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Smart mobile devices  are the gateway for personal 
services in the emerging pervasive environment, 
enabling context-aware applications involving 
personal sensor networks with sensor devices on the 
human body and/or surrounding spaces. Diverse 
sensors function as tools applications use to acquire 
user context, or current individual status, without 
user intervention24 (see Table 1); for example, physical 
contexts (such as heart rate) are recognized through 
biomedical devices (such as electrocardiogram, 
or ECG, galvanic skin response, or GSR, and blood 
volume pulse, or BVP, sensors) and gait is derived 
through accelerometers and gyroscopes. Likewise, 
environmental status can be obtained from light/
temperature/dust sensors, GPS, RFID,3,8 and related 
networks. Diverse contexts enable mobile applications 
to proactively provide users customized personal

services. Such applications are emerg-
ing in diverse research domains, in-
cluding health care, elderly support,12 
dietary monitoring, daily life assis-
tance, and sports training. 

Context-monitoring semantics are 
different from the context-recognition 
semantics in early context middle-
ware,5,19 aiming to identify a person’s 
context at a specific moment in time. 
Context monitoring often involves con-
tinuous execution of complex, simulta-
neous, multi-step operations (such as 
feature extraction and context recogni-
tion across mobile and sensor devices). 
However, individual applications have 
difficulty performing context-moni-
toring processing on their own, espe-
cially over shared devices with limited 
resources. A common monitoring plat-
form is essential for effective context 
monitoring. 

Enabling mobile context monitor-
ing involves multiple applications, us-
ers, devices, and techniques, as well as 
different contexts reflecting different 
degrees of awareness and accuracy. Us-
ers have different requirements and 
preferences for such services, as well 
as privacy concerns. Efficient resource 
utilization and management are also 
important for continuous context 
monitoring. Enabling diverse context-
aware applications requires infrastruc-
ture, including a platform to process 
multiple streams of sensor data and 
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 key insights

 � �Understanding the physical context  
in users’ everyday activity promises  
a new proactive, automated model for 
mobile applications beyond conventional 
user-initiated, reactive services. 

 � �MobiCon middleware lets mobile-
application developers leverage diverse 
user contexts without concern for the 
precision of context recognition or the 
battery and computational resources  
of smartphones and other sensor 
devices in context monitoring. 

 � �MobiCon translates physical context 
into the most energy-and-processing-
efficient combination of resources  
at runtime—the kind of technology 
needed by practical context-monitoring 
platforms or applications. 
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coordinate multiple applications. 
Here, we cover four major areas: 

Artificial intelligence and machine 
learning. Many related efforts recog-
nize user context automatically, fo-
cusing on recognition accuracy and 
context extraction through sophis-
ticated sensors (such as cameras for 
arm tracking and face-gesture detec-
tion). They attempt to address chal-
lenges in context recognition (such 
as preprocessing, feature extraction, 
segmentation, and recognition algo-
rithms); for example, some systems 
extract the most useful features neces-
sary for accurate recognition (such as 
mel-frequency cepstral coefficients for 
sound modeling for audio and statisti-
cal, or frequency-domain features, for 
detecting physical activity3) from raw 
sensing data (such as from cameras, 
microphones, and biomedical and 
motion sensors). Others automatically 
segment sensor data or feature data 
corresponding to valid context vocab-
ularies (such as probability-based seg-
mentation) without user intervention. 
Most important, diverse context-rec-
ognition algorithms have been devel-
oped to accurately classify segmented 
features into defined context vocabu-
laries (such as hidden Markov models 
for speech and gesture recognition, de-
cision trees for physical-activity recog-
nition,3,8 and support vector machine 
for face recognition). They are effective 
handling context uncertainty, as most 
are based on probabilistic inference 
and reasoning. However, in practice, 

applying research systems to real mo-
bile environments is time consuming 
and raises even more technical chal-
lenges. In general, context monitor-
ing should be performed in resource-
constrained sensor-enabled mobile 
platforms, especially those with lim-
ited battery and computing power. 
Continuous processing of complex 
AI and machine-learning algorithm-
based context monitoring imposes a 
heavy workload on mobile platforms, 
limiting their practicality. 

Mobile and sensor systems. Previous 
research addressed the challenges of 
limited resources on mobile and sen-
sor systems, including: OS and system 
middleware providing system func-
tionality for executing mobile and sen-
sor applications in a resource-aware/
adaptive manner (such as ECOSystem26 
and Odyssey16 for mobile systems and 
Pixie14 and Eon22 for sensor systems); 
component techniques for resource 
efficiency optimizing resource utili-
zation, especially energy consump-
tion;4,21,23,25 and distributed resource 
management across multiple devices 
or applications (such as load balanc-
ing in sensor networks and adaptive 
node selection in dynamic networks). 
Unfortunately, as most such work 
has not focused on emerging context-
monitoring applications, their archi-
tectures and mechanisms are not fully 
optimized for them. 

Context-aware applications. Diverse 
context-aware applications have been 
proposed in health care and medicine, 

sports training, and activity/motion 
analysis,3 tapping application-specific 
contexts (such as location, activity, 
and biomedical response). However, 
despite providing useful functionality, 
they are limited as a general platform 
for multiple applications involving di-
verse sensors and associated contexts. 
In addition, application-specific plat-
forms have not fully addressed resource 
limitations, since they are not designed 
for sharing multiple applications. 

