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ABSTRACT 
Mobile applications that sense continuously, such as location 
monitoring, are emerging. Despite their usefulness, their adoption in 
real-world deployment situations has been extremely slow. Many 
smartphone users are turned away by the drastic battery drain 
caused by continuous sensing and processing. Also, the extractable 
contexts from the phone are quite limited due to its position and 
sensing modalities. In this paper, we propose CoMon, a novel 
cooperative ambience monitoring platform, which newly addresses 
the energy problem through opportunistic cooperation among 
nearby mobile users. To maximize the benefit of cooperation, we 
develop two key techniques, (1) continuity-aware cooperator 
detection and (2) benefit-aware negotiation. The former employs 
heuristics to detect cooperators who will remain in the vicinity for a 
long period of time, while the latter automatically devises a 
cooperation plan that provides mutual benefit to cooperators, while 
considering running applications, available devices, and user 
policies. Through continuity- and benefit-aware operation, CoMon 
enables applications to monitor the environment at much lower 
energy consumption. We implement and deploy a CoMon prototype 
and show that it provides significant benefit for mobile sensing 
applications. 

Categories and Subject Descriptors 
K.8 [Personal Computing]: General; C.3 [Special-Purpose and 
Application-based Systems]: Real-time and embedded systems 

Keywords 
Cooperation, Ambience, Context, Sensing, Energy, CoMon 

1. INTRODUCTION 
As continuous mobile sensing applications have been increasingly 
emerging, mobile users are starting to recognize smartphones as a 
personal sensing platform. Location monitoring services have been 
popularly deployed, for instance, spatial alarm and trajectory 
logging services [14][35]. New applications are also appearing; 
some notify a user about imperceptible information such as UV or 
dust levels [18], and others provide meaningful statistics from 
continuous activity observation [22]. These applications provide 
useful services to mobile users while running in the background, not 
requiring any explicit user intervention. However, many users are 
still reluctant to run such applications; they incur significant energy 

consumption and take up computational resources, potentially 
disrupting other common uses of the smartphones. This significantly 
compromises the spread of continuous sensing applications, 
depriving users of the benefits of running multiple such applications 
concurrently on their smartphones. 

We approach the problem from a novel perspective, by utilizing in-
situ cooperation of mobile users. We note that, for most people, 
their daily lives are highly social; they spend a significant portion of 
their time with others, e.g., family members, friends, colleagues, or 
even some strangers. According to our study, a user is co-located 
with acquaintances about 8.5 hours out of 15 active hours of a day, 
and even more, when accounting for co-location with strangers. In 
addition, 65% of meetings last for more than 30 minutes and 47% 
continue for more than an hour, allowing significant opportunities 
for stable cooperation in continuous sensing. Further, mobile users 
and their applications often share common interests in many 
situational contexts related to ambience such as locations, 
atmosphere, and social activities. These contexts can potentially be 
shared by nearby users, e.g., friends in a social gathering or people 
traveling in a bus. Thus, users can avoid repetitive sensing and 
processing redundantly performed by individual users that consume 
precious energy. This sharing becomes more practical due to the 
probable cost savings of the sharing. The power consumption for 
sensing and processing often exceeds the overhead to obtain context 
data from nearby users; for instance, directly performing location 
sensing every 10 seconds consumes 410 mW on a Nexus One phone 
while it consumes only 34 mW to receive the same data indirectly 
from others through Bluetooth communication (see Section 7 for 
detailed setup). 

As an initial attempt to realize this approach, we propose CoMon, a 
novel cooperative ambience monitoring platform. CoMon 
automatically finds cooperators in situ and initiates the cooperation 
in a way that either enhances its energy capacity or extends its 
sensing modalities. Applications simply delegate their monitoring 
requests to CoMon and fully exploit cooperators’ resources if 
available. By employing cooperation, CoMon significantly 
mitigates the quick battery depletion of devices, or overcomes the 
absence of specific sensing modalities.  

A key challenge in the design of CoMon is how to construct 
cooperation groups and build network channels for continuous 
cooperation. We employ a continuity-aware cooperator detection 
method, which enables CoMon to maintain stable cooperation 
channels and reduce the complexity in cooperation network 
management. It leverages heuristic predictors based on social 
relationships and encounter history, and estimates the potential 
cooperation duration for candidate cooperators. The system is 
further designed to support pair-localized cooperation for efficient 
group management. This makes CoMon more robust against 
dynamic changes in group membership, by localizing the events 
such as the departure of a cooperator to a small number of pairs. 
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Another important challenge is to provide incentives to cooperating 
participants. Without benefits, a mobile user would be reluctant to 
actively participate in cooperation and share her resources for 
ambience monitoring. However, it is not a straightforward problem 
to guarantee mutual benefits to all cooperators. Cooperators often 
run different sets of applications, and possess different sensing 
devices. Also, they have their own preferences and policies in the 
use of energy of their devices. Such differences complicate the 
negotiation to guarantee fair and mutual benefit for cooperators. We 
propose a benefit-aware negotiation mechanism, which addresses 
the challenges and builds a mutually beneficial cooperation contract.  

CoMon opens a new dimension to address the resource problem for 
continuous ambience monitoring. Many research efforts have been 
made to reduce energy consumption for location and context 
sensing and processing [16][26][27][30], taking an intra-device 
optimization approach, e.g., deactivating GPS based on mobility 
pattern [30], or optimizing a sound-data processing pipeline 
applying a noise-level filter [26]. Our cooperation approach 
complements such intra-device optimization techniques, providing 
further reduction in energy consumption. This additional dimension 
of benefit is significant, considering continuous and background 
operation of concurrent mobile sensing applications.  

The contributions of this paper are as follows. First, we propose a 
novel cooperative ambience monitoring platform, CoMon; it 
significantly improves energy efficiency of smartphones and newly 
adopts unavailable sensing modalities. Second, we support the 
practicality of our cooperation approach through motivational 
studies on ATUS data [1] and Bluetooth-based encounter data [9]. 
These studies highlight the prevalence of continuous cooperation 
opportunities as the co-location duration of people comprises a 
significant portion of a day and social events like meetings continue 
stably in many cases. Third, as core techniques, we develop 
continuity-aware cooperator detection and benefit-aware negotiation 
mechanisms, which enables CoMon to obtain resource benefits from 
cooperation. Finally, we perform extensive experimental studies 
based on our prototype implemented over Android phones and 
custom-designed sensor motes, with diverse sensing capabilities. 
We show the resource benefits and overheads for diverse 
cooperation scenarios and applications.  

In the rest of the paper, we first motivate CoMon in Section 2 with 
scenarios and studies on mobility data revealing many opportunities 
for cooperation. Section 3 describes the model of cooperation 
benefits and the CoMon architecture. Section 4 and Section 5 
describes the two core techniques. We then present our 
implementation in Section 6 and Section 7 shows experimental 
results. In Section 8, we discuss other potential issues for CoMon 
and Section 9 introduces related work. Finally, we conclude the 
paper in Section 10.  

2. OPPORTUNITY FOR COOPERATIVE 
CONTEXT MONITORING 
Mobile sensing applications have high potential to leverage 
cooperation between nearby people. As they become popular, many 
of them will run concurrently, actively utilizing diverse user 
contexts. Table 1 shows example contexts used by emerging mobile 
sensing applications [2][18][22][26][27][31][32]. Among them, a 
number of ambience contexts including spatial and social contexts 
would be potentially shareable with nearby people.  

Along with increasing demands on monitoring diverse contexts, 
smartphones will incorporate more sensors and people will carry 
external sensors in diverse form factors, e.g., a watch-type health 
sensor for everyday precautions against heart attacks, a backpack-
attached air-quality sensor to alert the user to possible fine-granule 
pollutant exposure in everyday life spaces. Considering the 
globalized nature of consumer product manufacturing, many people 
will likely have devices with similar sensing capabilities and thus 
have a high potential for sharing sensing resources. 

Understanding that there will be many sharable contexts, two key 
questions are raised: (1) Does the cooperation result in actual energy 
benefits for context monitoring? (2) Are there enough cooperation 
opportunities in the everyday life of mobile users? 

We first demonstrate an interesting scenario showing the expected 
cooperation cases and their benefits in Section 2.1. Note that the 
energy-related figures used in our scenario are presented based on 
our actual measurements (See Section 7 for detailed settings 
including sensor specifications). Then, we show that the 
opportunities for cooperation are actually prevalent in everyday life 
through our analysis of human activity and mobility datasets in 
Section 2.2. The cooperation benefits are further elaborated through 
comprehensive experiments in Section 7.  

