
GetMobile January 2016 | Volume 20, Issue 130

[HIGHLIGHTS]

Predicting Power
Impact of Mobile
Sensing Applications
at Pre-Installation Time

PowerForecaster:

Mobile application markets are
important for users to select
desirable applications to users’

needs; they provide diverse information,
such as features, screenshots, and user
comments. However, they still miss a key
information, power consumption by an
application. Users recognize whether an
application is power hungry or not, only
after they install and use it. They usually
have no choice but to count on such trial
and error to decide if the application is
worth such power consumption. Emerging
mobile sensing applications [2][3][4],
however, make such users’ practices of
“use it a while and see what happens to
battery” no longer effective. Mobile sensing

applications continuously drain battery
in the background without users’ explicit
awareness. For example, Accupedo, a
commercial pedometer application, reduces
the phone’s battery life by hours, causing
the phone to be shut down early [6].

What if an application market provided
a sensing application’s estimated power use?
It will help users make informed decisions
even prior to installing the applications.
Users are relieved of exhaustive trial and
error to install an application, and may be
less embarrassed with rapid battery drain
which was already expected.

It is not straightforward to realize such a
function. While there have been extensive
efforts to build accurate models for power

consumption of mobile applications [1][8]
[10], they can provide power information
only after running the applications and
observing their power behaviors. A trivial
way to provide power information prior to
installing an application is for developers
to post the average power of the application
for common-use cases. We notice that
such average power information is neither
accurate nor useful for many individual
users. The main reason is that the sensing
application’s power consumption largely
deviates from one user to another,
depending on each user’s physical activities,
phone usage, and environmental factors.
Such differences are amplified when an
application applies various optimization
techniques. Our previous study showed
that users’ mobility patterns affect battery
drain of commercial sensing applications
significantly [7]. We also observed that
active sensing duration of an application
varies up to three times with 27 people’s
sensor traces collected over three weeks [6].
For example, a location tracking application
caused nontrivial differences of its daily
GPS activation time per user, which ranges
from 0.7 to 2.4 hours (mean: 1.4, stdev:
0.4). It mainly attributes to the optimization
technique that activates GPS only when a
user is moving.

In our earlier paper [6], we introduced
PowerForecaster, a system to provide an
instant, personalized power estimation
of sensing applications at pre-installation
time. In this article, we give an overview
of the system and present the key results.
Figure 1 shows mockup screenshots of
application markets when PowerForecaster
is integrated. PowerForecaster provides
unique user experiences. First, it provides
users with power estimation before
installing applications, removing the hassles
of trying and uninstalling applications one
after another until users find satisfactory
power-efficient applications. Second,
estimation is highly personalized and
thereby more accurate as an individual user’s
physical activities and phone usage are major
input variables upon which predictions are

Chulhong Min KAIST, Daejeon, South Korea Youngki Lee Singapore Management University, Singapore
Chungkuk Yoo KAIST, Daejeon, South Korea Seungwoo Kang KOREATECH, Cheonan, South Korea
Inseok Hwang IBM Research, Austin, TX, USA Junehwa Song KAIST, Daejeon, South Korea

Editors: Robin Kravets and Nic Lane

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

Excerpted from “PowerForecaster: Predicting Smartphone Power Impact of Continuous Sensing
Applications at Pre-Installation Time” from Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems with permission. http://dx.doi.org/10.1145/2809695.2809728 © ACM 2015

31January 2016 | Volume 20, Issue 1 GetMobile

[HIGHLIGHTS][HIGHLIGHTS]

made. Third, the system neither requires
any changes of the application binaries nor
additional information from developers.

We devise a personalized user behavior-
aware power emulation approach. The
key idea is to reproduce individual users’
execution environment for a target applica-
tion to track its power use. The execution
environment is reproduced by replaying
pre-collected personal traces of sensor
and device usages. The approach has three
advantages: (1) It accounts for major user-
dependent variables causing large power
consumption deviations – physical activities
and phone usage. (2) It estimates power use
of arbitrary applications exactly as they
are on the application market; the emulator
tracks hardware use of the applications
by running its executable. (3) It considers
shared hardware use with existing applica-
tions by reproducing their resource use.