Context middleware. Some projects 
have proposed middleware to support 
context-aware applications, aiming to 
hide the complexity of context infer-
ence to help identify contexts of inter-
est. However, they are generally limited 
in terms of continuous monitoring in 
sensor-rich, resource-limited environ-
ments. Most early examples were de-
signed to run in server environments5 
so did not deal with the inherent re-
source constraints of mobile and sen-
sor environments. Some context-aware 
middleware is designed for mobile de-
vices20 but does not consider the tens 
or even hundreds of sensors in person-
al-area networks or the processing and 
power limitations of mobile devices 
and sensors. 

Research Objective 
Our aim is to implement a practical 
context-monitoring system for con-
text-aware applications in sensor-rich, 
resource-limited mobile environments 
(see Figure 1), so it must address the 
challenges of emerging sensor-rich 

Figure 1. Challenges in mobile context processing. 
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mobile environments. First, it must 
be able to continuously run multi-step 
computation over mobile and sensor 
devices to ensure accurate context rec-
ognition. Such computation requires 
significant computing resources, of-
ten involving high-rate data sampling 
from multiple sensors, continuous fea-
ture extraction and context recognition 
over massive amounts of sensor data, 
and transmission of intermediate re-
sults among devices. 

Second, it must concurrently sup-
port a number of complicated requests 
from multiple applications as a shared 
underlying platform, further com-
plicating management of limited re-
sources. It must also be able to resolve 
potential conflicts among multiple ap-
plication resources. Finally, it must ad-
dress the dynamic availability of wear-
able or space-embedded sensors and 
their resource status in continuous 
monitoring for seamless service. 

Table 2 lists the resource availabil-
ity of example sensor motes. In prac-
tice, available computing resources 
(such as CPUs and memory in sensor 
devices) are often short of the capacity 
required for individual context-moni-
toring requests; for example, a MicaZ 
wireless sensor mote has an 8MHz 
CPU and 4KB RAM but is incapable of 
running a light FFT library, kiss_fft,9 
used to monitor activity. In addition, 
limited battery capacity could compro-
mise continuous monitoring, possibly 
resulting in early shutdown of relevant 
applications. Table 3 lists average en-
ergy consumption of example tasks 
performed on a Knode wireless sensor 
mote. Given the limited battery capac-
ity of Knode, 250mAh, useful time is 
about 21.5 hours for fall detection and 
heartbeat monitoring (the third case 
in the table). Concurrent execution of 
additional tasks makes energy con-
sumption even more critical. Lorincz 
et al.14 wrote about energy deficiency 
with the SHIMMER sensor, a coin-size 
wireless sensor for motion analysis, 
in which the worst-case lifetime was 
9.2 hours for motion analysis, includ-
ing continuous sampling and logging 
of accelerometer and gyroscope data, 
maintaining time sync, and raw sam-
ple transmission. 

We have, since 2007, been devel-
oping MobiCon, a novel mobile con-
text-monitoring framework intended 
to address the resource challenges 
of sensor-rich mobile environments 
in support of context-aware applica-
tions. Though the research efforts we 
outlined earlier provide basic tech-
niques for context monitoring, con-
sideration of other techniques is es-
sential for addressing the emerging 
interdisciplinary challenges involved 
in practical context-monitoring sys-
tems. MobiCon research can be 
viewed as an initial step toward bridg-

Table 2. Resource availability of example sensor motes. 

Sensor node MCU Comm. Flash memory Onboard sensor Optional sensor Battery

SHIMMER14 TI MSP430 CC2420 (802.15.4, 
2.4GHz, 256Kbps)

3GB Triple-axis accelerometer Gyroscope,  
ECG, EMG 

250mAh Li-polymer 
rechargeable

Knode Atmega128  
(8MHz CPU) 
(4KB RAM)

1MB Triple-axis accelerometer, 
dual-axis gyroscope, light

Gyroscope  
(to cover 3D), SpO2

250mAh Li-polymer 
rechargeable 

USS2400  
(MicaZ clone)

None None Dual-axis 
accelerometer, 
thermometer 

2 x 1200mAh alkaline

Table 1. Example contexts and applications. 

Category Context Application Sensor

Health Fall Elder care12 Accelerometer, gyroscope, 
microphone 

Motion, gait Patient monitoring 
(such as for Parkinson’s 
disease)14

Accelerometer, gyroscope

Heart condition
(such as interbeat 
interval and heart rate)

Heart monitor, jogging 
support

ECG sensor, BVP sensor, SpO2 
sensor

Calories Activity-based calorie 
monitor

Accelerometer

Activity/Status Affective status SympaThings8 BVP sensor, GSR sensor

Activity Activity-based calorie 
monitor, activity-based 
service initiation

Accelerometer, gyroscope, 
camera, RFID (object-attached)

Gesture User interaction17,18 Accelerometer, gyroscope, 
camera

Sleep pattern Sleep monitoring Accelerometer, microphone

Location Outdoor Navigation, traffic 
monitoring, 
microblogging, mobile 
advertising, personal 
logging

GPS, accelerometer

Indoor WiFi, infrared sensor, ultrasound 
sensor

Place Mood, crowdedness, 
noise, illumination

Recommendation, 
social networking, party 
thermometer

Microphone, camera, 
illuminometer, GPS, WiFi

Environment Weather Weather monitoring Thermometer, hygrometer,  
anemometer

Pollution City pollution 
monitoring

CO2 sensor, O3 sensor,  
S sensor, dust sensor

Sports Training Golf swing Virtual golf trainer Accelerometer

Swim posture Wearable swim 
assistant2

Accelerometer

Treadmill SwanBoat1 Proximity sensor, accelerometer

Companion Number, relationship Advertising, groupware Microphone, proximity sensor
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ing the gap between these efforts for 
context monitoring. Note that many 
design details and techniques are cov-
ered in Ahn et al.,1 Kang et al.,7 Kang et 
al.,8 and Lee et al.11 

Framework Development 
The MobiCon middleware framework 
mediates context-aware applications 
and personal sensor networks (see 
Figure 2), providing application pro-
gramming interfaces (APIs) (see Table 
4) and a runtime environment for 
applications. Multiple applications 
requiring context monitoring can be 
developed through the APIs and run 
concurrently atop MobiCon, with Mo-
biCon functioning as a shell above 
personal-area networks, providing a 
neat interface for users receiving and 
processing sensor data and control-
ling sensors. 