2.1 Cooperative Context Monitoring Scenario 
Chandler, Ross, and Joey are friends in Manhattan. On Saturday, 
Chandler plans to meet Ross for shopping in the SoHo area. 
Chandler always runs two apps, PollutionAlarm and LifeLogger as 
in Figure 1. He runs PollutionAlarm to avoid exposure to air 
pollution such as dust and exhaust fumes, and LifeLogger to record 
his route (using GPS) and optionally ambient sound contexts (using 
the microphone to record music genres, meetings, etc.) [26][27]. 
Today, he turns off the ambient sound monitoring to extend the 
phone’s battery life. Ross runs AsthmaAlarm due to his asthma 
problem. It monitors the dust levels in the air, a major allergen for 
asthmatics. While Ross is on his way to SoHo, he discovers that his 
dust sensor blinks notifying him that there are ‘fewer than 3 hours of 
battery remaining’. Ross gets anxious, regretting that he forgot to 
recharge the sensor last night. 

Table 1. Context examples and their categories 

Context Category Context Types

Ambience 
Context

Spatial
Context

location, ambient sound, place, temperature, 
humidity, UV, dust-level, noise-level, mood, 
pollution (CO2, O3, …), crowdedness, …

Social
Context

discussion, meeting, conversation, lecture, 
group exercise, …

Personal Context activity (walking, standing, …), gesture, 
health (heartbeat, gait, …), emotion, …

CoMonCoMon

Chandler

[Dust sensor, 
CO2 sensor]

Internal 
GPS

LocationDust, CO2

Pollution
Alarm

Ambient
Sound

LifeLogger

Dust

AsthmaAlarm

[Dust sensor]

Ross

Internal 
Mic.

Internal 
GPS

Internal 
Mic.

Figure 1. An example cooperation scenario 
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When Ross meets Chandler, Ross’s CoMon starts cooperation with 
Chandler’s to monitor the dust level in turn. This reduces the net 
power-on duration of each sensor by half; the average power 
consumption by Ross’s dust sensor decreases to almost half, from 
848 to 487mW, and the estimated sensor lifetime is increased from 
3 to 5.2 hours. Note that Ross’s smartphone requires a slight 
additional power expenditure of 25mW to update the dust level to 
and from Chandler’s phone during the cooperation.  

Joey was walking in a park near SoHo for his daily exercise; he runs 
the CalorieMonitor application which uses his movement speeds for 
calorimetry calculation. He also uses LifeLogger. On his way home, 
Joey happens to meet Chandler and Ross and they decide to go to a 
café. Detecting Joey’s devices, Chandler’s CoMon system entrusts 
sound monitoring to Joey’s CoMon while supporting location 
monitoring for Joey instead. This cooperation enables Chandler’s 
LifeLogger to again be fully functional by reactivating the disabled 
sound monitoring. Now Joey’s phone turns off energy-intensive 
GPS sensing which has consumed 440mW; instead, it needs only 
11mW to receive location context from Chandler. The additional 
cost to Joey’s device to provide the ambient sound context is 
marginal (12mW), since he has been monitoring this context for his 
own purpose. Through the cooperation, the total power consumption 
of Joey’s phone is reduced from 570 to 365mW, increasing its 
lifetime by about 56%. 

Note that CoMon achieves savings on other resource types such as 
CPU and memory as well. For instance, for ambient sound 
processing, over 20 operators for feature extraction and context 
classification such as FFT and GMM run continuously, requiring 
over 10% CPU cycles on a Nexus One phone. In the above scenario, 
CoMon allows Chandler to monitor the sound-driven context 
without such a cost through the cooperation with Joey. Furthermore, 
the benefit of CoMon is not limited to applications utilizing 
ambience contexts. Since smartphones are shared by multiple 
concurrently running applications, the amount of resources saved by 
cooperation can be leveraged to monitor other personal contexts or 
for other common uses.  

2.2 Study on Cooperation Opportunity 
To study cooperation opportunities in the daily life of mobile users, 
we analyze two public datasets on human activity and mobility 
behaviors. Table 2 shows their summaries. Note that while there 
have been many efforts on mobility data analysis, few focused on 
revealing cooperation opportunities; most of them focuses on 
revealing human mobility patterns,   

ATUS: The American Time Use Survey (ATUS) dataset [1] 
includes the list of all activities of American participants over a 24 
hour period and the acquaintances who were present during each 
activity. We use the dataset collected in 2010 from 13,258 
interviewees over wide age, sex, and occupation distributions. We 
analyze this data to find the cooperation opportunities in everyday 
activities, especially in terms of the acquaintances being together.  

MIT/BT: The MIT/BT dataset is the mobility dataset collected from 
100 mobile phones of MIT students and staffs [9]. It is collected by 
Bluetooth scanning performed every 5 minutes. We analyze the 
encounters between the phones, i.e., the encounters with nearby 
people including strangers as well as acquaintances. We use the 
three-month dataset from the fall semester of 2004. 

2.2.1 How Many Opportunities for Cooperation? 
The longer people are together with others, the more opportunities 
for cooperative context monitoring we can exploit. To quantify the 
amount of such time in everyday life, we analyze the ATUS dataset. 
We do not use the MIT/BT dataset here since it is limited to the 
devices only discoverable by Bluetooth scanning.  

Figure 2 shows the daily amount of time in terms of the presence of 
acquaintances for every participant. The average time with one or 
more acquaintances is 8.5 hours. We can confirm that people have 
lots of cooperation opportunities with acquaintances, i.e., more than 
one-third of a day. Specifically, 78% of the participants have more 
than 4 hours of co-located time with others, and 50% have more 
than 9.3 hours.  

Figure 3(a) elaborates on with whom and how long participants 
spent time with acquaintances, i.e., family (average 5.9 hours), 
work-related people (1.7 hours), friends (0.6 hours), etc. Figure 3(b) 
shows the number of acquaintances a user is together with; it gives 
an intuition on the number of cooperator candidates at a time. For 
42% of the time, people are with more than one acquaintance, 
giving more chances of cooperation.  

Note that the opportunities for cooperation are not limited to those 
with acquaintances but can include those with strangers, e.g., a user 
in a bus can cooperate to monitor the route of the bus with other 
passengers. However, the ATUS dataset does not contain 
encounters with strangers. 

2.2.2 Continuity of Cooperative Monitoring 
We study the continuity of meetings, i.e. how long people are 
together during an encounter. Once cooperative monitoring has been 
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Figure 2. Distribution of the time together 

Table 2. Summary statistics of activity and mobility datasets
Dataset ATUS MIT/BT

Data source American time use
study (interview)

Bluetooth scanning 
trace (period: 5 min)

Participants 13,258 100
Start time 01/01/2010 09/08/2004
Duration 1 year 3 months
# of events 257,193 activities 285,512 encounters

Family
69%

Friends
7%

Work-related
20%

Others, 4%

One
58%

Two
23%

Three
12%

Four, 5% Five+, 2%

(a) Acquaintance type (b) Number of acquaintances 
Figure 3. Detailed analysis of the time with acquaintances 
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established when they are together, this monitoring could continue 
as long as they remain together. Long-lasting cooperation would 
enable prolonged support for applications.  

We study the ATUS dataset to identify how long the cooperation 
with acquaintances could last. Figure 4(a) shows the distribution of 
meeting durations. We define a meeting as consecutive activities 
with the same people, e.g., shopping at a department store with the 
spouse, then travelling together to a restaurant and having dinner. 
The figure shows the distributions for different acquaintance types. 
For ‘all’, it shows that 65% of meetings with acquaintances last for 
more than 30 minutes and 47% last for more than one hour. From 
these results, we can obtain typical durations of cooperative 
monitoring between acquaintances.  

Figure 4(a) also shows that the meeting duration largely depends on 
the type of acquaintance; meetings with work-related people usually 
continue for the longest time, followed by friends and family. When 
there are multiple acquaintances nearby, we can consider their 
social relationship to select better promising cooperators in terms of 
continuity. 

