kr) is a researcher at
Qualcomm Research, Santa Clara, CA.

Yunseok Rhee (rheeys@hufs.ac.kr) is a professor in the
Department of Electronics and Information Engineering of
Hankuk University of Foreign Studies, Yongin, Korea.

Junehwa Song (junesong@kaist.ac.kr) is a professor
in the Department of Computer Science of the Korea
Advanced Institute of Science and Technology, Daejeon,
Korea.

© 2012 ACM 0001-0782/12/03 $10.00