It includes five components: Con-
text Processor, Sensor Manager, Re-
source Coordinator, Application Bro-
ker, and Sensor Broker. Applications 
initiate context monitoring by reg-
istering context-monitoring queries 
through the Application Broker. The 
Context Processor performs context 
monitoring by evaluating the que-
ries over data delivered by the Sensor 
Broker, with monitoring results then 
forwarded to applications. In this pro-
cess, the Sensor Manager finds a mini-
mal set of sensors needed to evaluate 
all registered queries, forcing unneces-
sary sensors to stop transmitting data 
to MobiCon. In addition, the Resource 
Coordinator mediates potential con-
flicts among low-power sensor nodes 
when handling multiple requests from 
concurrent applications. It also sup-
ports adaptation to the dynamic sen-
sor join/leave. 

The MobiCon architecture proto-
type runs on Java based on an Android 
OS (version 2.3) from Google. 

Hardware. Deploying MobiCon re-
quires two sets of hardware—mobile 
devices and sensors—on three mobile 
devices—a Sony Vaio UX27LN with In-
tel U1500 1.33GHz CPU and 1GB RAM, 
a custom-designed wearable device 
with Marvell PXA270 processor and 
128MB RAM, and a NexusOne smart-
phone with 1GHz Scorpion CPU and 
512MB RAM. 

We incorporated as many sensors as 
we could to increase MobiCon’s cover-

Figure 2. MobiCon architecture. 

Table 3. Energy consumption of applications on a watch-type Knode sensor mote. 

Application Tasks running on Knode
Avg. energy  

consumption (mJ/s)

Fall detection 1 Sensing: 30Hz from 3D accelerometers 
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Transmission: 6Hz to a mobile device

3.6

Fall detection 2 Sensing: 30Hz from 3D accelerometers and 2D 
gyroscopes
Feature extraction: FFT with window size of 
64 and sliding window of 32 
Transmission: 1.07Hz to a mobile device

13.1

Fall detection 1 + 
heartbeat monitor

Tasks for Fall detection 1 + 
Sensing: 60Hz from SpO2 sensor 
Feature extraction: peak detection and count
Transmission: 1Hz to mobile devices

33.8

Base energy consumption (no task) 8.8

Table 4. MobiCon API. 

Functionality API List

Context monitoring-related APIs registerCMQ (CMQ_statement)

deregisterCMQ (CMQ_ID)

Query translation map-related APIs createMAP ([Parent_Map_ID])

deleteMAP (Map_ID)

browseMAP ()
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age and accuracy of context monitor-
ing. We selected small-size control-
lable sensors with processing and 
wireless communication capabilities 
appropriate for mobile environments. 
Deployed in compact, portable form, 
the sensors work easily with Mobi-
Con’s sensor-control mechanism. 

The prototype mainly uses two 
types of MicaZ clone sensor nodes—
USS-2400 and Knode—on eight USS-
2400 sensor nodes—four dual-axis 
accelerometers and two light and two 
temperature/humidity sensors. We de-
signed Knode to support diverse sens-
ing modalities in a single mote; Knode 
includes the Atmega 128L microcon-
troller unit (MCU), or low-power CMOS 
eight-bit microcontroller based on the 
AVR enhanced RISC architecture, 1G 
flash memory, CC2420 RF transceiver 
supporting 2.4GHz band ZigBee pro-
tocol, and TinyOS operating system. 
Also included are a triple-axis accel-
erometer, dual-axis gyroscope, and 
support extensions, as are additional 
sensors that provide context types not 

supported by the MicaZ clone sensor 
nodes, including three biomedical sen-
sors—ECG, BVP, and GSR—as well as a 
Bluetooth-enabled GPS sensor to posi-
tion outdoor location. We also devel-
oped two wearable sensor devices with 
different form factors: Sensor-Bracelet 
(with basic Knode) and U-Jacket (with 
BVP and GSR sensors). 

Translation-based Approach 
We devised a translation-based ap-
proach to facilitate context-aware ap-
plication development and resource 
management over dynamic resource-
limited sensor-rich environments. 
Figure 3a outlines the flow of a con-
ventional non-MobiCon context-mon-
itoring process, usually proceeding 
in one direction through a pipeline 
with multiple stages: preprocessing, 
feature extraction, and context clas-
sification/inference, as defined by a 
programmer. Context monitoring is 
more than a single-step recognition 
task, continuously recognizing a con-
text of interest and detecting changes 

as an ongoing task. In non-MobiCon 
approaches, change detection is per-
formed in the final step, following fi-
nal classification of a context. It usu-
ally supports a single or small number 
of monitoring requests through a 
small number of sensors within a gen-
eral computing environment with suf-
ficient resources to sense, transmit, 
and process related data. 