We study the MIT/BT data to determine the duration of meetings 
between two arbitrary mobile users without distinguishing between 
strangers and acquaintances. Figure 4(b) shows the distribution of 
encounter durations. We define the duration of an encounter as the 
time during which a user’s mobile device is consecutively scanned 
by the other users’. Overall, the encounter duration is shorter than 
that in ATUS; 50% of people pass by within a duration of 5 minutes 
(a single detection only) and 26% stay together for more than 30 
minutes. This is mainly because it includes strangers and people 
passing by. Also, if two people temporarily move apart from each 
other for a few minutes, e.g., one goes to the restroom, the encounter 
is segmented and treated as two separate meetings. Importantly, we 
found that the meetings between people who meet frequently, 
namely familiars, last longer. For people who meet once a week or 
more, 36% of the meetings between them last for more than 30 
minutes while only 13% of the meetings with the others do. This 
implies that meetings with familiars would yield longer cooperative 
monitoring opportunities.  

3. COMON DESIGN 
3.1 Benefit-aware Cooperation Approach 
A key goal of CoMon is to maximize the energy benefit from the 
opportunistic collaboration with nearby users. For effective design 
of CoMon, we first attempt to model the energy benefits obtainable 
from the cooperation with a cooperator, as shown in Figure 5. In the 
model, we divide the operation time into two periods, i.e., discovery 
period and cooperation period.  

In the discovery period, the system attempts to detect nearby 
cooperator candidates. This incurs cost, which can be represented as 
CostDetect  E(T1); CostDetect is the average discovery cost per unit 
time, T1 is the random variable of the waiting time until meeting a 
cooperator, and E(T1) is the expected waiting time. Once the 
cooperation starts with a cooperator, it will produce benefit. We 
model the benefit for the cooperation period as BenefitCoop  E(T2), 
where BenefitCoop is the average benefits from cooperation per unit 
time and E(T2) is the expected duration of cooperation. Taking all 
the cost and the benefits into account, the expected total benefit can 
be specified as follows:  

Expected Benefit = BenefitCoop  E(T2) －CostDetect  E(T1) 

To increase the expected energy benefit, we devise the steps of 
cooperation as below.  

Cooperator detection: The first step is to continuously detect 
nearby users as potential cooperators. The discovery period should 
be carefully chosen; a long interval reduces the discovery cost, i.e., 
CostDetect, but might decrease the potential cooperation duration, 
E(T2). (See Section 4) 

Cooperator selection: Increasing the cooperation period T2 is 
crucial for higher benefit E(T2). We explore the potential to predict 
the meeting durations upon discovery of a cooperator candidate. 
The negotiation for real cooperation starts only with the candidates 
who can lead to long enough cooperation to provide benefits. We 
develop the continuity-aware cooperator selection method (Section 
4.1).  

Cooperation planning: To increase the benefit per unit time, it is 
important to carefully determine a cooperation plan, e.g. selection of 
contexts to share or distribution of tasks to different devices. 
Different plans could significantly influence the benefit from the 
cooperation. We develop a planning method, which carefully 
decides the cooperation plan for higher BenefitCoop. It ensures 
mutual benefits to both cooperators, since either of them would be 
reluctant to participate if benefits are not mutual (Section 5). 

3.2 Architecture Overview 
We carefully designed the architecture of CoMon as shown in 
Figure 6 applying the benefit-aware cooperation approach. It runs as 
a middleware on top of a smartphone OS and additionally supports 
external sensing devices [17][21]. CoMon provides mobile sensing 
applications with intuitive APIs, allowing the applications to specify 
the contexts of interest (e.g. location, activity) in a declarative query 
[16]. Consider a pollution monitor application that wants to monitor 
CO2 level with 90% of accuracy every 30 seconds. Then, it specifies 
the query as follows: 

CONTEXT CO2 level    ACCURACY 90% 

PERIOD 30 Seconds      DURATION Always 

Discovery period

T1 (waiting time) T2 (meeting duration)

Cooperation period

Expected Benefit =  E(T1)  CostDetect + E(T2)  BenefitCoop

Continuity-aware 
Cooperator Selection

Benefit-aware 
Cooperation Planning

Low-overhead 
Cooperator Detection

(a) Cooperation model for a cooperator

(b) Cooperation benefit and approaches  
Figure 5. Cooperation benefit model 
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CoMon processes registered queries by leveraging cooperation 
opportunities with nearby users; it handles the query with the user’s 
own devices if it finds no potentially beneficial cooperator. CoMon 
takes charge of all the underlying tasks for opportunistic 
cooperation, which are transparent to the applications. In terms of 
applications, the quality of service (QoS) provided by CoMon might 
vary from time to time due to the heterogeneity of devices or 
dynamic system situations. We believe that the slight QoS 
difference caused by cooperation does not cause severe problem for 
many applications; current Android sensing APIs do not also 
guarantee fine-granule QoS for GPS and accelerometer sensing. For 
the applications that have hard QoS requirements, CoMon may not 
initiate cooperation or can check QoS condition further while 
planning.  

The benefit-aware cooperation approach is realized by two key 
components: cooperator detector and cooperation planner. The 
cooperator detector dynamically discovers nearby devices by 
periodic Bluetooth scans at a small overhead, and selects candidates 
that will potentially stay in the vicinity for a long period (long 
stayers) (Section 4). The cooperation planner negotiates with the 
selected one, and then decides the best cooperation plan (Section 5). 
Note that when the cooperator leaves, CoMon instantly processes 
the contexts provided by the cooperator with its own devices. 

According to the cooperation plan, the context processors on the 
smartphone and sensors continuously process the requests and 
deliver the processing results to the applications and cooperators 
(via Bluetooth in current implementation). It incorporates a variety 
of processing modules for sensing, feature extraction, and context 
classification to support diverse types of contexts.  

The device manager provides the cooperation planner with up-to-
date energy information, required to make a proper plan.  As a basic 
support of privacy, CoMon employs access controllers, which 
restrict unauthorized accesses to certain contexts. CoMon allows 
users to specify the access rules about what context information can 
be shared with whom. We further discuss the privacy issues and 
access rules in Section 8. 

We employ a smartphone-centered architecture; external sensor 
devices and their data are exposed to cooperators only through 
smartphones. We suppose that external sensors would be designed 
in a small size with minimal computational resources. It would be 
hard for such sensors to perform as an independent participant for 
cooperation since they are limited in supporting multi-user 
connections or processing raw sensor data with complex modules. 

3.3 Design Considerations and Choices 
We below present key considerations and our choices for the design 
of practically working cooperation systems like CoMon. 

Long-term cooperation: Dynamic changes of cooperators due to 
their mobility could incur overheads for frequent discovery, 
negotiation, and connection management. To minimize such 
overheads, CoMon targets the cooperation with long stayers only. 
Even when a user walks around in crowded Manhattan, CoMon 
selects the cooperators only among acquaintances doing the activity 
together, or familiar strangers who stay together for more than a 
certain amount of time. We find that even with only long-term 
cooperation, there are sufficient opportunities.  

Pair-wise negotiation: When there are multiple cooperator 
candidates, it is important to determine how to organize the group 
for cooperation planning and execution. Our key idea is to localize 

the effect of membership changes. CoMon performs the cooperation 
in the unit of a pair to localize the effect within some pairs. It 
negotiates with the cooperator candidates one at a time and 
incrementally continues the negotiation. An alternative approach 
would consider the whole group as a single cooperation unit, and 
perform a group-wide negotiation at once. Although this approach 
would lead to the group-wide resource optimum, it is relatively 
vulnerable to the mobility of users. Whenever a single cooperator 
joins or leaves, all the remaining cooperators should re-perform the 
negotiation process. Also, the group-wide negotiation significantly 
escalates the complexity of cooperation planning due to numerous 
options and policy conflicts. 

Context-level service as cooperation interface: For negotiation, an 
important design choice is the appropriate abstraction level in 
exposing a mobile user’s resources to cooperators. CoMon exposes 
underlying resources of the user’s devices as context-level services. 
A context hereby means high-level information extracted by 
classifying or aggregating raw sensing data, e.g., a place category 
extracted from ambience sound or a 30-second averaged dust count 
in the air. The context-level service hides heterogeneity and 
dynamics of other cooperators’ resources. Also, context-level 
exchanges could greatly save energy which might be high if high-
rate raw data are exchanged. We assume that there would be 
consensus on a common context model as in [30], which could help 
extend the scope of the cooperation. Based on such model, different 
applications running over heterogeneous devices can share and 
exchange context information. Even with the common consensus on 
a context, different applications may require different level of 
accuracies and sampling and processing intervals. CoMon can 
evaluate such condition in the planning process but we do not 
handle such cases here for simplicity. 

