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Abstract 

Emerging mobile sensing applications are changing the 

characteristics of smartphone workloads. Whereas typical 

mobile applications run alone in the foreground interacting 

with users, sensing applications concurrently run in the 

background, providing unobtrusive monitoring services. 

Such concurrent sensing workloads raise a new challenge 

incurring severe resource contention among themselves and 

with other foreground applications. To address the 

challenge, we develop SymPhoney, a coordinated sensing 

flow execution engine to support concurrent sensing 

applications.  As its key approach, we develop a novel 

sensing-flow-aware coordination. We first introduce the 

new concept of frame externalization i.e., to identify and 

externalize semantic structures embedded in otherwise flat 

sensing data streams. Leveraging the identified frame 

structures, SymPhoney develops frame-based coordination 

and scheduling mechanisms, which effectively coordinates 

the resource use of concurrent contending applications and 

maximize their utilities even under severe resource 

contention. We implemented several sensing applications 

on top of the SymPhoney engine and performed extensive 

experiments, showing effective coordination capability of 

SymPhoney. 

Categories and Subject Descriptors 

C.3 [Special-Purpose and Application-based Systems]: 

Real-time and embedded systems 

Keywords 

Concurrency, Coordination, Scheduling, Resource, Sensing 

flow, Allocation, Mobile Sensing, Dataflow, Smartphone 

1. Introduction 
Emerging continuous mobile sensing applications 

[1][2][3] will significantly change workload patterns 

imposed on smartphones. Going beyond the confines of 

typical user-interactive mobile applications such as web 

browsers and games, they continuously run in the 

background and provide autonomous, situation-aware 

services without a user’s intervention. This user-

unobtrusive nature enables a smartphone to serve multiple 

sensing applications at the same time in spite of its small 

display and user mobility. As diverse, useful sensing 

applications are emerging, a smartphone will concurrently 

serve more of them, accompanying a conventional 

foreground application. 

Such concurrent workloads will raise an unprecedented 

challenge, incurring severe resource contention on 

resource-scarce smartphones. The contention is aggravated 

due to the continuous and heavy CPU consumption of 

individual sensing applications to process high-rate sensor 

data; in our study, example applications consume 4%~22% 

of CPU cycles to run multi-step operations of sensing, 

feature extraction and classification (See Section 2.2). More 

important, such sensing and processing workloads should 

be handled near real-time to provide timely services. Even 

worse, the total resource availability might be limited 

further, deteriorating the contention; users won’t exhaust 

the whole CPU cycles and battery only for background 

applications. Under such contentious situation, greedy 

resource use by an application may result in serious 

degradation of service qualities of the other applications, 

e.g., dragged interval, abrupt delays, and inaccurate context 

results. It could also degrade the performance of other daily 

use of smartphones, for instance, increasing loading time of 

web documents.  

To address the challenge, we develop SymPhoney, a 

novel sensing flow execution engine for concurrent mobile 

sensing applications. It coordinates contentious concurrent 

workloads on the whole, and effectively resolves potential 

imbalances in the service qualities of applications. 

Developers easily build sensing applications without 

concerning severe resource contention and the dynamics 

caused by concurrent applications. Then, the engine 

coordinates the resource use of contending applications 

while maximizing their utilities under given resource 

conditions. Moreover, it dynamically adapts to the 

fluctuating resource availability from foreground 

applications, and minimizes the performance degradation of 

the interactive applications. 

A simple approach to handle concurrent workloads is to 

make each sensing application as a process or a thread, 

delegating the coordination job to the mobile OS. This 

could significantly compromise efficiency and fairness and 

incur unexpected starvation or delays. Since the OS deals 

with the processes without application-level information, it 
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is hard to identify and allocate right amount of resources for 

the applications. An alternative is that each application 

adapts their resource use to counter contentious resource 

situations [17]. However, proper adaptation is difficult in an 

application level, as applications have limited view on the 

other applications’ resource use, and hardly negotiate with 

the others. Moreover, it would be a burden for developers 

to implement effective adaptation methods to prepare for 

diverse resource situations. 