Unlike MobiCon, such approaches 
include a computation-intensive pro-
cessing pipeline for each context. As 
a result, they are not efficient enough 
to handle concurrent monitoring re-
quests on mobile platforms or on sen-
sors with limited resources. Moreover, 
applications generally use resources 
in a greedy manner, further straining 
resource availability. With a limited 
view of system status, individual appli-
cations have more difficulty address-
ing resource contention. Moreover, 
they are unable to achieve global effi-
ciency, shared resource use, and com-
putation on their own. Applications 
must also be able to adapt themselves 
according to dynamic resource avail-
ability. In essence, the fixed process-
ing defined by programmers before 
an application is put to use restricts 
diverse attempts to mediate between 
a system and its applications. 

Addressing limited resource coor-
dination in a conventional approach, 
we proposed a translation-based ap-
proach for MobiCon in 2008,8 ex-
tending it in 2010.7 MobiCon-based 
applications specify the monitoring 
requests of interest in a high-level 
language, submitting them to the 
platform. MobiCon translates each re-
quest to a lower-level representation. 
When translated, the lower-level repre-
sentation gives the platform a detailed 
understanding of application require-
ments, as well as the low-level status 
of associated sensor resources. In ad-
dition, detailed resource status can be 
analyzed dynamically in light of appli-
cation requirements. With this under-
standing, MobiCon supports a feed-
back path between each application 
and its lower-level processing and fur-
ther extends the computational stages 
in the processing pipeline, saving com-
putational, as well as energy, overhead. 
MobiCon also takes an active role in 
orchestrating application requests and 
system resources, significantly improv-

Figure 3. (a) Non-MobiCon context-monitoring process; (b) Translation-based approach to 
context monitoring. 
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ing overall system performance. 
This translation-based approach 

lets each application inform the sys-
tem of its requirements so it gains a 
comprehensive understanding of each 
application, especially in terms of re-
source and computational demands. 
Taking a holistic view of system status, 
including resource availability and 
running applications, it determines 
a globally optimized translation for 
each monitoring request. As a result, 
resource use is orchestrated among 
competing applications in highly dy-
namic and resource-constrained en-
vironments; for example, it mediates 
applications to achieve a systemwide 
goal (such as energy balancing) not 
necessarily accomplished through 
application-level strategies. 

Figure 3b outlines the flow of a 
translation-based context-monitoring 
process, with the system adaptively de-
termining an appropriate resource-use 
plan for an application’s monitoring 
request according to dynamic resource 
availability. Note that the system pre-
pares (in advance) several alternative 
plans for each monitoring context. Un-
like non-MobiCon processes, it sup-
ports system-level optimization in both 
resource use and computation and 
could also reorganize processing stag-
es so context changes are identified 
early in the processing pipeline. Early 
change detection is contrary to the 
conventional way of detecting changes 
only after inferring them through an 
algorithm (such as decision-tree logic). 
However, such costly operations can be 
avoided if a change of activity is detect-
ed early on through a change in feature 
values from accelerometers. 

In terms of processing efficiency, the 
MobiCon translation-based approach 
also helps developers devise a shared, 
incremental sensor data processor for 
context processing. Some dependence 
among seemingly unrelated contexts is 
often exposed by the translation, with 
related contexts grouped together. The 
system can then compose a shared 
processing operator, through which 
the grouped requests are evaluated 
in a single run. Shared processing is 
achieved at different stages of context 
monitoring, including context recog-
nition, feature extraction, and sensor 
reading. The feature-extraction speci-
fication also lets MobiCon take advan-

tage of continuity of contexts and local-
ity in sensor readings. MobiCon also 
delivers an incremental processing 
method to accelerate the successive 
monitoring processes exploiting local-
ity in streams of input data. 

MobiCon includes an efficient sen-
sor-control mechanism to enhance the 
energy efficiency of sensors and mo-
bile devices. The key idea is that given 
a number of queries and sensors, only 
a subset of sensors may be sufficient 
for answering context-monitoring que-
ries; for example, a query regarding 
the context “studying in the library” 
would be answered without having to 
activate an accelerometer to recognize 
user activity, assuming, say, MobiCon 
knows the user is not in the library. The 
feature-level specification of requests 
gives MobiCon a better way to identify 
the sensors required to process an ap-
plication’s monitoring requests. Mo-
biCon thus develops a sensor-control 
method to compute and activate a 
small set of sensors we call the Essen-
tial Sensor Set, or ESS, limiting wire-
less communication between sensors 
and mobile devices and saving energy. 

The translation-based approach 
also relieves developers from having to 
devise their own context-recognition 
methods requiring special expertise. 
Finally, it enables the sharing of com-
mon context vocabularies, spurring 
quicker development of new personal-
context applications. 

Application Interfaces 
Like MobiCon, any context-monitor-
ing platform must give application 
developers intuitive, generic context-
monitoring APIs. These APIs should 
facilitate applications to delegate 
complex context-monitoring tasks to 
the platform while focusing on appli-
cation-specific logics (such as UI) be-
yond context monitoring. Applications 
need not specify which sensors to use, 
data to collect, how often to collect the 
data, feature-extraction and classifica-
tion modules to apply, or computing 
resources to use to execute modules. 