4. COOPERATOR DETECTION 
A first step of CoMon operation is to find out the cooperators who 
will provide benefits through cooperation. The benefits will be 
provided when 1) cooperators stay longer enough to breakeven the 
overhead to start cooperation, and 2) there exists sharable contexts 
for which local execution takes more resources. A good detection 
method should locate such cooperators with low overhead. However, 
this is a significant challenge. First, it is difficult to accurately 
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predict the length of encounters in advance. Moreover, it is costly to 
check with all candidates if they have been monitoring contexts that 
are sharable and beneficial.  

4.1 Bluetooth-based Cooperator Detection 
An early decision to build CoMon lies in selecting networking 
interfaces for power-efficient communication among nearby users. 
As candidates, we consider several popularly used interfaces such as 
ZigBee, Bluetooth, and WiFi-Adhoc. ZigBee achieves low power 
but at low bandwidth. WiFi-Adhoc makes opposite tradeoffs and 
Bluetooth is in the middle. Also, each protocol has its own 
characteristics, such as broadcast supportability and limited number 
of connections. The current CoMon implementation adopts 
Bluetooth, mainly because the interface is pervasive in most 
commodity smartphones. Also, it provides reasonable coverage, i.e., 
about 10 meters, for context sharing among the users who do the 
same activities. Note that for context sharing, protocols like ZigBee 
might be more adequate once available; it consumes an order of 
magnitude less power than Bluetooth with reasonable bandwidth 
(<250kbps).  

To detect cooperator candidates, CoMon performs periodic 
Bluetooth scans, a common method for identifying devices in 
proximity [23]. A key issue for the discovery lies in deciding an 
appropriate scan interval T. More frequent scans incur higher energy 
overheads but enables quicker discovery of potential cooperators. 
The probable loss in cooperation duration would be 0.5T on average. 
We study the potential tradeoff by measuring power consumption 
for the scanning on a Nexus One phone, and estimating the potential 
loss in cooperation duration from ATUS dataset. Specifically, the 
loss is estimated by subtracting 0.5T from all the activity duration 
with acquaintances, assuming the acquaintances as potential 
cooperators. Figure 7 shows the results. A good value of T can be 
carefully determined leveraging the results. For instance, CoMon 
can use 5-minute interval, where the power consumption starts to 
saturate. At this interval, the average loss in potential cooperation 
duration would not be significant, i.e., 4.8% out of expected 
cooperation time per person; note that many acquaintances are 
likely to stay for a long period of time. 

In addition to the energy overhead, the available network bandwidth 
is reduced during scanning [12]. It may make the connections with 
cooperators unstable, even disconnected. Against such instability, 
CoMon buffers the messages and defers the exchange during the 

scanning for 10 seconds. Also, CoMon stops scanning when the 
current cooperation benefit exceeds a certain threshold.  

4.2 Continuity-aware Cooperator Selection 
CoMon needs to distinguish cooperator candidates that are likely to 
stay together among the ones discovered. There would be a broad 
spectrum of candidates in terms of potential meeting durations, from 
those quickly passing by to those staying for hours. It would clearly 
be useful to know the potential meeting durations with the 
candidates.  

A most interesting observation to automate estimation was made 
with respect to the social relationship between the potential 
collaborators. From our study on the ATUS dataset, meetings with 
acquainted people, e.g., family members, friends, and co-workers, 
are likely to continue long enough; this can be expected since the 
acquainted people usually share common purposes for meetings, 
e.g., doing an activity together. Also, the expected meeting 
durations differ according to the types of acquaintances or their 
activities, e.g., socializing or working. 

For unknown relationships, the system can further utilize previous 
encounter or meeting histories. One may expect that the duration of 
a meeting with a person can be estimated from the distribution of 
the previous meeting durations with that person. However, our 
studies on MIT/BT dataset saw little correlation between the 
durations of previous meetings and the current one. Interestingly 
instead, we could see that number of previous encounters affects the 
current meeting duration.  

Based on the observation, we develop a continuity-aware 
cooperator selection method. It distinguishes the candidates into 
multiple categories with different expected cooperation duration, 
e.g., passing-by, acquaintances, and strangers with multiple 
encounters. CoMon preferentially starts to negotiate with those in 
the category of longer expected duration. Figure 8 shows the overall 
flow of the selection process.  

Acquaintance selection: Following the observation, the method 
first selects the devices owned by acquaintances. According to the 
ATUS data, the average expected continuation time is 51 minutes 
for acquaintances. The method further utilizes the type of 
acquaintances if the information is known, e.g., the expected 
cooperation time with a friend can be estimated as 128 minutes (see 
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Figure 8. Continuity-aware cooperator selection  
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Figure 9). It can further consider activity types once it becomes 
available to the smartphones. To identify if a device is owned by 
acquaintances, the detector maintains a small database to match 
acquaintances’ devices with their Bluetooth MAC addresses. To 
obtain this information, CoMon asks the user to manually designate 
the owner of a device from the phone book upon the first pairing; 
CoMon allows the user to disable the new pairing to avoid frequent 
new pairings with strangers. 

Encounter history-based selection: When the cooperation with 
acquaintances are not possible, however, the method further finds 
other opportunities with the devices that have been frequently 
discovered more than a certain threshold, α within a time period, 
e.g., a month. Even when they are not in the contact list, they are 
highly likely to be a familiar stranger [28], e.g., a person in the same 
commuter bus. Figure 9 also shows the expected cooperation 
duration for different α values estimated from MIT/BT dataset.  

Short-stay filter: Lastly, the method applies a short-stay filter to 
exclude passing-by devices out of the devices recommended by the 
two predictors. This is important since not every encounter by 
acquaintances or frequently meeting people leads to a longer 
meeting. The key idea is that the devices that already stayed for a 
certain time are likely to stay longer. We can find an analogy with a 
least-recently-used (LRU) paging algorithm in OSs. The method 
attempts to connect to the devices selected by predictors after a 
certain time, β seconds, not instantly after the discovery.  

We validate the effectiveness of the encounter history-based 
selection and short-stay filter by emulating them over the MIT/BT 
dataset (α=10 in a two-week window, β=300 seconds). We skip 
acquaintance selection as we do not know about the relationships 
among the participants with the dataset. Figure 10 shows our 
method effectively selects the users who are likely to stay longer. 
For example, whereas the probability that a meeting lasts over 30 
minutes is 26%, it increases to 38% when the encounter-history 

selection is applied, and further increases to 58% with the short-stay 
filter. The short-stay filter seems to be quite useful while the effect 
of encounter-history selection is not very significant. We thus apply 
the encounter-history based predictor only when cooperation is not 
available with acquaintances. We acknowledge that a large-scale 
deployment will be more realistic than our emulation with the 
MIT/BT dataset, and are working towards that. 

5. COOPERATION PLANNING 
With the candidates recommended by the detector, CoMon conducts 
cooperation planning, to decide which contexts to share and trade. 
For each user, the main goal of the planning is to maximize her 
benefit. For the system, the goal is to provide mutual and fair 
benefits for cooperators.  

However, providing such maximized and mutual benefits is not a 
simple problem. An initial solution is that cooperators take turns to 
monitor the common contexts when the cooperation leads to 
benefits. For this, the system just needs to identify common requests 
of cooperators. For each context, it compares the energy demands to 
process it locally with the potential demands upon cooperation. 
Note that the cooperation is often beneficial for the contexts 
requiring energy-intensive sensing like GPS or dust sensing, or 
heavy processing over high-rate data like ambient sound context. 
For the beneficial contexts, a cooperator could monitor them for 
certain time duration, e.g., ten minutes and then the other monitors 
them for the next ten minutes. 

Such a solution works in simple cases, but it needs to be further 
improved to deal with complex system environments. A key 
challenge results from the complexity in benefit estimation. The 
cooperation benefit cannot be statically determined in advance; even 
for the same cooperation pattern, the benefit could vary depending 
on resource availability, operational applications, and user policies. 
To be specific, first, the energy demand to monitor a context might 
be differently accounted considering other concurrently monitored 
contexts. CoMon processes multiple contexts in a shared way; it 
figures out the overlapping tasks among contexts, e.g., sensing, 
processing and communication tasks, and eliminates redundancy. 
Accordingly, the cooperation benefit for a context needs be 
evaluated, taking such shared evaluation into account. Moreover, 
cooperators expect different types of benefits and have different 
policies on energy use. A user who will be outside quite a while 
would want to save energy as much as possible, but the one who 
will soon go home would not mind consuming energy if he can 
benefit from new contexts.  