We develop the flow-aware coordination approach, 

which enables a system to exploit the internal structure and 

resource use patterns of sensing applications for effective 

resource coordination. We first introduce the novel concept 

of frame externalization, i.e., to identify and externalize 

semantic structures embedded in otherwise flat sensing data 

streams (See Figure 10); thus extracted knowledge on 

framing structure provides valuable hints to address various 

challenges of complex system design for sensing 

applications. For flow coordination, we specifically focus 

on two common types of frames, namely, context-frame (c-

frame), a sequence of sensing data to produce a context 

result and feature-frame (f-frame), a sequence to execute 

the first-staged feature extraction operations; based on the 

frames, we design the new methods of c-frame-based flow 

coordination and f-frame-based flow execution. 

The c-frame-based flow coordination leverages the c-

frame as the basic unit of resource allocation and flow 

coordination. The use of each tiny portion of the allocated 

resources effectively contributes to the delivery of 

semantically meaningful results, and in turn, influences the 

quality of service as perceived by a user. As such, it enables 

a system to best coordinate the concurrent flows contending 

for limited system resources, maximizing the application 

utilities. The f-frame-based flow execution pipelines the 

complicated steps of sensing and processing in the unit of 

the f-frame, considerably reducing potentially lengthy delay 

and enhancing the schedulability of concurrent applications. 

SymPhoney is a mobile sensing engine, clearly 

distinguishing itself from recently proposed mobile sensing 

systems [4][5][6][7][25]. The most important feature is the 

coordination among concurrent sensing applications and 

with typical smartphone applications. Jigsaw [5] and Kobe 

[7] provide optimization and adaptation techniques in the 

viewpoint of a single sensing application. SeeMon [4] and 

Orchestrator [6] deal with concurrent sensing applications 

and provide useful solutions. SeeMon aims at achieving 

processing and energy efficiency for multiple applications, 

while SymPhoney coordinates their resource usage. 

Orchestrator also supports the coordination among 

concurrent applications. SymPhoney delves into the 

resource coordination on a smartphone. 

The contribution of this paper is summarized as follows. 

First, we propose SymPhoney, a sensing flow execution 

engine for emerging mobile sensing workloads, featuring 

the coordination of concurrent applications. Second, we 

introduce the concept of frame externalization and based on 

the concept, we devise effective c-frame-based flow 

coordination and f-frame-based flow execution mechanisms. 

Third, we support sensing flow design process based on a 

dataflow programming model, and implement several 

interesting sensing applications, ChildMon, IndoorNavi, 

and CalorieMon, inspired by recent works [1][2][3]. Finally, 

we report extensive experimental results on the 

coordination capability of the engine using the applications.  

 The rest of this paper is organized as follows. In Section 

2, we present three example applications and motivating 

experiments. Section 3 shows the programming abstraction 

of SymPhoney and Section 4 explains our key approach. In 

Section 5, we describe the system design and the 

coordination mechanisms in detail. Then, we present our 

implementation in Section 6 and Section 7 shows 

experimental results. We introduce related work in Section 

8 and finally conclude the paper in Section 9. 

2. Mobile Sensing Workloads 

2.1 Example Applications 
We implement three sensing applications on SymPhoney 

to motivate and evaluate its effectiveness: (1) ChildMon, 
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(2) IndoorNavi, and (3) CalorieMon. The core logics of 

sensing applications include a flow of operations such as 

sensing, feature extraction, and classification to monitor 

and recognize contexts of interest, e.g., user activity, place, 

and ambience. We call such a flow of operations as a 

sensing flow. The sensing flows of the example applications 

are presented in Figure 1. 