As a middleware foundation for 
context-monitoring APIs, MobiCon in-
cludes the Context Monitoring Query, 
or CMQ, declarative query language 
supporting rich semantics for monitor-
ing a range of contexts while abstract-
ing device details. It also proactively 

To be practical, 
any mobile 
context-monitoring 
platform, including 
MobiCon, must 
be able to achieve 
energy efficiency in 
its use of sensors. 
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detects changes in user context. CMQ 
specifies three conditions: context, 
alarm, and duration. Alarm determines 
when MobiCon delivers an alarm event 
to an application, and duration speci-
fies the amount of time MobiCon must 
evaluate a registered CMQ. The follow-
ing code is an example CMQ 

CONTEXT (location == library)
		  AND (activity == sleeping) 
	 AND (time == evening)
ALARM F → T
DURATION 120 days

and is registered or deregistered by a 
set of APIs supported by MobiCon (see 
Table 4). 

CMQ translation (bridging logical and 
physical resources). CMQ translation is 
a key to using MobiCon’s translation-
based approach to developing and 
running context-aware applications. 
Bridging the gap between high-level 
(logical) application requests and low-
level (physical) resource utilization, 
CMQ translation enables efficient con-
text monitoring and resource orches-
tration. The CMQ translation process 
converts CMQs specified in context-
level semantics into range predicates 
over continuous feature data, along 
with associated sensors and corre-
sponding resource demands. Here is 
an example 

Original CMQ:
	 �CONTEXT (activity == running) 
AND (temp == hot) 

		  AND (humidity == wet)
	 ALARM F → T
	 DURATION l month

Translated CMQ:
	 �CONTEXT (acc1 _ y _ energy > 52) 
AND (acc3 _ x _ dc < 500) 

		�  AND (temp > 86) AND 
(humidity > 80)

	 ALARM F → T
	 DURATION 1 month

MobiCon maps context types specified 
in a registered CMQ to one or more fea-
tures and their associated sensors; for 
example, it converts an activity context 
type into multiple features like direct 
current derived from accelerometers.3 
A context value is then transformed 
into numerical value ranges for corre-
sponding features; for example, “hu-

midity == wet” can be mapped to “80% 
< humidity.” Mobicon also maps re-
source demands for computing feature 
data. Feature computation can be per-
formed on sensor or mobile devices, 
so corresponding resource demands 
may be different. They are collected 
through either offline profiling of tasks 
or online hardware/program state trac-
ing. MobiCon maintains a context-
translation map to support the CMQ 
translation;8 note the cost of transla-
tion is negligible since it is a simple 
one-time operation performed upon 
query registration. 

Resource Coordination 
Context monitoring with only a few 
dynamic and resource-limited sensor 
devices is a challenge for any system, 
and greedy, careless use of resources 
aggravates contention for resources 
among applications, possibly reduc-
ing system capacity. Most sensor devic-
es have less capacity than required for 
context-monitoring tasks. Moreover, 
the availability of the devices changes 
dynamically due to their wearable 
form, as well as to user mobility. With-
out system-level support, an individual 
application might find it impossible 
to address the challenge of resource 
management. Applications have only 
a limited view of resource use of other 
concurrent applications and cannot 
negotiate with them for coordinated 
resource use. 

In many mobile and sensor systems 
(such as Chameleon,14 Pixie,15 and Od-
yssey16) resource management is based 
mainly on application-driven deci-
sions involving resource allocation or 
passive resource-use management. 
They expose APIs to applications that 
determine the type and amount of re-
sources required to execute program 
code and explicitly request resources 
through APIs; for example, Pixie pro-
vides resource tickets (such as <En-
ergy, 700mJ, 10sec>), and Chameleon 
provides systems calls (such as set-
speed()) to control CPU speed directly. 
They then allocate the requested re-
sources if available. If not, the related 
applications would change their re-
source use according to predefined 
code blocks (such as by trading off 
data or functional fidelity). However, 
these approaches to passive resource-
use management impose a huge time 

MobiCon supports 
applications without 
having to activate 
all potentially 
available sensors 
by exploiting the 
characteristics of 
personal context 
and application 
requirements.  
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and intellectual burden on program-
mers, and their flexibility cannot be 
utilized in practice since applications 
find it almost impossible to estimate 
dynamic resource status and prepare 
code blocks for all cases. 

MobiCon takes an active resource-
use-orchestration approach in which 
the system explores the use of alter-
native resources.7 The translation-
based approach is a key method for 
enabling active resource coordination 
at the system level. Each application 
submits a high-level context specifica-
tion to MobiCon while delegating the 
decision of how to process the con-
text through available resources. That 
is, the approach decouples resource 
selection and binding from the ap-
plication’s logical resource demands. 
The system then actively finds the best 
combination of resources to process 
context specifications through current 
resources and applications. 

The MobiCon approach to orches-
trating resource use can be charac-
terized in three steps (see Figure 4): 
MobiCon first generates multiple alter-
native resource-use plans to process a 
high-level context from an application; 
the alternatives result from the diver-
sity of semantic translation. A context 
can be derived from a variety of pro-
cessing methods; for example, when 
the context-quality level required by an 
application is conditionally tolerable, 
MobiCon monitors a “running” con-
text through diverse methods (such as 
direct current and energy features from 
acceleration data or statistical features 
from GPS location data). MobiCon 
then dynamically and holistically se-
lects a set of plans to execute at run-
time, reflecting resource availability, 
application requests, and system-level 
policy. MobiCon thus resolves conten-
tions and maximizes the sharing of 
resources in multiple applications. It 
also supports systemwide policy for 
resource use (such as minimizing total 
energy consumption). 

