
Demo: User Support for Power Management of
Continuous Sensing Applications

Chulhong Min1, Chungkuk Yoo1, Sangwon Choi2, Pillsoon Park3, Seungchul Lee1,
Changhun Lee1, Seungpyo Choi1, Seungwoo Kang4, Youngki Lee5, Inseok Hwang6,

Younghyun Ju7, Junehwa Song1
1School of Computing, KAIST, 2Information and Electronics Research Institute, KAIST,

3Division of Web Science Technology, KAIST, 4Computer Science and Engineering, KOREATECH,
5School of Information Systems, Singapore Management University, 6IBM Research – Austin, 7Naver Labs

1,3{chulhong, ckyoo, spchoi, pillsoon.park, seungchul, changhun, spchoi, junesong}@nclab.kaist.ac.kr,
2sangwonc@kaist.ac.kr, 4swkang@koreatech.ac.kr, 5youngkilee@smu.edu.sg, 6ihwang@us.ibm.com,

7younghyun.ju@navercorp.com

ABSTRACT
Recently, a number of continuous sensing applications have
been actively proposed in research communities and
commercially released in the market. However, due to their
unique power characteristics, user behavior-dependent battery
drain, they bring new challenges for users’ power management
on these applications. In this demonstration, we present a
comprehensive approach to support users’ power management
for continuous sensing applications. First, at pre-installation
time, we provide an instant, personalized power estimation of a
continuous sensing application. Without exhaustive trial and
error, users can decide judiciously to install a certain application
or not. Second, at runtime, we provide mobility-aware battery
information. With this information, users can better estimate the
phone’s remaining battery life based on their imminent mobility
conditions and take necessary actions in advance such as
carrying an additional battery or minimizing the use of
applications.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems; H.5.m. Information interfaces and
presentation (e.g., HCI): Miscellaneous.

Keywords
Smartphone; continuous sensing application; battery
management; user support

1. INTRODUCTION
Recently, a variety of continuous sensing applications
(hereinafter ‘apps’) have been actively proposed in research
communities and commercially released in the market. In the
background, they continuously monitor diverse user contexts
such as location, physical activity, and conversation [1][4] and
provide what users need right on time and place. To save energy
for continuous monitoring, they often adopt context-dependent

sensing pipelines. The key idea is to trigger high-power sensors
selectively by low-power sensors. A common example is a
location tracking app. It triggers GPS only when a user’s motion
is detected by power-efficient accelerometers [4]. Due to such
context-dependent logic, the actual power use of continuous
sensing apps largely depends on a user’s physical behaviors and
environmental conditions.

The contextual power consumption of continuous sensing apps
brings new challenges for users’ power management. First, the
power impact of a continuous sensing app largely varies across
different users. Thus, it is important to provide a personalized
power estimation in order to help users understand the power
impact of a sensing app. Second, even for an individual user, the
battery drain of a sensing app depends on a user’s imminent
situation. Thus, while using sensing apps, users can be
embarrassed due to unexpected, sudden battery drop.
In this demonstration, we present a comprehensive approach to
help sensing app users manage their phone’s battery. First, at
pre-installation time, we provide an instant, personalized power
estimation of a continuous sensing app [2]. Users can decide
judiciously to install a certain app without exhaustive trial and
error. Second, at runtime, we provide mobility-aware battery
information. With this information, users can better estimate the
phone’s battery life based on their imminent mobility conditions
and take necessary actions in advance such as carrying an
additional battery or minimizing the use of applications.

2. POWER-IMPACT ESTIMATION AT
PRE-INSTALLATION TIME
Providing an accurate, personalized power estimation of a
continuous sensing app at pre-installation time is a non-trivial
task. A trivial solution may involve computing the average
power impact in certain, common use cases. Such estimations,
however, would be inaccurate for individual users, since the
power use of a sensing app varies noticeably depending on the
users’ physical activities, phone usage, and other environmental
factors.

To take these factors into account, we devise a user-behavior
aware power emulation approach. The key idea is to capture the
user’s physical activities and any other environmental factors,
recreate this environment on a cloud-side emulator, and execute
the target sensing app on the emulator to track its power use.
This approach has three advantages. (1) It provides an
individualized power estimation of a continuous sensing app,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SenSys '15, November 1-4, 2015, Seoul, South Korea
ACM 978-1-4503-3631-4/15/11.
DOI: http://dx.doi.org/10.1145/2809695.2817870.