ChildMon allows working parents to be aware of real-

time activities of their kindergarten child during classes and 

fieldtrips. It is inspired by our previous works to support 

kindergarten education with sensing technology [14][15]. It 

monitors children’s activities like talking and playing using 

a backpack-attached phone, and notifies their parents of the 

distinguished activities. For the activity detection, we adopt 

and modify the logic of SoundSense [1]. Figure 1 (a) shows 

the sensing flow of the application.  

IndoorNavi helps a mobile user to navigate large-scale 

building complexes. For the navigation, the application 

continuously localizes itself in the level of an office or a 

room. The sensing flow for the indoor localization is 

inspired by BatPhone [2] and specified in Figure 1 (b). 

CalorieMon monitors a user’s physical activities during 

daily exercise and estimates real-time caloric expenditure of 

the user. Its sensing flow is shown in Figure 1 (c), which is 

adopted from [3]. This application utilizes five bi-axis 

accelerometers placed in different body limbs. 

2.2 Limitations of Current Mobile OS 
Current mobile OSs such as Android and iOS hardly 

handle resource contentions by concurrent sensing 

applications, which motivates us to design a new engine. To 

show the limitation of current OSs, we conduct several 

experiments on Android Nexus One phones.  

Experimental settings: we execute the three sensing 

applications; each runs as an Android background service. 

In addition, for foreground workloads, we use two common 

applications, a Web browser and a video player [10]. The 

Web browser represents user-interactive applications that 

generate intermittent and dynamic workload. We implement 

a simple benchmark that loads a desktop version of 

Amazon.com page every 20 seconds. The video player 

represents the applications that consistently impose heavy 

workloads. We play a 720p video file encoded in Xvid.  

Results and observations: we first investigate the CPU 

utilization of the applications over time. Figure 2 shows the 

results. IndoorNavi alone consumes over 20% of CPU 

cycles to continuously execute heavy localization logics 

over high-rate sensing data of 44.1 kHz. Such continuous 

and significant CPU use could incur severe resource 

contention among applications. An interesting observation 

is that all the applications show periodic patterns in their 

CPU use. This is because sensing applications usually 

repeat a series of operations over a sequence of sensing data 

to extract a user context. In the perspective of background 

operations, we can find a similarity with Android 

background services such as netd and vold which handle 

occasional I/O events and interrupts. However, they utilize 

CPU less than 1%. 

To identify the resource contention with foreground 

mobile workloads, we measure the CPU utilizations when 

the sensing applications run together with the video player. 

As shown in Figure 3, due to the consistent CPU use of the 

video player, the sensing applications are allocated under 

10% of CPU resource. This is much less than their resource 

demand, i.e., about 35% of CPU resource in total. For 

better understanding, we also measure the total number of 

unprocessed sensor data over time. As shown in Figure 4, 

the resource shortage makes the applications pile up the 

streaming sensor data, which finally results in memory 

overflow and potentially terminates the applications. 

Figure 5 shows the results when the sensing applications 

run together with the Web browser. In this case, the CPU 

utilization of the sensing applications dynamically changes 

according to the behavior of the browser. More specifically, 

the allocated CPU resource is significantly reduced while 

the browser is loading web pages. Such reduction degrades 

the performance of the sensing applications, especially in 

terms of the delay to produce context results. In worst case, 

the result delivery is delayed by about 7 seconds. The 

sacrifice of the sensing applications occurs because today’s 

mobile OSs assign a much higher priority to an activated 

foreground application compared to other background ones.  

A naïve solution might simply increase the priority of the 

sensing applications. Figure 7 shows the results when their 
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priority is set to the same priority with the Web browser. 

The sensing applications are allocated with more sufficient 

CPU resource and work stably. However, the Web browser 

slows down and the average time to load pages increases 

from 4.7 to 6.7 seconds.  

To examine the resource distribution within the sensing 

applications, we measure the number of unprocessed data in 

each sensing application, in the same setting as in Figure 5. 