The planning becomes even more challenging as we target future 
environments where a user carries a number of wearable sensors 
together with a smartphone. In this case, monitor-able contexts 
among users vary quite much, and sharing common contexts only 
provides limited benefits. Also, the user policies could be more 
complex reflecting the in-situ availability of sensing devices and 
their remaining energy in combination. For example, in Section 2, 
Joey obtains significant benefit from location sharing, saving battery 
of his power-hungry smartphone. However, the benefit would be 
relatively less if he uses a powerful external GPS; in this case, 
sharing through the smartphone might be even a loss.  

5.1 Cooperation Planning Problem 
To understand the problem in depth, we first clarify the problem and 
cooperation benefit. According to our context-level sharing 
principle, we describe a cooperator, u, as follows:  
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Def 1. A cooperator, u, is specified as: u = <D, S, P>, where 
 D is a set of demanding contexts, {ctxd}, by applications; the set 

is obtained from the registered queries in CoMon. 
 S is a set of supply-able contexts, {ctxs}, which CoMon can 

monitor and provide to cooperators; CoMon identifies the set 
based on available devices and their resource availability.  

 P is a policy that denotes the desirable benefit from the 
cooperation. It is given by the user based on his preference or 
resource situation. The policy is substantialized as a cost 
function, costP, within the system. If costP is reduced as a result 
of cooperation, the cooperation is considered beneficial.  

Now, given two cooperators u1=<D1, S1, P1>, and u2=<D2, S2, P2>, 
the cooperation planning problem is to find a cooperation plan, CP, 
as its output for the estimated cooperation duration, where 

 CP = {(ctxc, ui, t) | ctxc is a context to cooperatively monitor,  
ui is a cooperator in charge, either u1 or u2, 
t is a time duration to take charge}, 

such that costp1 and costp2 should decrease by applying CP. In each 
person’s viewpoint, the purpose is to minimize her cost function but 
it could conflict with the purpose of the cooperator.  

5.2 Cooperation Benefits and Policies 
A user can apply diverse policies to describe his preferential 
benefits from cooperation. We first introduce useful example 
policies which are described in terms of device resources and 
application supportability. 

Policy 1: A basic policy is to save the battery consumption of a 
smartphone for context monitoring. Since a phone is a generic 
personal computing platform utilized for diverse applications, it is 
better to save the battery power by default. 

Policy 2: When a smartphone works together with external sensing 
devices, a user might want to consider the battery status of other 
devices as well. According to the importance and use cases of 
devices, a policy can be defined to reduce the weighted sum of 
power consumption over distributed sensing devices.  

Policy 3: In terms of application supportability, a policy can be 
defined as to increase the number of supported queries. CoMon may 
not continue to support some requests due to shutdown or low 
battery level of corresponding devices. The policy attempts to 
resume the support for such requests through cooperation.  

Policy 4: Sometimes, it is expected that a user will recharge the 
devices after a certain time, T, e.g., 3 hours. In this case, a policy is 
specified to increase the running time up to 3 hours for all 
applications if some cannot be satisfied only with local resources. 

CoMon provides several system functions to enforce policies as cost 
functions. The key primitives are getEDVector({ctx}) and 
getEAVector(). getEAVector() returns the remaining energy of all 
sensing devices. Given a set of contexts to monitor, {ctx}, 
getEDVector({ctx}) returns the expected power consumptions on 

relevant sensing devices. For example, getEDVector({Dust}) 
returns an energy demand vector, (28.5mW, 720.7mW), where the 
elements represent the energy demands on the smartphone and dust 
sensor, respectively. Figure 11 shows an example cost function, 
CostP2, realizing policy 2 based on the primitives.  

To compute the energy demands, CoMon manages energy use 
profiles for the sensing, processing and communication tasks 
required to monitor contexts; currently, energy use are profiled 
offline while on-line profiling can be applied further. In CoMon, the 
processing of a context is represented as a graph of tasks, denoted as 
a processing plan. Figure 12(a) shows the example plan for the 
ambient sound context (see [15] for a detailed graph). CoMon 
estimates the energy demand to execute a plan by adding the energy 
demands for all tasks constituting the plan. Note that CoMon 
properly reflects the effect of the shared processing; the energy 
demands for redundant tasks between multiple contexts are 
accounted only once.  

We build the system functions extending our previous systems 
[17][21]; they leverage such information for the coordination of 
multiple applications’ resource use over personal devices. While 
they utilize multiple alternative plans for a context, we suppose that 
CoMon has a single plan for each context to focus on cooperation. 

5.3 Benefit-aware Negotiation Mechanism 
Careful cooperation planning is essential to provide cooperation 
benefits under complications in running applications, available 
sensing devices and their energy, and user policies. It becomes more 
complicated to provide mutual and fair benefits for both participants 
as they may have conflicts in planning decisions.  

To address such challenges, we develop a benefit-aware negotiation 
mechanism. As a key idea, the mechanism pursues the fairness of 
opportunity to make beneficial cooperation decisions by themselves, 
rather than guaranteeing mutually identical benefits to cooperators; 
the identical benefit is not even possible due to participants’ 
different policies and energy availability. In this principle, the 
mechanism utilizes one-to-one context exchange as a first-stage 
negotiation unit, providing each cooperator a chance to weigh up the 
unit by its own cost function. For each unit, it estimates the benefit 
reflecting in-situ resource availability and concurrent requests. Then, 
the benefit is cross-validated by each cooperator to ensure mutual 
benefits; the cases beneficial to only one side are excluded in 
advance, so that the planning results ensure the mutual 
benefit.  Finally, the mechanism allows the cooperators to take turns 
to select the unit of exchange, providing each participant with fair 
opportunities to maximize its benefit.  

In more detail, the mechanism introduces a cooperation case, as an 
atomic unit of cooperation planning; we describe the mechanism in 
perspective of a cooperator, u1. We identify two representative types 

Input: {ctxd}, a set of contexts to monitor
Output: cost to execute {ctxd}

1. EDVector GetEDVector({ctxd})
2. totalEC 0    // init total energy consumption
3. for dj where dj is a device in EDVector

totalEC totalEC + weightj · EDVector(dj)
4. Return totalEC

 
Figure 11. A cost function for a policy 2 
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of cooperation cases as follows. Note that cooperation cases are 
built on a context level, hiding the low-level resource details of a 
cooperator.  
 Exchange of two contexts, ctxout and ctxin, denoted as 

case_ex(ctxout, ctxin), is a case that u1 obtains a context ctxin 
from u2 in exchange of providing ctxout. This case enables the 
participants to save the energy by delegating the costly 
monitoring of a context or obtain an unavailable context. 

 Co-monitoring of a context, ctxco, case_co(ctxco), is a case 
that u1 and u2 monitor ctxco in rotation. This case enables the 
participants to save the energy by halving the monitoring 
duration of the context. 

With the cooperation cases, our planning method is performed in 
following three steps. 

Step 1. Cooperation case generation: First, participants generate 
applicable cooperation cases by exchanging their demanding and 
supply-able contexts, i.e., D and S, with each other. The generated 
cases include a set of exchange cases, EX, and a set of co-
monitoring cases, CM, where 

 EX = {case_ex(ctxout, ctxin) | ctxout  (S1  D2),  
                            ctxin  (D1  S2), ctxout ≠ ctxin}, and 

 CM = {case_co(ctxco) | ctxco  (S1  D1  S2  D2)}. 

For an exchange case, ctxout is the one that u1 provides and u2 
demands. ctxin is vice versa. Second, a co-monitoring case is 
generated for a context that u1 and u2 both can provide and demand 
at the same time. If a cooperator has been already cooperating with 
another one u3, it excludes the contexts involved in the cooperation 
with u3 from its S and D for the case generation, following our pair-
localized negotiation design.  

Step 2. In-situ benefit estimation and cross-validation: The 
second step is to estimate the benefit of each generated cooperation 
case and exclude the cases that provide only one-side benefit. Since 
the benefit of a case can be differently estimated depending on each 
participant’s policy and energy availability, the benefit estimation is 
separately done by each participant based on its cost function. Based 
on the estimated benefit, each participant excludes the cases that are 
not beneficial to the participant. Then, they exchange the list of the 
cases to exclude the cases that are not beneficial to the other 
participant as well. The cross-validation results in only mutually 
beneficial cases. 