We further optimize PowerForecaster
to speed up emulation and reduce power
overhead for trace collection. First, Power-
Forecaster accelerates emulation by fast-
forwarding replays to capture changes in the
power states of hardware, while parallelizing
replays on multiple emulator instances. For
responsive service, it also progressively updates
power estimation with interim results. Our
evaluation shows that PowerForecaster
emulates 18-hour long traces within 30
seconds at 6 to 7% power estimation errors.
Second, it employs a balanced duty-cycling
policy to minimize data necessary for
power estimation while keeping its accuracy

high. We found that, even with
the data collected at the ratio of
1/12, the estimation accuracy still
remains above 90%.

PowerForecaster
OVERVIEW
PowerForecaster takes a target
application’s executable as an
input and estimates its power impact, i.e., net
power increase by the application as an output.
Figure 2 shows the architecture overview.
Prior to power estimation requests, the
mobile-side collector pre-collects user
behavior traces. Upon a request, the cloud-
side power emulator estimates power impact
of a target application with these traces.

Mobile-side components collect user
behavior traces in the background. The sensor
trace collector logs sensor data that captures
users’ physical activities. The device usage
trace collector logs hardware component
usages by existing applications, which are
potentially sharable with a new sensing
application. Once collected, the traces are
reused for various sensing applications.

Cloud-side components run a target
application and estimate its power use. The
user behavior-aware power emulator executes
the application and monitors its hardware
usage. Simultaneously, it replays the sensor
and device usage traces to reproduce the
personalized power-related execution
environment. As a result, the emulator
obtains detailed hardware usage statistics
including which, when, and how long

hardware components are used. The power
impact estimator computes the net power
increase of the application based on the
cumulative hardware usage statistics
and a system call-based power model [10].

USER BEHAVIOR-AWARE
POWER EMULATION
Existing mobile emulators, such as Android
emulator and iOS simulator, are not feasible
solutions to emulate the power use of the
sensing applications. They do not support
power monitoring during emulation and can-
not reproduce users’ behavioral factors, which
are essential for personalized power estimation.

To address the issues, we developed a
novel user behavior-aware power emulator
based on Android emulator (Figure 2).
Overall operation flows are as follows.

Pre-emulation: Upon a request, the power
emulator prepares necessary inputs for
emulation. It first obtains sensor and device
usage traces from the user trace manager as

FIGURE 1. Power impact at
pre-installation time.

FIGURE 2. PowerForecaster architecture.

GetMobile January 2016 | Volume 20, Issue 132

[HIGHLIGHTS]

well as the target application’s executable.
It then initiates multiple power emulator
instances in parallel for speedy estimation.
Each instance installs the executable and
receives a part of traces from the emulator
manager. If necessary, it replays pre-
generated user interaction, such as clicking
a start button to bootstrap the application.

Power-emulation: After the preparation, the
emulator instance executes the application.
While the application is running, the sensor
emulator mimics the sensor operations to
fulfill the application’s sensing requests. It
reads sensor traces and feeds sensor data
at right timing and rate as the application
demands. It also emulates the hardware states
of the corresponding sensor devices and
account for power estimation afterwards.
To consider the sharing effect, the device
usage replayer reproduces the existing
applications’ device use simultaneously
based on the device usage trace. The
hardware usage monitor tracks system calls
made to use hardware components such
as sensors and CPU. Finally, it generates
hardware usage statistics.

Post-emulation: With the hardware usage
statistics, the power impact estimator
computes the increase in power consumed
by the target application. For power
estimation, we adopt a system call-based
method using power profiles obtained by
offline profiling. Currently, PowerForecaster
considers the following hardware
components: CPU, GPS, inertial sensors,
microphone, Bluetooth/Wi-Fi scans.

EVALUATION
We present the key results to show the
power estimation accuracy and latency of
PowerForecaster. More details can be found
in our original paper [6].

Setup: The current implementation sup-
ports Nexus 5 (Android 4.4.4) and Nexus S
(Android 4.1.2). PowerForecaster can easily
incorporate other devices as we modularize
it to include new power models. For evalua-
tion, we mainly used three sensing applica-
tions including a commercial pedometer
application, Accupedo1, and the two research
applications we developed, MyPath, a loca-
tion tracker and ChatMon, a conversation
monitor, inspired by prior works [5][9].
These applications involve diverse hardware
usage; Accupedo uses accelerometers and
CPU. MyPath uses accelerometers, GPS,
and CPU while ChatMon uses Bluetooth,
a microphone, and CPU.