As shown in Figure 6, the unprocessed data in IndoorNavi 

increases more rapidly than others under contention. This is 

because it requires more CPU resource than the others 

while Android equally distributes the CPU resource to the 

applications under contentious situations. Such simple 

distribution regardless of the differences in resource 

demand could result in significant imbalance of service 

quality among applications. Moreover, a user often has her 

own preference for different sensing applications and their 

resource use. For instance, even under resource contention, 

parents would not want to compromise the quality of 

ChildMon, whereas teenagers at a commercial complex 

need higher responsiveness of IndoorNavi. Current OSs do 

not consider such diverse preferences and different resource 

demands of mobile sensing applications, yet. 

3. Programming Sensing Flows 
Without programming supports from a system like 

SymPhoney, it involves multi-lateral challenges to develop 

practical mobile sensing applications from scratch [7]. A 

primitive challenge is to design sensing flows that capture 

the contexts of interest precisely. For example, a ChildMon 

developer should carefully select a meaningful feature set 

among plenty of sound-extracted features, and an effective 

classification algorithm. The developer further requires 

significant time and efforts, going through learning and 

testing iteratively, to find optimal parameters. More 

challenging, such designed sensing flows should be crafted 

further, considering scarce resources of smartphones. 

Developers need to estimate reasonable range of resource 

availability in advance, and undergo serious optimization 

process. Also, they may need to adopt complicated 

adaptation mechanism to prepare for dynamic changes in 

resource availability.  

SymPhoney supports both the design and the 

optimization process of sensing flows in such complex 

programming process. Many different models can be 

adopted for the flow design stage. The mechanisms and 

approaches for sensing flow coordination proposed in this 

paper are generally applied to many models. Currently, it 

provides a dataflow programming model in an XML 

interface. It helps developers flexibly compose customized 

sensing flows and hence, enables rapid prototyping of 

complex sensing flows, significantly reducing the time and 

effort for design iteration. The dataflow model is well-

suited to represent sensing flows, usually composed of a 

series of pipelined computations over sensing data. 

SymPhoney provides a set of widely-used operators so that 

developers can readily use them. Table 1 lists some 

operators provided. 

More importantly, SymPhoney takes charge of resource-

aware operation of specified sensing flows on behalf of 

developers. Developers just need to register application-

level requirements like a desired monitoring interval and a 

tolerable delay. SymPhoney then automatically adapts the 

execution of the flows to the runtime resource availability 

and concurrent applications’ resource use while meeting 

their execution requirements. Furthermore, it efficiently 

executes the flows with minimal execution overhead.  

Specifically, developers implement their applications by 

using the following API. 

registerMonitoringRequest (flow, requirements) 

In the parameter, the flow represents a sensing flow such 

as a dataflow graph used for monitoring (See the examples 

in Figure 1). A graph is specified as an XML document, as 

shown in Figure 8. It consists of operators and edges 

connecting the operators. Each operator in the graph 

represents a unit of computation or I/O. The edges of the 

Table 1. Example operators provided by SymPhoney 

Operator types SymPhoney built-in operators

Sensing operators Sound, Accel., Gyro., GPS, …

Feature extractors FFT, MFCC, RMS, Correlation, 

Energy, Average, Entropy, …

Classifiers GMM, HMM, kNN, Decision tree, …
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graph represent data dependencies between operators. An 

edge includes the information about how many outputs of 

the previous operator is required as an input of the next 

operator.  

As for the requirements parameter, SymPhoney 

supports the monitoring interval and delay. 

Monitoring interval represents how often the 

application needs to monitor the user’s situation. For 

example, CalorieMon may require capturing the user’s 

physical activity every several seconds to compute the total 

calorie expenditure of a day. Typically, the shorter the 

interval is, the higher the utility of the application is. 

Applications specify the preferred monitoring interval tied 

with utility values for each interval, which is expressed as a 

utility function. Figure 9 shows an example utility function 

for CalorieMon. SymPhoney attempts to maximize the 

utility under changing resource conditions. 