Details on benefit estimation. The key of this step is to estimate the 
benefits for a cooperation case. In detail, the benefit is calculated in 
two sub-steps: 1) introducing a cooperation plan, and 2) policy-
based benefit calculation applying the new plan. 

Internally, a cooperation case introduces a new processing plan to 
monitor the corresponding context. We denote such newly 
introduced plan as a cooperation plan, cplan, while denoting the 
original local plan as lplan. The new cooperation plans are 
differently introduced for exchange cases and co-monitoring cases. 
For an exchange case, case_ex(ctxout, ctxin), a new cplanin(ctxin) is 
created for ctxin. The cplanin(ctxin) simply consists of a task to 
receive the results for ctxin from the cooperator. For ctxout, a new 
cplanout(ctxout) is built by inserting a task to send results at the end of 
its original local processing plan. Figures 12(b) and (c) show 
example cplans created by the case_ex(sound, location) for Joey in 
Section 2.1. For a co-monitoring case, case_co(ctxco), a cooperation 
plan cplanin(ctxco) is used for every first half of rotation epoch to 

receive ctxco and cplanout(ctxco) is used for the second half to provide 
ctxco. 

With the new cplans, CoMon recalculates the cost using the 
GetEDVector() and GetEAVector() function. Then, the benefit is 
calculated by subtracting the new cost from the previous cost before 
applying the cplans, i.e., only with local plans.  

Step 3. Turn-by-turn case selection: The final step is to select the 
validated cooperation cases one-by-one in turn. A participant who 
has a turn selects the case of the maximum estimated benefit and 
notifies it to the other. After the selection, the participants delete the 
cases associated with the contexts in the selected case. For example, 
if a participant selects the co-monitoring case of location context, 
both participants delete the cases that exchange the location context 
with another context. The selection process continues until there is 
no case to select. Such turn-based selection provides each 
cooperator with fair opportunity to maximize its benefit. After the 
selection, the cooperation planner applies and executes the 
cooperation plan for the selected cases. 

6. IMPLEMENTATION 
We prototyped CoMon on Android phones and various types of 
sensor devices. Figure 13 shows our hardware setup. We used 
Google Nexus One with 1GHz CPU, 512MB RAM. We connect a 
base sensor node to Nexus One via Bluetooth-to-serial converter to 
support ZigBee communication between Nexus One and sensor 
devices. We used commercially available ZigbeX sensor motes 
running TinyOS 1.1.11. They are equipped with Atmega 128L 
MCU, CC2420 RF transceiver supporting ZigBee protocols, and an 
additional extension board of dust and CO2 sensors.  

We developed mobile-side CoMon architecture as a background 
service on the Android platform. It provides applications with a 
service interface for query registration. For the registered queries, 
CoMon continuously delivers context monitoring results via a 
callback message handler. The major components implement the 
Android handler interface and interact with each other through 
message exchanges. On the sensors, we implemented the sensor-
side architecture in NesC. For efficient utilization of limited sensor 
resources, the architecture identifies the common tasks in multiple 
application queries, and utilizes shared buffers to avoid duplicate 
data sensing and reduce the transmission by packing messages for 
different requests into a single packet.  

7. EXPERIMENT 
To demonstrate the effectiveness of CoMon, we evaluate the system 
based on the prototype described in Section 6. First, we present the 

(a) Nexus One (b) Base node with
BT-serial converter

(c) Dust sensor (d) CO2 sensor
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Figure 13. Hardware and energy measurement setup 
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energy benefit achieved in diverse cooperation cases. Second, we 
show that our cooperation planning method effectively provides 
mutual benefit. Third, we investigate the energy overhead for the 
cooperation. Lastly, we deploy CoMon on 12 people’s devices and 
present interesting results and valuable lessons. For the power 
measurements besides the deployment experiments, we used a data 
acquisition tool, NI USB-6210, as shown in Figure 13(e). The tool 
measures the voltage (VB) of the battery and the voltage (VR) across 
a register at a sampling rate of 125 kHz. We measure the energy 
consumption over a certain period of time, 10 minutes by default, as 
follows: 

 
For each sample, the power is obtained by multiplying VB by the 
current that is calculated by dividing VR by the resistance value, R 
(in our setting, 100m). As a metric for energy, we use the average 
power consumption (mW), which is obtained by dividing the total 
energy use for the whole time period by the time. 

7.1 Energy Benefits of Cooperation 
We evaluate the energy benefits achieved by cooperative context 
monitoring. We measure and analyze the energy saving of the 
smartphone and the sensor devices for basic cooperation cases, i.e., 
co-monitoring cases and exchange cases. We compare the power 
consumption after applying the cooperation cases against the non-
cooperative, standalone setting. 

For the detailed analysis, we break down the power consumption 
into three states; base, monitoring, and communication. The base 
represents the power consumption for the primitive operations of the 
smartphones and the sensor devices. The monitoring includes the 
power consumed by data sensing and processing. The 
communication is the energy to send and receive the data. This 
includes both cases to communicate with a person’s own external 
sensor devices and the cooperators; note that both communications 
are done via Bluetooth. 

Co-monitoring cases: Figures 14(a) and (b) show the average 
power consumption for two co-monitoring cases, case_co(location) 
and case_co(dust), respectively. Figure 14(a) shows that CoMon 

achieves 27% of power saving on the smartphone through the co-
monitoring of the location context, i.e., from 440 to 321mW. We 
expect that the energy saving extends the lifetime of the smartphone 
by 37%. The major contribution comes from halving the total 
duration of GPS activation. Note that the amount of power saving is 
less than the exact half, because of the ‘base’ consumption and the 
Bluetooth transmission for context exchange. Figure 15 shows the 
current drawn by the smartphone for 20 minutes for 
case_co(location). It clearly shows the periodic activation of the 
GPS, and the lower current draw when the location context is being 
provided by the cooperator. 

Figure 14(b) shows the results for case_co(dust), which employs an 
external dust sensor. CoMon reduces the power consumption of the 
dust sensor by 43% (from 848 to 487mW), since it is turned off for 
a half of the monitoring duration. On the other hand, the power 
consumption of the smartphone slightly increases by 26mW as it 
transmits the monitoring results to the cooperator during its 
monitoring turn. This overhead is marginal in most cases; this is 
because, even in the standalone setting, the smartphone consumes 
the energy for the ‘transmission’, to receive the data from the 
external sensor device. Taking such overheads or not is governed by 
the user’s policy. 

Exchange cases: Figure 16(a) shows the average power 
consumption for two exchange cases: when the user takes charge of 
CO2 in return of location (case_ex(CO2, location)), and vice versa 
(case_ex(location, CO2)). For case_ex(CO2, location), CoMon 
significantly reduces the power consumption of the smartphone 
(492 to 142mW) by deactivating its GPS; the additional cost to 
deliver its CO2 context is insignificant, i.e., 7mW. The consumption 
of the CO2 sensor remains the same at 251mW. In contrast, for 
case_ex(location, CO2), the power consumption of CO2 sensor is 
largely reduced from 251 to 129mW, whereas the smartphone 
slightly consumes 9mW of more power to transmit the location 
context. Figure 16(b) shows the exchange cases of CO2 and dust 
contexts. These cases provide energy benefits similarly as shown in 
Figure 16(a). 

7.2 Cooperation Planning for Mutual Benefit 
We validate our cooperation planning mechanism and its 
effectiveness in terms of mutual benefits. We conducted an 
experiment with three users, uA, uB, and uC, each having different 
devices and monitoring queries (see Figure 17). We investigate how 
cooperation planning is performed when the users come across, stay 
with, and leave each other. Figure 18(a) depicts four phases 
separated by the users’ meeting and parting events. We show only 
uA’s viewpoint for concise description and verify the actual energy 
benefits. We set different cooperation policies for each user as: uA 

(a) {location, CO2}                         (b) {dust, CO2} 
Figure 16. Power consumptions for exchange cases 
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wants to maximize the total energy saving of the smartphone and 
the sensor devices, whereas uB and uC want to maximize the energy 
saving only for their smartphones. 

Phase 1: uA registers her location, ambient sound, and dust 
monitoring queries. As there is no cooperator, all those queries are 
processed by uA’s own resources. Figure 18(b) shows the power 
consumption of uA’s smartphone and dust sensor in Phase 1, i.e., 
596 and 858mW, respectively. 