Finally, MobiCon continuously 
changes executed resource-use plans 
to adapt to the dynamic system envi-
ronment. A set of plans selected by 
MobiCon may not persistently ensure 
optimal use of resources since re-
source availability and application re-
quests are constantly changing. Upon 
a change of application request or 

sensor availability, MobiCon updates 
existing plans and reselects plans that 
result in resource use that still meets 
systemwide policy under the changed 
system conditions. Such flexibility en-
ables MobiCon to support multiple ap-
plications as long as possible in inher-
ently dynamic environments. 

Shared Evaluation of  
Context-Monitoring Requests 
Much research effort has sought to ac-
celerate a single processing pipeline of 
context recognition consisting of fea-
ture-extraction and pattern-classifica-
tion steps. Here are three representa-
tive examples: First, feature-reduction 
methods were proposed for reducing 
the number of features that might 
increase processing time (such as Se-
quential Forward and Backward Search 
and Linear Discriminant Analysis). 
Second, feature quantization is ben-
eficial for reducing the computational 
cost of context-recognition algorithms 
through only a few discrete feature val-
ues, rather than continuous feature 
values. Finally, context-recognition al-
gorithms are widely used to optimize 
the context-processing pipeline; the 
processing time of non-stochastic al-
gorithms (such as Decision Tree and 
support vector machine) is much less 
than that of stochastic algorithms 
(such as Bayesian networks and neural 
networks). Hence, developers prefer 
non-stochastic algorithms if both types 

of algorithm produce similar recogni-
tion accuracy. While these techniques 
complement the MobiCon approach, 
MobiCon is further tuned to speed up 
multiple processing pipelines for mon-
itoring user contexts. 

Addressing multiple processing 
pipelines, MobiCon is designed to 
manage shared evaluation of multiple 
application requests,9 looking into 
requests from different applications 
and exploring their potential depen-
dence. This system-driven approach 
represents a significant advantage 
over application-driven approaches 
in which each application handles its 
own requests. Shared evaluation can 
be exploited in many ways; for exam-
ple, several applications might want to 
monitor the exact same context simul-
taneously. Intermediate results within 
a processing pipeline, even in different 
contexts, can be shared, at least in part. 

MobiCon also takes advantage of 
potential dependencies between re-
peated monitoring processes. The 
monitoring process for each sensor-
data input can be considered not as 
independent but as part of successive 
data inputs. Thus, MobiCon’s process-
ing steps can be streamlined to use 
such dependencies and speed up con-
tinuous processes. A useful approach 
to speed up is exploitation of locality 
in sensor-data streams. Consecutive 
sensor readings usually show gradual 
changes, especially for sensing physi-

Figure 4. Active-resource-use-orchestration approach. Figure 4. Active-resource-use-orchestration approach. 
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cal phenomenon (such as a person’s 
physical activity and the pollution level 
of the nearby environment). 

MobiCon automatically generates 
a shared index of context-monitoring 
requests we call CMQ-Index; upon the 
arrival of each sensing data, all CMQs 
are processed with a single evalua-
tion. Incremental processing exploits 
the locality and consequent overlaps 
between successive evaluations. To 
support incremental processing, Mo-
biCon manages the CMQ-Index as 
a stateful index and remembers the 
state of the most recent evaluation. 
The evaluation for new data input pro-
ceeds from the stored state. 

Consider the following example of 
CMQ-Index evaluation: A CMQ-Index 
is created for five CMQs by building a 
linked list data structure (see Figure 
5); MobiCon already translates each 
CMQ into features and thus has a 
range (such as energy > 52). The figure 
shows a simple case, with each trans-
lated CMQ containing a single feature 
type. Rather than evaluate each CMQ 
separately, a CMQ-Index enables 
shared evaluation upon arrival of a 
new feature data value. Moreover, the 
pointer in the feature table enables 
incremental processing by remem-
bering the state of the previous evalu-
ation. In Figure 5, the pointer stores 
the computation ended at N4 at the 
last evaluation with data vt−1. With 
new data vt, the computation starts 
from N4 and proceeds to N2. While pro-

ceeding from N4 to N2, state-changed 
CMQs are quickly identified; that is, 
CMQ2, CMQ3, and CMQ4 become 
false, and CMQ5 becomes true. Due 
to the locality of consecutive feature 
values, such traversal is often quick, 
significantly accelerating repeated 
CMQ-Index evaluation. The CMQ-
Index approach outperforms state-of-
the-art query indexing mechanisms 
by orders of magnitude.11 Moreover, 
the structure is memory efficient, 
since it stores only the differences be-
tween queries over successive ranges 
without replication. 

Energy-Efficient Sensor Use 
Low-energy sensors carrying out con-
tinuous operations (such as sensing, 
filtering, feature extraction, and trans-
mission) in context monitoring quick-
ly drain their batteries, significantly 
compromising the full functioning of 
context monitoring. Thus, to be prac-
tical, any mobile context-monitoring 
platform, including MobiCon, must be 
able to achieve energy efficiency in its 
use of sensors. 

Approaches to energy efficiency 
in sensor and mobile systems in pre-
vious research include hierarchical 
sensor management, energy-fidelity 
trade-offs, interest-aware sensor man-
agement, sampling-rate adjustment, 
and sensor-data compression. Here we 
review these approaches, comparing 
them to the MobiCon solution. 