Monitoring delay is specified in terms of a maximum 

tolerable delay of the application, where the delay means 

the time to deliver final context results to the application 

from the moment of sensing. The freshness of the results is 

important for some applications to provide timely and 

responsive services. For example, CalorieMon requires less 

than two seconds of delay to provide a runner with real-

time calorie expenditure. The engine aims to meet the delay 

requirement of the applications as much as possible. 

Another important requirement is the accuracy of 

monitoring results. We suppose that it is developers’ role to 

design a sophisticated sensing flow that can meet a desired 

accuracy requirement. SymPhoney prevents the accuracy 

from being undesirably compromised at runtime due to the 

abrupt drop of sensing data or temporary fluctuation in 

sensing frequency. 

4. Flow-aware Coordination of Sensing 

Applications 
SymPhoney plays a key role to coordinate the resource 

use of mobile sensing applications: (1) among themselves, 

and (2) with other foreground applications. A main goal of 

the coordination is to maximize the utility of sensing 

applications even under high CPU contention, and prevent 

skewed resource use either by sensing or other foreground 

applications. For effective resource coordination of sensing 

applications, we develop the new flow-aware coordination 

approach. A core of the approach is structuring continuous 

sensing streams into meaningful units by looking into 

regular processing structure of the sensing applications. 

4.1 Frame Externalization of Sensing Data 

Streams  
A sensing data steam is generated as a flat sequence of 

data. However, taken by an application, it is interpreted 

with a tailored structure. That is, data samples at different 

positions may give distinct meanings to, and hence, 

differently used by the application. For example, three 

consecutive samples may belong to separate semantic units, 

one used to generate a result and the following two used for 

the next result. Thus, a flat sensing stream can be 

considered to have a virtual structure, given by an 

application.  

While the structure of a sensing stream is implicit within 

an application, identifying and externalizing the structure 

provide good potential for system design. Knowledge on 

the structure gives useful hints in executing an application 

and planning its resource use, especially when a system 

should deal with multiple concurrent applications under 

contentious situations. 

Consider an application A takes a sensing stream S as 

input. The virtual structure of S can be extracted by 

inspecting the flow of A. We call the process of 

externalizing the virtual structure of S with respect to A as 

framing or frame externalization of S with A. Then, we call 

the resulting structural entity of S as a frame. A stream is 

framed differently by different applications. Also, one can 

be framed differently even for the same application. Figure 

10 shows that a sound stream of 8 kHz is framed by the 

ChildMon application in three layers. In the first layer, a 

sequence of 512 consecutive samples is framed for feature 

extraction, and in the second, 20 of such frames are 

combined for classification. Lastly, in the third layer, three 

of the second-layer frames are aggregated for post-

processing, constructing a frame of 512×20×3 which is the 

unit to generate a final recognition result. The issues of 

structuring sensing data streams are distinct from those in 

well-structured media stream processing. In the latter, input 

streams such as structured video and audio have explicit 

and usually standardized frame structures while in the 

former, those should be identified and externalized with 

respect to individual applications. 

Focusing on the purpose of coordination and execution 

of contending sensing applications, we identify two 

structural layers, i.e., feature extraction and result 

generation layers (See Figure 10) that are common to many 

sensing applications. We then utilize the two corresponding 

frames: (1) context-frame (c-frame), a sequence of sensing 

data to produce a context result and (2) feature-frame (f-

<Operator ID=“0” Type=“SensingSound” Parameter=“8000”><..
<Operator ID=“1” Type=“RMS” Parameter=“”></Operator>
<Operator ID=“2” Type=“FFT” Parameter=“512”></Operator>
…
<Edge From=“0” To=“1”  WinSize=“512”></Edge>
<Edge From=“0” To=“2” WinSize=“512”></Edge>
…

 
Figure 8. Example XML specification of ChildMon 
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Figure 9. Example utility function of CalorieMon 
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frame), a subsequence of a c-frame to execute the first-

staged feature extraction operations. Based on such 

structuring, we develop mechanisms for flow coordination 

and execution. 

