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Predicting Power  
Impact of Mobile  
Sensing Applications  
at Pre-Installation Time

PowerForecaster: 

Mobile application markets are 
important for users to select 
desirable applications to users’ 

needs; they provide diverse information, 
such as features, screenshots, and user 
comments. However, they still miss a key 
information, power consumption by an 
application. Users recognize whether an 
application is power hungry or not, only 
after they install and use it. They usually 
have no choice but to count on such trial 
and error to decide if the application is 
worth such power consumption. Emerging 
mobile sensing applications [2][3][4], 
however, make such users’ practices of 
“use it a while and see what happens to 
battery” no longer effective. Mobile sensing 

applications continuously drain battery 
in the background without users’ explicit 
awareness. For example, Accupedo, a 
commercial pedometer application, reduces 
the phone’s battery life by hours, causing 
the phone to be shut down early [6].

What if an application market provided 
a sensing application’s estimated power use? 
It will help users make informed decisions 
even prior to installing the applications. 
Users are relieved of exhaustive trial and 
error to install an application, and may be 
less embarrassed with rapid battery drain 
which was already expected.

It is not straightforward to realize such a 
function. While there have been extensive 
efforts to build accurate models for power 

consumption of mobile applications [1][8]
[10], they can provide power information 
only after running the applications and 
observing their power behaviors. A trivial  
way to provide power information prior to 
installing an application is for developers 
to post the average power of the application 
for common-use cases. We notice that 
such average power information is neither 
accurate nor useful for many individual 
users. The main reason is that the sensing 
application’s power consumption largely 
deviates from one user to another, 
depending on each user’s physical activities, 
phone usage, and environmental factors. 
Such differences are amplified when an 
application applies various optimization 
techniques. Our previous study showed 
that users’ mobility patterns affect battery 
drain of commercial sensing applications 
significantly [7]. We also observed that 
active sensing duration of an application 
varies up to three times with 27 people’s 
sensor traces collected over three weeks [6]. 
For example, a location tracking application 
caused nontrivial differences of its daily 
GPS activation time per user, which ranges 
from 0.7 to 2.4 hours (mean: 1.4, stdev: 
0.4). It mainly attributes to the optimization 
technique that activates GPS only when a 
user is moving.

In our earlier paper [6], we introduced 
PowerForecaster, a system to provide an 
instant, personalized power estimation 
of sensing applications at pre-installation 
time. In this article, we give an overview 
of the system and present the key results. 
Figure 1 shows mockup screenshots of 
application markets when PowerForecaster 
is integrated. PowerForecaster provides 
unique user experiences. First, it provides  
users with power estimation before 
installing applications, removing the hassles 
of trying and uninstalling applications one 
after another until users find satisfactory 
power-efficient applications. Second, 
estimation is highly personalized and 
thereby more accurate as an individual user’s 
physical activities and phone usage are major 
input variables upon which predictions are 
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made. Third, the system neither requires 
any changes of the application binaries nor 
additional information from developers.

We devise a personalized user behavior-
aware power emulation approach. The 
key idea is to reproduce individual users’ 
execution environment for a target applica- 
tion to track its power use. The execution 
environment is reproduced by replaying 
pre-collected personal traces of sensor 
and device usages. The approach has three 
advantages: (1) It accounts for major user- 
dependent variables causing large power 
consumption deviations – physical activities 
and phone usage. (2) It estimates power use 
of arbitrary applications exactly as they  
are on the application market; the emulator 
tracks hardware use of the applications 
by running its executable. (3) It considers 
shared hardware use with existing applica- 
tions by reproducing their resource use.

We further optimize PowerForecaster 
to speed up emulation and reduce power 
overhead for trace collection. First, Power- 
Forecaster accelerates emulation by fast-
forwarding replays to capture changes in the  
power states of hardware, while parallelizing 
replays on multiple emulator instances. For  
responsive service, it also progressively updates  
power estimation with interim results. Our 
evaluation shows that PowerForecaster 
emulates 18-hour long traces within 30 
seconds at 6 to 7% power estimation errors. 
Second, it employs a balanced duty-cycling  
policy to minimize data necessary for 
power estimation while keeping its accuracy 

high. We found that, even with 
the data collected at the ratio of 
1/12, the estimation accuracy still 
remains above 90%.

PowerForecaster 
OVERVIEW
PowerForecaster takes a target 
application’s executable as an 
input and estimates its power impact, i.e., net 
power increase by the application as an output. 
Figure 2 shows the architecture overview. 
Prior to power estimation requests, the 
mobile-side collector pre-collects user  
behavior traces. Upon a request, the cloud- 
side power emulator estimates power impact 
of a target application with these traces.