Hierarchical sensor management 

reduces energy consumption by ex-
ploiting a low-power tier that con-
sumes less energy, thus avoiding con-
tinuous operation of a high-power tier 
that drains energy. Different types of 
hierarchical relationships include, for 
example, Turducken23 who exploited 
the hierarchy between low-power de-
vices and high-power devices, while 
Mercury14 exploited the hierarchy be-
tween different sensors in a single-
sensor device; that is, a gyroscope 
consumes much more energy than an 
accelerometer. 

Techniques based on an energy-
fidelity trade-off involve several levels 
of fidelity associated with different 
rates of energy consumption and al-
ternatively select an appropriate level 
for the sake of saving energy; for ex-
ample, Eon22 allows applications to 
select from multiple program flows 
associated with different fidelity lev-
els for different energy states (such as 
high-power and low-power). Likewise, 
applications in Levels10 provide alter-
native code blocks for different energy 
levels. Selecting from the alternatives, 
runtime systems determine an appro-
priate level of fidelity that can be sup-
ported under given conditions of en-
ergy availability. 

Interest-aware on-the-fly sensor 
management activates only the sen-
sors necessary to generate contexts or 
data only when applications are inter-
ested, avoiding unnecessary energy 
consumption by other sensors (such 
as SeeMon8 and EEMS25). Techniques 
leveraging sampling-rate adjustment 
reduce the data-sampling rate as much 
as possible without affecting recogni-
tion accuracy, thus saving energy for 
sensing data.4 Moreover, sensor-data 
compression reduces the amount of 
transmitted data, saving energy that 
would otherwise be consumed for ra-
dio transmission.20 

MobiCon’s solution to energy effi-
ciency involves interest-aware sensor 
management using a minimal set of 
sensors to extract the contexts of ap-
plication interest. MobiCon supports 
applications without having to acti-
vate all potentially available sensors 
by exploiting the characteristics of per-
sonal context and application require-
ments.8 It also employs a novel sensor-
control method—the ESS—to leverage 
the structure of context-monitoring 

Figure 5. CMQ-Index, showing query borders for feature F1 and five CMQs. 
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queries and their co-dependence. The 
key idea is that only a small number of 
sensors is likely to be enough to deliver 
responses for all context-monitoring 
queries. The ESS changes depending 
on the current context and registered 
monitoring requests. However, a us-
er’s context often remains the same 
once calibrated to the user’s particular 
situation. Likewise, the ESS does not 
change abruptly. 

ESS-based sensor control. Calculat-
ing the ESS is complicated, ideally 
including only a minimal number of 
sensors to limit overall system energy 
use. MobiCon’s selection of ESS sen-
sors should also consider sensor data-
transmission rates. 

Consider a CMQ represented in 
conjunctive normal form—mul-
tiple conditional clauses connected 
through an “and” operation—of con-
text elements. As described earlier, 
CMQ evaluation aims to detect wheth-
er the states of CMQs change, since 
CMQ semantics aim to deliver the re-
sults only upon a change in context. 
During that evaluation, a CMQ is in 
one of three states: 

True-state. The state of a true-state 
CMQ changes to false if the state of 
its single context element changes to 
false. MobiCon must monitor all con-
text elements to see if the CMQ state 
changes, and all sensors related to the 
context elements must be included in 
the ESS; 

Undecided-state. An undecided-state 
CMQ is managed the same way. Mobi-
Con checks the states of all context ele-
ments, and all related sensors must be 
included in the ESS; and 

False-state. Monitoring any single 
context element in a false state is 
sufficient, as long as that state is un-
changed; only when it does change 
must the states of the other elements 
be monitored. 

The ESS-calculation challenge in-
volves computing the minimum-cost 
ESS for the false-state CMQs. However, 
false-state CMQs are also an opportu-
nity to advance energy efficiency, with 
MobiCon choosing a false-state con-
text element associated with the most 
energy-efficient sensors. Formulated 
as “minimum cost false query covering 
sensor selection,” or MCFSS,8 the prob-
lem is NP-complete, proved by reduc-
ing another well-known NP-complete 

problem, “minimum cost set cover,” 
or MCSC, to the MCFSS problem. Ac-
cordingly, with MobiCon employing a 
heuristic algorithm—Greedy-MCFSS,8 
now consider a MobiCon operation 
example with four sensors—S0, S1, S2, 
and S3—and three queries—A, B, and 
C—where 

A = (2<F0<15),
B = (F0<5) ^ (F1<15) ^ (F3<20), and 
C = (12<F1<18) ^ (1<F2< 20) ^ (10<F3<34). 

F0, F1, F2, and F3 are features calculated 
from the values of S0, S1, S2, S3, respec-
tively, and have 7, 31, 2, and 15 as their 

current feature values, and A is a true-
state CMQ. Thus, sensor S0 related to 
the context element of A should be in 
the ESS and update data. The other 
queries—B and C—are false; for ex-
ample, the state of query B can be de-
termined through either S0 or S1. Sen-
sor S0 and S1 are therefore sufficient for 
evaluating all registered CMQs; that is, 
ESS = {S0, S1}. 

Applications 
Consider the following three MobiCon-
supported applications: 

Swan Boat. Designed to make tread-
mill running less boring, Swan Boat,1,17 

Figure 6. Applications: (a) Swan Boat: (a1) player screenshot, (a2) gameplay; (b) U-theater: 
(b1) Smash the Beehive!, (b2) gameplay; and (c) SympaThings: (c1) use case, (c2) changing 
picture images in a frame, (c3) changing lamp colors. 
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is a step toward applying the MobiCon 
framework to pervasive games reflect-
ing users’ contexts and physical ac-
tions (see Figure 6a(1)). Basically, two 
players in a team collaboratively con-
trol a boat, with the difference in run-
ning speed between team members de-
termining the boat’s direction. Hand 
gestures are also used as input for ad-
ditional game interaction. Players can 
also attack opponents by punching 
(see Figure 6a(2)). MobiCon simpli-
fies development of pervasive games 
so game developers need only define 
game rules and design user interfaces. 
In Swan Boat, MobiCon manages com-
plexities (such as processing accel-
eration data and recognizing motion) 
through a simple CMQ registration. 