493

1. Collect user behavior
traces (prior to a request)

3. Estimate net
power

consumption

Target app Phone use trace

User-behavior emulator

Expected hardware usage trace

2-1. Execute target
sensing app

2-2. Reproduce
phone usage

2-3. Monitor
hardware usage

Phone-specific power model

Sensor trace

Figure 1. Overall operation for power-impact estimation

since it utilizes the user’s physical sensor and phone usage data
to construct an emulator environment identical to the user’s
personal device. (2) It estimates power use of an app without
prior power profiling or knowledge of its internal logic. The
emulator only requires the app’s executable in order to track its
hardware use, with no need of its source code. (3) It considers
shared hardware use with existing apps by reproducing their
resource use.

The system takes three inputs in order to provide an accurate,
personalized power impact estimation of a target sensing app: a
user’s sensor trace, phone use trace, and the sensing app’s
executable. It outputs the net power increase (mW) due to the
target app. The system consists of two major components, a
mobile-side trace collector and a cloud-side power emulator, as
depicted in Figure 1. The mobile-side trace collector runs on the
user’s device and is responsible for collecting the user’s
behavior trace: sensor traces and phone use traces. These traces
are then uploaded and managed on the cloud server, which upon
a power estimation request, executes its component emulator.
The emulator recreates the user’s environment from behavior
traces, executes the target sensing app, and monitors its
hardware use to provide an estimation of its power impact.

3. MONITORING OF MOBILITY-AWARE
BATTERY DRAIN
We present mobility-aware battery drain information of running
sensing apps in two aspects. First, we provide expected battery
life for a set of mobility conditions. Figure 2(right) shows
expected battery life at specific mobility conditions. It also
displays the expected battery level after a specified amount of
time. When the battery level is relatively high, but a long-term
activity is expected, e.g., 2-hour driving, users can predict their
future battery status depending on their imminent mobility
condition.
Second, we provide a historical battery use summary. Figure
2(left) shows the time spent and the battery drained in standby
state for each mobility conditions. This historical information is
similar to the per-app battery usage that Android provides by
default. When an unusual day is expected, e.g., a business trip,
users can refer to the past days with similar distribution of
mobility conditions.

4. DEMONSTRATION
We first demonstrate the overall operation of power-impact
estimation. As in Figure 1, the key operations are 1) emulating
power use of a target app with given user behavior traces, 2)
tracking hardware usage statistics generated by the execution of
the app on the emulator, and 3) calculating the power
consumption based on the hardware usage statistics. To show
them effectively, we plan to build web pages and to present a
short video. The web pages intuitively show the intermediate
results of the internal operations. The video delivers a brief
description of the system architecture and operations. We further
demonstrate the current prototype of our mobility-aware battery
information advisor. We plan to set up a live visualization of
mobility-aware battery information, targeting commercial
sensing apps. Figure 2 shows the screenshot examples.

5. ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIP)
(No. 2011-0018120).

6. REFERENCES
[1] Lee, Y., Min, C., Hwang, C., Lee, J., Hwang, I., Ju, Y.,

Yoo, C., Moon, M., Lee, U., and Song, J. SocioPhone:
Everyday Face-to-face Interaction Monitoring Platform
using Multi-phone Sensor Fusion. In Proc. MobiSys 2013.

[2] Min, C., Lee, Y., Yoo, C., Kang, S., Choi, S., Park, P.,
Hwang, I., Ju, Y., Choi, S., and Song, J. PowerForecaster:
Predicting Smartphone Power Impact of Continuous
Sensing Applications at Pre-installation Time. In Proc.
SenSys 2015.

[3] Min, C., Yoo, C., Hwang, I., Kang, S., Lee, Y., Lee, S.,
Park, P., Lee, C., Choi, S., and Song, J. Sandra Helps You
Learn: the More You Walk, the More Battery Your Phone
Drains. In Proc. UbiComp 2015.

[4] Paek, J., Kim, J. and Govindan, R. Energy-Efficient Rate-
Adaptive GPS-based Positioning for Smartphones. In Proc.
MobiSys 2010.

Figure 2. Screenshots of a battery information advisor

494