Framing sensing data streams requires understanding on 

the internal processing structures of applications. Diverse 

analysis methods can be designed to inspect different 

representations of applications. For a dataflow or a directed 

graph, the c-frame and f-frame are identified by a quick 

depth-first traversal of its graph from the initial sensing 

operators through the subsequent processing operators. The 

concept of externalizing the frame structure of a sensing 

data stream can be generally applied to handle various 

system design issues other than efficient flow execution and 

coordination.  

4.2 Frame-based Coordination and Execution  
c-frame-based flow coordination: the approach first 

takes a c-frame as the basic unit of data processing and 

resource allocation. This is based on the observation that 

collecting a c-frame and performing subsequent operations 

can hardly be ceased in the middle, in order to generate an 

accurate and timely context result. On the other hand, it is 

often tolerable to temporarily pause the whole operations 

once a c-frame is completely processed. Accordingly, the 

approach first regards ‘collecting and processing a c-frame’ 

as a unit of resource allocation. Each c-frame is allocated 

with the right and deserved amount of resources to collect 

and process it. Then, a flow is coordinated by assigning a c-

frame interval, i.e., the interval between successive c-

frames, in a way to guarantee the processing of the c-frame 

in each interval with the given resource availability. Figure 

11 shows an example. Moreover, for multiple concurrent 

flows, the coordination is performed to assign different c-

frame intervals for the different flows and to maximize the 

total utility of corresponding applications under the given 

resource availability. Figure 12 shows an example with two 

concurrent applications. In this way, the approach enables a 

system to best utilize its resources and maximize 

application utilities under a contentious situation.  

The c-frame-based coordination is advantageous in 

several ways. First of all, the allocation made in the unit of 

a c-frame is directly mapped to the provision of a result 

meaningful to an application. For sensing applications, the 

service quality perceived by a user is generally affected by 

the frequency of result delivery. Thus, the direct mapping 

between a result and resource usage allows a system to 

easily reflect the requirements from the application under 

dynamic resource situations. Second, the approach allows a 

system to efficiently utilize its resources without wastage. 

As it allocates the deserved amount for each c-frame, all of 

the allocated resources contribute to the provision of results 

and accordingly to the service quality; by ensuring the 

deserved amount, it provides applications with timely 

results, and does not compromise the accuracy of results 

even under contentious situations. As shown in Figure 11, it 

also gives chances to save resources by deactivating 

unnecessary sensing and corresponding processing during 

the intervening periods between assigned c-frames.  

As an alternative to adjust the resource use of sensing 

applications, we can apply down-sampling of sensing data. 

As shown in Figure 13 (b), simply reducing the sampling 

rate of sensors, however, could result in inaccurate 

processing results since a sensing flow is typically designed 

and optimized for a certain sampling rate [7]. Even if the 

flow can be re-configured for different sampling rates, a 

reduced rate could severely compromise the accuracy of the 

resulting contexts [17]. Our approach can be considered as 

a kind of sensor duty-cycling method, frame-aware duty 

cycling (Figure 13 (d)), crafted for concurrent mobile 

sensing applications. It is differently designed from those 

used in typical traditional sensor networks [24], where a 

single application runs alone and manages sensing data as a 

…
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Figure 10. Framing a sound stream into c-frames and f-
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flat sequence without externalizing its frame structure 

(Figure 13 (c)). We argue that the frame structures of the 

subsequent flows serve as critical information to duty-cycle 

a sensor, turning off the sensor without compromising data 

integrity to create a context result. Especially, identifying 

the frame structure is important to coordinate the sensor use 

of concurrent applications in a system level.  

f-frame-based flow execution: SymPhoney further 

adopts the f-frame-based execution of a flow. The idea is to 

leverage the characteristics of the workloads one step 

further, looking into the internal structure of a c-frame; a c-

frame can be decomposed to a sequence of f-frames, 

feature-frames. With the f-frame-based execution, the 

actual execution of a flow is made in the unit of an f-frame 

while the allocation is made for each c-frame.  