U-theater. U-theater is a group-in-
teractive gaming application for pub-
lic places, like movie theaters, with 
large screens. Related games are likely 
played by dozens of players (see Figure 
6b(2)) wearing sensors on their wrists, 
watching the screen, and interacting 
through body motion. Leveraging Mo-
biCon and its APIs, developers imple-
ment applications without having to 
know much about sensor-data acquisi-
tion, feature extraction, or motion pro-

cessing; consequently, they are better 
able to concentrate on game content. 
Three MobiCon-supported games 
have been developed for U-theater: 
Cheer Together!, Smash the Beehive! 
(see Figure 6b(1)), and Jump, Jump! In 
Smash the Beehive!, a beehive is swarm-
ing with bees when, suddenly, the bees 
are gone. Players then punch the bee-
hive, with the quickest to do so win-
ning the game. 

SympaThings. Inspired by affective 
computing and running on wearable 
devices, the object of SympaThings is 
to get nearby smart objects to “sympa-
thize” with a user’s affective context; 
for example, a picture frame might 
change the picture it frames, and a 
lighting fixture might adjust its color 
(such as red for strain and yellow for 
ease). Efficient processing is crucial, 
including high-rate data from BVP 
and GSR sensors and multiple queries 
for smart objects. MobiCon’s shared, 
incremental processing is essential 
for satisfying these requirements. 
SympaThings is a collaboration of the 
Human Computer Interaction Lab 
and the Semiconductor System Lab of 
the Korea Advanced Institute of Sci-
ence and Technology, Daejeon, Korea. 

Experiments 
In their experiments, MobiCon de-
velopers used a data workload from 
raw data generated by eight sensors 
over the course of a student’s day 
on the Daejeon campus. Sensors in-
cluded five USS-2400 nodes devel-
oped by Huins Inc.—a light sensor, 
a temperature/humidity sensor, and 
three dual-axis acceleration sen-
sors—along with a GPS sensor and 
two software sensors for time and 
indoor locations. The total data rate 
for all was 291.74Hz. MobiCon de-
velopers also synthetically generated 
CMQs to simulate various monitor-
ing conditions in different contexts. 
Each CMQ included four context el-
ements, with uniform distributions 
applied to selecting context types and 
values in context elements. For all ex-
periments, MobiCon ran on Sony’s 
UX27LN ultra-mobile PC, with CPU 
frequency scaled down to 200MHz 
to validate the platform within a re-
source-limited mobile environment. 

CMQ-Index-based context monitor-
ing. Here, we outline the performance 
benefit of the CMQ-Index-based con-
text monitoring method, comparing 
its performance against an alternative 
approach—context recognition-based 
monitoring—that models non-Mobi-
Con context middleware.20 The con-
text recognition-based monitoring 
method continuously receives sensor 
data, processes it to recognize con-
texts, and evaluates queries to detect 
specified context changes; individual 
queries are evaluated separately. 

Figure 7a outlines average process-
ing time per data tuple with increas-
ing numbers of registered CMQs. 
MobiCon shows significant process-
ing efficiency compared to alternative 
context-recognition-based monitoring 
platforms. It also scales well with in-
creasing numbers of queries. Process-
ing time of MobiCon for 1,024 queries 
is orders of magnitude shorter than in 
the context-recognition-based moni-
toring approach. 

ESS-based sensor control. The per-
formance of ESS-based sensor control 
demonstrates MobiCon’s potential 
for energy efficiency. As a metric, Mo-
biCon uses the Transmission Reduc-
tion Ratio (TRR), defined as a ratio of 
the reduced number of transmissions 
to the total expected number of trans-

Figure 7. Experiment results: (a) average processing time per data tuple; (b) TRR of each 
sensor device with different sensing modules: id 0 (illuminometer); id 1 (thermometer); id 2 
(hygrometer); and id 3~8 (accelerometers).
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missions of sensor devices, measuring 
TRR for eight sensing sources deployed 
on five USS-2400 sensor nodes. 

Figure 7b lists the TRR of 10 mea-
surements for each sensing source, 
with acceleration sensors producing a 
much higher TRR than other sensors. 
Due to their high transmission rates, 
ESS-based sensor-control mechanisms 
frequently exclude acceleration sen-
sors from the ESS. On average, Mobi-
Con eliminates over 90% of sensor-
data transmissions when the number 
of CMQs is fewer than 256. Moreover, 
~63% of sensor-data transmissions are 
eliminated even with 4,096 queries. As 
the number of CMQs increases, the 
TRR decreases because the number of 
true-state CMQs increases. 

Conclusion 
The theoretical foundation and imple-
mented technology described here 
support a number of heterogeneous 
applications for simultaneously run-
ning and sharing limited dynamic 
resources. We showed that non-Mo-
biCon context-monitoring processes 
are inadequate for dynamic situations, 
while MobiCon promises new sens-
ing devices, mobile and sensor system 
technologies, data processing technol-
ogies, and mobile service models, as 
well as human computer interaction in 
everyday mobile environments. 
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