We performed scenario-based experi-
ments. We crafted five one-hour scenarios
with four parameters: mobility, encounter,
indoor/outdoor status, and phone usage. The
scenarios have different combinations of pa-
rameter values and their time durations, e.g.,
10 minutes of walking alone outdoor while
using a map application, and then 20 minutes
of staying indoor with friends. For each
scenario, we measured the accuracy by using
four phones (PA, PB, PC, and PD) and three
Monsoon power monitors as in Figure 3(a).
PA and PB are used to collect ground truth;
PA runs a target sensing application with the

same existing foreground applications while
PB runs the existing applications only. The
difference in power consumption between
the two phones is considered as the ground
truth. PC is used to collect sensor and device
usage traces upon which PowerForecaster
estimates the power impact of a target appli-
cation. For comparison, PD measures power
while running the target application only; we
omit the comparative results. It is interesting
to note that Figure 3(a) clearly depicts the
challenges in measuring power consumption
of sensing applications in the real world.

Accuracy: Figure 3(b) shows the power
measurement with three sensing applications
for the five scenarios. PowerForecaster
accurately estimates net power increases
for the applications and scenarios. The
error rates are 5.3 to 7.7%, indicating that
PowerForecaster closely traces the power use
of the target sensing applications.

We analyze the characteristics for each
scenario and application. For Accupedo,
Scenario-1 shows the largest net power
increase. The scenario involves the longest
movement (50 minutes), causing higher
power use to process accelerometer data.

FIGURE 3. PowerForecaster evaluation: (a) setup (left), (b) estimation accuracy (upper right),
and (c) latency (lower right).

1 https://play.google.com/store/apps/details?id=com.corusen.accupedo.te

(a)

(b)

(c)

33January 2016 | Volume 20, Issue 1 GetMobile

[HIGHLIGHTS]

REFERENCES
[1] Dong, M., Lan, T., and Zhong, L. Rethink energy

accounting with cooperative game theory. In Proc.
ACM MobiCom, 2014.

[2] Jain, S., Borgiattino, C., Ren, Y., Gruteser, M.,
Chen, Y., Chiasserini, C. F. LookUp: enabling
pedestrian safety services via shoe sensing. In
Proc. MobiSys, 2015.

[3] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D.,
Choudhury, T., and Campbell, A. T. A survey
of mobile phone sensing. Communications
Magazine, IEEE, 48(9), 140-150.

[4] Lee, Y., Iyengar, S. S., Min, C., Ju, Y., Kang, S.,
Park, T., Lee, J., Rhee, Y., and Song, J. (2012).
Mobicon: a mobile context-monitoring platform.
Communications of the ACM, 55(3), 54-65.

[5] Lee, Y., Min, C., Hwang, C., Lee,J., Hwang, I.,
Ju, Y., Yoo C., Moon, M., Lee, U., and Song, J.
SocioPhone: everyday face-to-face interaction
monitoring platform using multi-phone sensor
fusion. In Proc. ACM MobiSys, 2013.

[6] Min, C., Lee, Y., Yoo, C., Kang, S., Choi, S.,
Park, P., Hwang, I., Ju, Y., Choi, S., and Song, J.
PowerForecsater: Predicting Smartphone Power
Impact of Continuous Sensing Applications at Pre-
installation Time. In Proc. ACM SenSys, 2015.

[7] Min, C., Yoo, C., Hwang, I., Kang, S., Lee, Y.,
Lee, S., Park, P., Lee, C., Choi, S., and Song, J.
Sandra helps you learn: the more you walk, the
more battery your phone drains. In Proc. ACM
UbiComp, 2015.

[8] Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and
Tarkoma, S. Carat: Collaborative energy diagnosis
for mobile devices. In Proc. ACM SenSys, 2013.

[9] Paek, J., Kim, J., and Govindan, R. Energy-
efficient rate-adaptive GPS-based positioning for
smartphones. In Proc. ACM MobiSys, 2010.

[10] Pathak, A., Hu, Y. C., and Zhang, M. Where
is the energy spent inside my app?: fine-grained
energy accounting on smartphones with eprof.
In Proc. ACM EuroSys, 2012.