Mobile-side components collect user 
behavior traces in the background. The sensor 
trace collector logs sensor data that captures 
users’ physical activities. The device usage 
trace collector logs hardware component 
usages by existing applications, which are 
potentially sharable with a new sensing 
application. Once collected, the traces are 
reused for various sensing applications.

Cloud-side components run a target 
application and estimate its power use. The 
user behavior-aware power emulator executes 
the application and monitors its hardware 
usage. Simultaneously, it replays the sensor 
and device usage traces to reproduce the 
personalized power-related execution 
environment. As a result, the emulator 
obtains detailed hardware usage statistics 
including which, when, and how long 

hardware components are used. The power 
impact estimator computes the net power 
increase of the application based on the 
cumulative hardware usage statistics  
and a system call-based power model [10].

USER BEHAVIOR-AWARE  
POWER EMULATION
Existing mobile emulators, such as Android 
emulator and iOS simulator, are not feasible 
solutions to emulate the power use of the 
sensing applications. They do not support 
power monitoring during emulation and can-
not reproduce users’ behavioral factors, which 
are essential for personalized power estimation. 

To address the issues, we developed a 
novel user behavior-aware power emulator 
based on Android emulator (Figure 2). 
Overall operation flows are as follows.

Pre-emulation: Upon a request, the power 
emulator prepares necessary inputs for 
emulation. It first obtains sensor and device 
usage traces from the user trace manager as 

FIGURE 1. Power impact at  
pre-installation time.

FIGURE 2. PowerForecaster architecture.
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well as the target application’s executable. 
It then initiates multiple power emulator 
instances in parallel for speedy estimation. 
Each instance installs the executable and 
receives a part of traces from the emulator 
manager. If necessary, it replays pre-
generated user interaction, such as clicking 
a start button to bootstrap the application.

Power-emulation: After the preparation, the 
emulator instance executes the application. 
While the application is running, the sensor 
emulator mimics the sensor operations to 
fulfill the application’s sensing requests. It 
reads sensor traces and feeds sensor data 
at right timing and rate as the application 
demands. It also emulates the hardware states 
of the corresponding sensor devices and 
account for power estimation afterwards. 
To consider the sharing effect, the device 
usage replayer reproduces the existing 
applications’ device use simultaneously 
based on the device usage trace. The 
hardware usage monitor tracks system calls 
made to use hardware components such 
as sensors and CPU. Finally, it generates 
hardware usage statistics.

Post-emulation: With the hardware usage 
statistics, the power impact estimator 
computes the increase in power consumed 
by the target application. For power 
estimation, we adopt a system call-based 
method using power profiles obtained by 
offline profiling. Currently, PowerForecaster 
considers the following hardware 
components: CPU, GPS, inertial sensors, 
microphone, Bluetooth/Wi-Fi scans.

EVALUATION
We present the key results to show the 
power estimation accuracy and latency of 
PowerForecaster. More details can be found 
in our original paper [6]. 

Setup: The current implementation sup-
ports Nexus 5 (Android 4.4.4) and Nexus S 
(Android 4.1.2). PowerForecaster can easily 
incorporate other devices as we modularize 
it to include new power models. For evalua-
tion, we mainly used three sensing applica-
tions including a commercial pedometer 
application, Accupedo1, and the two research 
applications we developed, MyPath, a loca-
tion tracker and ChatMon, a conversation 
monitor, inspired by prior works [5][9]. 
These applications involve diverse hardware 
usage; Accupedo uses accelerometers and 
CPU. MyPath uses accelerometers, GPS,  
and CPU while ChatMon uses Bluetooth,  
a microphone, and CPU.

We performed scenario-based experi-
ments. We crafted five one-hour scenarios 
with four parameters: mobility, encounter, 
indoor/outdoor status, and phone usage. The 
scenarios have different combinations of pa-
rameter values and their time durations, e.g., 
10 minutes of walking alone outdoor while 
using a map application, and then 20 minutes 
of staying indoor with friends. For each 
scenario, we measured the accuracy by using 
four phones (PA, PB, PC, and PD) and three 
Monsoon power monitors as in Figure 3(a). 
PA and PB are used to collect ground truth; 
PA runs a target sensing application with the 

same existing foreground applications while 
PB runs the existing applications only. The 
difference in power consumption between 
the two phones is considered as the ground 
truth. PC is used to collect sensor and device 
usage traces upon which PowerForecaster 
estimates the power impact of a target appli-
cation. For comparison, PD measures power 
while running the target application only; we 
omit the comparative results. It is interesting 
to note that Figure 3(a) clearly depicts the 
challenges in measuring power consumption 
of sensing applications in the real world.