Phase 2: Phase 2 begins when uA meets uB. Upon meeting each 
other, their CoMons start the cooperation planning process. By 
exchanging their demanding and suppliable contexts, both CoMons 
generate six cooperation cases and estimate the benefits for each 
case as in Table 3. uA’s CoMon determines that all cases are 
beneficial while uB’s determines that only Case1 and Case4 are so. 
Among the mutually beneficial cases, i.e., Case1 and Case4, uA 
selects Case4, case_ex(ambient, dust), as it is the most beneficial 
according to her policy. Now that uA’s monitoring queries are 
processed cooperatively, uA’s CoMon reduces the total power 
consumption from 1,444 to 740mW.  

Phase 3: While uA is being together with uB, uC comes across them. 
uA’s CoMon starts the cooperation planning with uC as well, 
generating one cooperation case, i.e., case_co(location). Note that 
cooperation cases regarding the ambient sound context are not 
generated as it is already under the cooperation with uB. uA’s CoMon 
begins additional cooperation with uC by selecting and applying 
case_co(location); the total power consumption of uA’s devices has 
further reduced from 740 to 443mW.  

Phase 4: uB has just left uA. Detecting the event, uA’s CoMon 
restores the dust monitoring to be processed by her own devices. 
Accordingly, uA’s total power consumption increases to 1,294mW. 
uA begins additional planning with uC on the dust and ambient sound 
contexts which uA has cooperatively monitored with uB. They 
generate and select a cooperation case, case_co(ambient), which is 

mutually beneficial. This new cooperation reduces the total power 
consumption of uA’s devices from 1,294 to 1,213mW. 

Cooperation between uB and uC: In phase 3, uB and uC also meet. 
However, any cooperation cases are not applicable because uB had 
been already performing the cooperation with uA for all the 
requested contexts, i.e., ambient sound and dust.    

7.3 Cooperation Overhead 
We examine the energy overhead for cooperative monitoring. We 
observe two major causes of overheads: (1) to discover nearby 
cooperator candidates, and (2) to exchange the monitoring results. 
We measure and analyze the overheads, showing that those are 
insignificant compared to the expected benefits. 

Discovery overhead: CoMon conducts periodic Bluetooth scans for 
discovery, consuming additional energy. We measure the overheads 
for the scanning intervals in Section 4. The overhead is 20mW in 
our default interval of 5 minutes. This is relatively small compared 
to the expected benefits of many cooperation cases in Section 7.1. 
For example, if CoMon has been looking for cooperators for 60 
minutes, it just needs 6 minutes to break even after starting the 
cooperation of case_ex(ambient sound, location). 

Context Exchange Overhead: To identify the overhead for context 
exchange, we measure the smartphone’s power consumptions for 
Bluetooth message exchanges as shown in Figure 19. To figure out 
the relative amount of the overhead, we also plot the smartphone’s 
energy cost for monitoring several example contexts. For the 
contexts requiring power-hungry sensing or heavy computation, the 
energy overhead to exchange a context is much smaller than the cost 
to monitor the context. For instance, receiving the location context 
consumes only 60mW of the smartphone, whereas monitoring the 
context using GPS costs 333mW. In the case of dust and CO2 
contexts, the smartphone does not benefit from the cooperation, but 
the sensor devices significantly save their energy as in Section 7.1. 
Note that some sensors such as accelerometers and illuminometer 
hardly consume power (<35mW) (less than the communication 
overhead for cooperation), and thus the cooperation might not be 
beneficial. These cases are filtered out through cooperation planning 
process. 

7.4 Deployment 
On top of the CoMon platform, we prototyped a proof-of-concept 
application, TripMemory. It is an Android application that tracks the 
user’s travelling path and logs her surrounding events extracted 
from ambient sound [26]. We aim at presenting the effectiveness of 
cooperative context monitoring rather than showing the novel 
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Figure 19. Exchange overheads and monitoring costs; the dust 

and the CO2 sensor consumes 848 and 252mW, respectively 

Table 3. Cooperation cases and expected benefits 
Cooperation case uA‘ssaving (mW) uB‘ssaving(mW)

ID Description Total Phone Dust Phone Dust

1 case_co(ambient) 30 30 0 12 0

2 case_co(dust) 336 -25 361 -24 361

3 case_ex(uA:dust, uB:ambient) 131 131 0 -5 127

4 case_ex(uA:ambient, uB:dust) 704 -17 721 225 0

5 case_ex(uA:ambient, uB:location) 231 231 0 -191 0

6 case_ex(uA:dust, uB:location) 454 454 0 -270 721

uA uB uC

Queries Location, Dust,
Ambient Sound Ambient Sound, Dust Location, 

Ambient Sound
Devices Smartphone, Dust Smartphone, Dust Smartphone  

Figure 17. Experimental setup 
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Figure 18. Experiment results for uA 
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concept of the application. Upon the start of TripMemory, it 
registers either one or both of the following queries to CoMon 
requesting for user preferences; the query registration is performed 
once a day only. 

CONTEXT location  
PERIOD 5 Seconds 
DURATION Always 

CONTEXT ambient sound 
PERIOD 10 Seconds 
DURATION Always  

CoMon notifies the application of monitoring results through the 
Android service interface. We recruited 12 participants consisting of 
6 pairs of friends via the bulletin board of our school. Each 
participant was given a Nexus One phone with the CoMon platform 
and TripMemory installed. For comparison, each was given another 
phone with the same setting but deactivating the cooperation 
functionality of CoMon (named Non-CoMon). For fair comparison 
of the energy consumption, we used new batteries for the 
smartphones. The battery level of the smartphone is logged using 
Android library. We also required the participants to fully charge 
every night and not to run any application other than TripMemory. 
They roamed freely for a week.  

According to our data, each participant runs TripMemory 6.2 days 
on average and 8.6 hours per day; some forgot to run for a day. On 
average, a pair cooperated 5.9 hours per day across 6.8 times of 
meetings. The average meeting duration is longer than we expected; 
we guess that this is because the participants are mostly close 
friends who are roommates or attending classes together. CoMon’s 
average battery consumption is 19.7 % less than those of non-
CoMon phones; this means that about 19.7% battery remains for a 
CoMon phone at the moment that the corresponding non-CoMon 
phone runs out of battery. Looking into the data, the cooperation 
benefits vary largely depending on the cooperation patterns. Only 
accounting for when a user turns on location monitoring, the 
benefits are 31.1 % in average. When both users turn on location 
and ambient sound monitoring, the benefits differ for the ones 
providing locations and the sound contexts. For the location 
providers, the average benefit is 6.9% only while the average 
benefit is 22% for the sound providers; note that location monitoring 
consumes a lot more energy. We expect that the benefit of CoMon 
will increase as CoMon is deployed by more people and more 

energy-intensive context processing is performed. In the rest of this 
section, we present interesting results and lessons from our 
deployment. 

7.4.1 Quality of Application 
To study the effect of the cooperation on the quality of the 
application, we compare the monitoring results from CoMon and 
Non-CoMon. We show a representative case in which a pair of 
participants, u1 and u2, trips together from KAIST to the downtown. 
During the trip, their CoMons performed case_co(location) and 
case_co(ambient) at the co-monitoring interval of 5 minutes. 
Figures 20(a) and (b) depict parts of the trip paths logged by 
TripMemory on u1’s CoMon and Non-CoMon, respectively; white 
dots represent the logs obtained from u1’s smartphone and black 
dots are those provided by u2’s. In the figures, the trip path recorded 
through the cooperation has very similar patterns to the path of Non-
CoMon. It shows that CoMon does not compromise the quality of 
context monitoring much while achieving resource benefits. Note 
that different densities of the dots result from different 
transportation modes and constant monitoring period; they took a 
bus around the sparse part. 

Figure 21 shows a rare but noteworthy case in which the monitoring 
quality was compromised. In the case, a pair of participants had an 
inter-city trip from Daejeon to Seoul by high-speed rail, running at a 
speed of up to 305km/h (190mph). Unlike the previous result shown 
in Figure 20, some location data are missing when switching the 
turns of co-monitoring. This is because it mostly takes a longer 
TTFF (time to first fix) as the device travels longer distance from 
the last detected location in its previous activation. We figured out 
that this problem happened when the user was moving extremely 
fast. It addresses two considerations that: (1) CoMon design needs 
to be further polished including a consideration of the delay to 
reactivate sensors, and (2) those delays of some sensors might be 
dependent on the some situational parameters, e.g., GPS sensor and 
the moving speed. We leave this issue for future work.  