Also, short use of other applications (5
minutes) makes the net power increase
high due to little sharing effect. Scenario-2
is the opposite. Scenario-4 and Scenario-5
reveal the resource-sharing effect. They
have the same movement duration but
different usage time of other applications,
30 minutes and 1 minute, respectively.
Thus, Scenario-5 shows twice net power
increase. The accuracy results prove the
PowerForecaster’s capability of handling
various physical and phone usage behavior
of users. MyPath shows a similar trend since
it has accelerometer-based triggering, as
Accupedo does. ChatMon exhibits different
trends due to different sensing logic and
related user behavior. In Scenario-1, there
is no Bluetooth encounter occurred, and
thus, audio processing is not triggered,
resulting in the smallest net power increase.
Scenario-3 has the longest encounter time,
60 minutes, thereby performing sound
processing for the entire duration. Thus,
it shows the largest net power increase.
Although it has greater encounter time of 20
minutes compared to Scenario-5, it shows
similar net increase due to resource sharing.

Latency: Figure 3(c) shows the average
errors versus emulation time. The error
quickly decreases within 10 seconds for
MyPath and Accupedo. Within 30 seconds,
the error almost saturates. ChatMon
takes about 60 seconds until saturation.
ChatMon’s longer saturation is attributed
to the small absolute power consumption
of Scenario-1, 29mW, causing high relative
error; Scenario-3 and Scenario-4 of
ChatMon reach 5% error rate in 12 seconds.
The results show that PowerForecaster
achieves the latency of around 20 seconds
by adopting combination of acceleration
techniques. We acknowledge that the
latency needs to be further improved for
commercial adoption of PowerForecaster.

CONCLUSION
We presented PowerForecaster, which
provides instant, personalized power impact
of mobile sensing applications at pre-
installation time. We first uncovered that
individual user behavior is a key to estimate
power impact of mobile sensing applications.
Then, we developed a novel power emulator
using a user’s behavioral traces.

While we demonstrated a proof-of-

concept prototype and its feasibility,
several important issues need to be further
addressed to achieve the ultimate vision
of PowerForecaster. First, we focused on
providing an accurate power estimate of
sensing applications given users’ behavioral
traces of a specific day. However, there could
be daily variations and patterns of user
behaviors. An important future work will be
to model the routines and patterns of user
behaviors that can affect the power estimation
and to provide comprehensive power impact
estimates adjusted for the different patterns.
Second, we need to address a server-side
scalability issue to integrate and deploy the
system in real application markets. According
to our estimation [6], several thousands of
physical servers might be required to handle
the worldwide workload. This would be
reasonably practical considering today’s
commercial cloud services, but the ever-
growing popularity of sensing applications
will also aggravate the scalability issue. To
resolve the problem, we are working on
a novel approach to reducing emulation
workloads. Third, PowerForecaster needs
to incorporate more complex structure of
mobile sensing applications and their diverse
hardware usage patterns. For example, mobile
sensing applications increasingly employ
wearable devices beyond smartphones while
the applications’ operation might require
cloud-side computation. Also, their sensing
logic becomes sophisticated for accurate
and power-efficient user behavior inference.
To this end, we are extending the current
power emulator to handle such an advanced
application architecture. n

Chulhong Min received a PhD in computer
science from KAIST, now working as a postdoc-
toral researcher at KAIST. His research interests
include mobile and pervasive computing
systems, mobile sensing and context monitor-
ing, human computer interaction, and IoT.

Chungkuk Yoo is pursuing a PhD at KAIST.
Within the broad spectrum of mobile
computing, his research interests lie in mobile
systems and applications for in-situ social
interaction in real world.

Junehwa Song received a PhD in computer
science from the University of Maryland at
College Park. He is a professor in the School
of Computing at KAIST. His research interests
include mobile and ubiquitous systems,
ubiquitous services, human computer
interaction, and social and culture computing.

Youngki Lee received a PhD in computer
science from KAIST. He is an assistant professor
at the School of Information Systems of
Singapore Management University. His focus is
on building experimental and creative software
systems; his interest lies in mobile and social
sensing, human behaviour analytics, and IoT
systems.

Seungwoo Kang received a PhD in computer
science from KAIST, and is now an assistant
professor in the School of Computer Science
and Engineering, KOREATECH. His research
interests include mobile and ubiquitous
computing, mobile sensing systems, and IoT.

Inseok Hwang received a PhD in computer
science from KAIST. He is a Research Staff
Member at IBM Research, Austin. His focus
is sensory applications delivering cognitive
computing user experiences in everyday
life, and more broadly, his interests lie in the
intersection of mobile computing and human
computer interaction.