Accuracy: Figure 3(b) shows the power 
measurement with three sensing applications 
for the five scenarios. PowerForecaster 
accurately estimates net power increases 
for the applications and scenarios. The 
error rates are 5.3 to 7.7%, indicating that 
PowerForecaster closely traces the power use 
of the target sensing applications. 

We analyze the characteristics for each 
scenario and application. For Accupedo, 
Scenario-1 shows the largest net power 
increase. The scenario involves the longest 
movement (50 minutes), causing higher 
power use to process accelerometer data. 

FIGURE 3. PowerForecaster evaluation: (a) setup (left), (b) estimation accuracy (upper right), 
and (c) latency (lower right).

1 https://play.google.com/store/apps/details?id=com.corusen.accupedo.te

(a)

(b)

(c)
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Also, short use of other applications (5 
minutes) makes the net power increase 
high due to little sharing effect. Scenario-2 
is the opposite. Scenario-4 and Scenario-5 
reveal the resource-sharing effect. They 
have the same movement duration but 
different usage time of other applications, 
30 minutes and 1 minute, respectively. 
Thus, Scenario-5 shows twice net power 
increase. The accuracy results prove the 
PowerForecaster’s capability of handling 
various physical and phone usage behavior 
of users. MyPath shows a similar trend since 
it has accelerometer-based triggering, as 
Accupedo does. ChatMon exhibits different 
trends due to different sensing logic and 
related user behavior. In Scenario-1, there 
is no Bluetooth encounter occurred, and 
thus, audio processing is not triggered, 
resulting in the smallest net power increase. 
Scenario-3 has the longest encounter time, 
60 minutes, thereby performing sound 
processing for the entire duration. Thus, 
it shows the largest net power increase. 
Although it has greater encounter time of 20 
minutes compared to Scenario-5, it shows 
similar net increase due to resource sharing.

Latency: Figure 3(c) shows the average 
errors versus emulation time. The error 
quickly decreases within 10 seconds for 
MyPath and Accupedo. Within 30 seconds, 
the error almost saturates. ChatMon 
takes about 60 seconds until saturation. 
ChatMon’s longer saturation is attributed 
to the small absolute power consumption 
of Scenario-1, 29mW, causing high relative 
error; Scenario-3 and Scenario-4 of 
ChatMon reach 5% error rate in 12 seconds. 
The results show that PowerForecaster 
achieves the latency of around 20 seconds 
by adopting combination of acceleration 
techniques. We acknowledge that the 
latency needs to be further improved for 
commercial adoption of PowerForecaster. 

CONCLUSION
We presented PowerForecaster, which 
provides instant, personalized power impact 
of mobile sensing applications at pre-
installation time. We first uncovered that 
individual user behavior is a key to estimate 
power impact of mobile sensing applications. 
Then, we developed a novel power emulator 
using a user’s behavioral traces.

While we demonstrated a proof-of-

concept prototype and its feasibility, 
several important issues need to be further 
addressed to achieve the ultimate vision 
of PowerForecaster. First, we focused on 
providing an accurate power estimate of 
sensing applications given users’ behavioral 
traces of a specific day. However, there could 
be daily variations and patterns of user 
behaviors. An important future work will be 
to model the routines and patterns of user 
behaviors that can affect the power estimation 
and to provide comprehensive power impact 
estimates adjusted for the different patterns. 
Second, we need to address a server-side 
scalability issue to integrate and deploy the 
system in real application markets. According 
to our estimation [6], several thousands of 
physical servers might be required to handle 
the worldwide workload. This would be 
reasonably practical considering today’s 
commercial cloud services, but the ever-
growing popularity of sensing applications 
will also aggravate the scalability issue. To 
resolve the problem, we are working on 
a novel approach to reducing emulation 
workloads. Third, PowerForecaster needs 
to incorporate more complex structure of 
mobile sensing applications and their diverse 
hardware usage patterns. For example, mobile 
sensing applications increasingly employ 
wearable devices beyond smartphones while 
the applications’ operation might require 
cloud-side computation. Also, their sensing 
logic becomes sophisticated for accurate 
and power-efficient user behavior inference. 
To this end, we are extending the current 
power emulator to handle such an advanced 
application architecture. n 
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