7.4.2 Long-term Observation of Battery 
We present long-term observations of smartphone’s battery level on 
TripMemory. We examine the battery behavior over time with the 
exemplary cases that the cooperation continues stably until the 
battery runs out. Figure 22(a) shows the battery level over time for 
co-monitoring of location information. CoMon extends the lifetime 
of the smartphone by 44% (from 508 to 732 minutes). Note that our 

(a) CoMon (b) Non-CoMon

In a bus In a bus

 
Figure 20. Location tracking from KAIST to the downtown 

(a) CoMon (b) Non-CoMon

long TTFFlong TTFF

 
Figure 21. Location tracking in a high-speed rail 

Figure 22. Battery level over time 

Table 4. Stability results 

Number of
situations

Average duration
(minutes)

Number of
disconnection

Average disconnection 
time (minutes)

10 206 2.2 5.06
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benefit function and the offline profiling estimated the lifetime 
extension as 37% (see Section 7.1). We believe that the error comes 
from the fluctuations of the GPS and 3G signal strength, which 
affect the actual power consumption. Figure 22(b) describes the 
battery level when devices exchange the ambient sound context in 
return of the location and vice versa. case_ex(location, ambient) 
extends the lifetime from 532 to 598 minutes. case_ex(ambient, 
location) is more beneficial; the smartphone still shows 36% of the 
battery level at 598 minutes. 

7.4.3 Cooperation Stability 
We also investigate the stability of cooperation on top of CoMon 
using the TripMemory application. This shows that the stability of 
the connection is maintained while the users are cooperating, being 
physically close to each other. For this additional part of the 
experiments, we further recruited ten pairs of participants, where the 
participants in each pair are acquainted with each other. As a 
baseline, we have the users annotate the presence of their 
cooperators manually in case of disconnection and re-connection; 
we provide the users with vibrating and auditory alarms to notify the 
connection events. We collect the connection logs and the annotated 
data in diverse situations including dating, working in an office, and 
promenading along a river.  

We look into the disconnection events and analyze them based on 
the participants’ manual annotation. Table 4 shows the overall 
results. We first verified that there was no disconnection when they 
had been actually together. The intermittent disconnections occurred 
in our deployment situations were reconnected within 5 minutes on 
average, for example, the case of going to a restroom. This implies 
that, upon a disconnection from an acquaintance, waiting for 5 
minutes might be worth trying, rather than immediately establishing 
a new cooperation with a stranger. 

8. DISCUSSION 
Coverage of Context Sharing. In the current design, we simply 
assume the range of Bluetooth (< 10m) as the coverage of context 
sharing. This works quite well in our deployment, where a pair of 
cooperators stays closeby during most of their meeting time. 
However, simply being within Bluetooth range does not ensure that 
two users have common contexts. For example, a user may detect 
another in the next room but may not have many common contexts. 
We believe this issue can be addressed in several ways. Exploiting 
Bluetooth RSSI [23] may deliver fine-grained clues on the inter-user 
proximity or the presence of obstacles separating them. Exchanging 
some contextual signature prior to cooperation may help to 
determine if they are in the same place. The place detection 
techniques such as SurroudSense [2] could be adopted for this 
purpose. 

Privacy. Letting others know my context inherently raises privacy 
concerns. To be optimistic, we believe that such concerns might be 
relatively mitigated in the target environments of CoMon, where the 
users are physically in the same contexts. A study on location 
sharing supports that people are less conscious of sharing their 
locations when they are closeby [6]. A study on phone sharing 
shows that sharing is more acceptable with those in close social 
relations such as families, friends, or colleagues [24].  

To be conservative, privacy concerns largely depend on different 
users and how the sensed contexts are to be used [19]. A user study 
implicates that people would be highly selective during their private 
time depending on their context and activities [5]. In this light, 
CoMon aims to provide users with the controllability and visibility 

on the sharing of their contexts. First, CoMon allows users to 
specify their sharing policies, i.e., the rules governing the access to 
their contexts from other cooperators as follows: 

SHARE Context
WITH Target [EXCEPT Exception target]
RESOURCE High | Middle | Low  

CoMon provides simple UI showing the currently shared contexts 
and the cooperator information. We acknowledge that, the rules and 
UI address only some basic concerns on the privacy; it is still an 
open research question requiring further in-depth studies.  

9. RELATED WORK 
Collaborative Applications and Techniques. Opportunistic 
collaboration among smartphones has drawn attention in many 
domains, e.g., video playback and recording [3][33] and context 
inference [29]. CoMon takes collaboration opportunities for 
different purposes, e.g., saving energies for continuous context 
monitoring or obtaining new sensing modalities. Also, CoMon is the 
first to incorporate personal sensing devices into cooperation 
beyond smartphones. 

Collaborative sensing techniques has been proposed to incorporate 
new sensing modalities and enhance data fidelity [10][20]. They 
share a high-level goal with CoMon in that it aims to increase the 
capability of individual mobile users through the collaboration. 
CoMon conducts its in-depth study on the cooperation opportunity 
and resource benefits of cooperation for continuous context 
monitoring.  

There has been a research thread to develop middleware to construct 
mobile ad-hoc networks (MANETs) [4]. They group multiple 
mobile devices in an ad-hoc manner and enable applications such as 
file sharing and instant messaging. A major focus has been 
constructing network topologies through efficient discovery and 
advertisement of resources, such as mobile JXTA libraries. CoMon 
opens a new application domain of context monitoring, which 
clearly suits for the concept of in-situ sharing. In addition, different 
from conventional dynamic ad-hoc cooperation, we target 
continuity-lasting group of users to reduce the complexity and 
overheads for cooperation. 

Participatory Sensing. This concept has been proposed to exploit 
the widely distributed mobile devices for urban-scale sensing 
applications. It has been adopted by many applications, e.g. pothole 
patrol [11], and has evolved into common platforms, e.g. PRISM [8] 
and Bubble Sensing [25]. These applications extend the spatio-
temporal sensing coverage of a mobile user. Different from such 
works, CoMon aims to reduce the monitoring redundancies among 
the users in close proximity to resolve resource scarcity. CoMon is 
not a competing technology with participatory sensing but can 
complement each other. CoMon can serve as a client of 
participatory sensing, providing the contexts in greater energy 
efficiencies. In the other way, CoMon could utilize participatory 
sensing to extend its spatial context coverage. 

Energy Optimization. There have been huge research efforts to 
reduce energy consumption for continuous sensing and data 
processing [16][30][34]. They focus on optimizing energy use 
within a single device whereas CoMon newly attempts to optimize 
resource use in consideration of multiple users and devices. A 
variety of techniques have been proposed, such as an energy-fidelity 
tradeoff [34], user interest-based sensor management [16], 
hierarchical sensor management [31], and low-power hardware 
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mode utilization. Recent studies have delivered the energy 
efficiency for location monitoring [30]. CoMon complements such 
techniques for a single device, by further improving resource 
efficiency through active cooperation with nearby mobile users.  

Task offloading as in MAUI [7] and Odessa [32] reduces resource 
consumption of smartphones; heavy back-end tasks in a processing 
pipeline are offloaded to servers. However, CoMon takes 
cooperation approach distributing tasks over nearby devices, having 
benefits not provided by the offloading approach. Many sensing 
tasks are not transferrable to remote servers since the sensing itself 
can be performed only where the context exists. Even for processing 
tasks, the overhead to transfer high-rate data could often overwhelm 
the resource benefit from offloading. 

10. CONCLUSION 
In this paper, we present the design and implementation of CoMon, 
a novel cooperative context monitoring system. We built CoMon by 
exploiting the prevailing cooperation opportunities among mobile 
users. CoMon allows every participant to take benefits from 
cooperation, through the continuity-aware cooperator selection and 
benefit-aware negotiation. We deployed CoMon prototype on off-
the-shelf smartphones and diverse sensor devices. We evaluated that 
CoMon significantly improves resource efficiency for continuous 
mobile sensing and processing. Moreover, it extends the available 
contexts beyond those from one’s own devices.  

As people spend significant portion of time for social activities in 
their daily lives, smartphone applications and systems needs to be 
further evolved to support and leverage such situation. CoMon takes 
an initial step toward this direction, introducing social awareness 
into smartphones. It opens a broad spectrum of technical issues, e.g., 
networking for in-situ cooperation, co-activity group detection and 
managements, resource sharing and coordination, privacy. Based on 
CoMon and its underlying techniques, we are working on building a 
new platform to facilitate diverse in-situ social activities. 
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