The f-frame-based execution provides the engine with 

the flexibility in the scheduling of the flow execution. For 

some applications, the size of a single c-frame would be 

large (e.g., about 4MB with IndoorNavi), requiring 

significant time for processing (about 1sec). In such a case, 

processing the whole c-frame in a single step after its 

collection may cause sudden CPU usage peaks and induce 

quite a long delay. SymPhoney makes it possible to reduce 

delays in processing and delivering a context result through 

a pipelined processing of a c-frame in the unit of the f-

frame before the whole c-frame is ready. Also, processing 

in the unit of smaller-size f-frames enables the engine to 

flexibly schedule concurrent applications in order to meet 

their delay requirements under contentious situation.  

Structuring sensing data streams into c-frames and f-

frames also helps design the structure of the engine for the 

efficient execution of sensing flows. Naïve handling and 

processing high-rate data samples may incur considerable 

overhead to a system, such as frequent operator scheduling 

and data management. To reduce the overhead, SymPhoney 

further develops an efficient flow execution method 

exploiting the structural characteristics of the sensing data 

streams (See Section 5.2). 

4.3 Coordination between Sensing and 

Foreground Applications  
Running on a mobile OS, SymPhoney takes charge of 

the resource management for all sensing applications 

instead of the OS. It directly coordinates and controls the 

sensing applications’ resource use. However, SymPhoney 

alone is not able to coordinate between the foreground and 

sensing applications. If most of the CPU time is allocated to 

a foreground application, the whole SymPhoney engine 

could starve. SymPhoney collaborates with the mobile OS 

to avoid such situations.  

For example, when running on the Android platform, the 

OS allocates and guarantees the minimum CPU quotas for 

both foreground applications and the SymPhoney engine, 

e.g., 20% of total CPU cycle for the engine. While the OS 

guarantees the minimum quota, the actual CPU use of the 

foreground applications will change over time. SymPhoney 

identifies the amount of available CPU and dynamically re-

coordinates the multiple sensing applications to maximize 

the application utilities under continuous CPU changes. In 

addition, it enforces an energy constraint, e.g., 5% of 

battery per hour, to prevent quick battery drain caused by 

continuous sensing and processing. CPU and energy quota 

can be specified according to users’ preferences.  

5. SymPhoney Design  

5.1 Architecture Overview 
We design the SymPhoney architecture as shown in 

Figure 14. The engine serves as a middleware between 

sensing applications and OSs. Developers specify sensing 
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application flows with their QoS requirements on execution 

intervals and delay requirements. The flow analyzer 

inspects the flows and identifies their frame structures. 

Based on the frame structures, the flow execution planner 

determines their c-frame intervals under changing resource 

conditions and accordingly allocates resources to the 

concurrent flows. Then, the flow executor executes each 

flow in the unit of an f-frame according to its c-frame 

interval and delivers the results to the applications. During 

the execution, the flow scheduler determines the order of 

execution of the f-frames, in a way to meet the applications’ 

delay requirements. The resource monitor continuously 

monitors the changing resource availability and demands at 

runtime. The flow planner and the flow scheduler 

dynamically adapt the intervals and the scheduling orders.  

5.2 Flow Execution 
In this section, we present how each flow is executed by 

the flow executor, enforcing the given execution intervals 

and scheduling orders. For the ease of understanding, we 

present the flow execution before we describe the flow 

execution planning and the flow scheduling in Section 5.3 

and 5.4. Figure 15 illustrates the design of the flow executor. 

The flow executor consists of two major components, 

the sensing handler and processing handler. The sensing 

handler manages the sensing operators of the registered 

flows, each of which runs in a separate thread. A sensing 

operator takes a key role in enforcing the framing of an 

input sensing stream. Specifically, it repeatedly reads a c-

frame from the stream at the given interval. Throttling the 

data early at the foremost operator enables to eliminate 

unnecessary sensing as well as processing in the other 

operators upstream. It reads the c-frame in the unit of an f-

frame and passes each to the f-frame queue. This reduces 

the communication overhead between operators, compared 

to the case of delivering individual samples. For energy 

efficiency, the operator deactivates the corresponding 

sensor module for the periods between consecutive c-

frames.  

The processing handler takes charge of the execution of 

the subsequent processing operators. When the flow 

scheduler picks an f-frame of a flow, the processing handler 

takes it from the flow’s f-frame queue and processes it. It 

executes the operators by using a highly-optimized 

execution container, called DataBank [11]. The container 

significantly reduces the execution overhead of sensing 

flows through structured execution and shared data 

management. 

The decoupling of the sensing operators from the 

processing operators facilitates the engine to support 

sharing of sensing sources by multiple sensing flows. The 

flow executor allocates a sensing operator for each physical 

sensor and the operator mediates the concurrent sensing 

requests on the sensor from multiple flows. If the flows 

require different sampling rates and different sizes of 

frames, it collects the data at the highest rate, re-samples 

and re-packages them according to each flow’s respective 

requirements.  

5.3 Flow Execution Planning 
The flow execution planner realizes the c-frame-based 

flow coordination for the use of the CPU and battery, which 

are the major resources competed by concurrent sensing 

applications. As described in Section 4.2, it allocates the 

resources to concurrent sensing flows while keeping their 

CPU and battery use under the availability and maximizing 

the application utilities. It adapts the c-frame intervals upon 

changes in system resource status.  

For clear understanding, we first define the coordination 

problem as follows. Given concurrent sensing flows, 

{flowi}, the problem is to determine their c-frame execution 

intervals, {pi}, with the following objective function and 

constraints. 
Objective.            maximize ∑ ui(pi) 

Constraints. ∑ cti / pi  ≤ 1 - CPUf     -- (C1) 

 ∑ eci / pi ≤ Elimit            -- (C2) 
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In the formula, ui(pi) is a utility function of flowi that 

takes an interval, pi, as its input, and returns the 

corresponding utility value. The first constraint checks if 

the total CPU use by all flows does not exceed the current 

CPU availability. The CPU availability is specified as 1-

CPUf, where CPUf is the CPU portion taken by foreground 

applications. In the left side, cti represents the CPU time 

required to process a c-frame of flowi and thus cti / pi means 

the CPU utilization of flowi when it is executed at the 

interval of pi. Similarly, the second constraint stipulates the 

energy consumption rate of all flows, ∑ eci / pi, within the 

maximum allowance of consumption rate, Elimit. 

Note that SymPhoney can flexibly incorporate diverse 

coordination policies according to user preferences. For 

example, to differentiate the applications with distinct 

importance, the objective can be set with weights on the 

utilities. Similarly, to reflect fairness of applications, the 

objective can be set to maximize the minimum of the 

application utilities.  

5.3.1 Resource Monitoring and Profiling 
A practical challenge to perform the c-frame-based flow 

coordination lies in monitoring and measuring resource 

availability and demands to evaluate the CPU and energy 

constraints. First, it should be performed at runtime in a 

light-weight way to continuously reflect the changes in CPU 

and energy availability, influenced by foreground 

applications. Second, the system should be able to capture 

resource demands of diverse, customized sensing flows, 

when running at different execution intervals. In this section, 

we present our method to monitor the availability and 

demand of CPU and energy.  

CPU Monitoring. Monitoring the CPU time to execute 

c-frames in the OS level ensures accurate measurements, 

but, in practice, incurs much overhead due to preemptive 

scheduling; it requires keeping track of the allocation of the 

CPU in every time slice. To address the challenge, we use a 

light-weight method and infer it from the elapsed time for 

the c-frame execution, i.e., the time between the start and 

end of the c-frame execution. Under contention, the elapsed 

time is longer than the CPU time for the execution since it 

includes the time taken by the other applications in the 

middle. We compensate the excess under the assumption 

that foreground applications use the CPU cycles uniformly 

over time at a constant rate.  

For each coordination decision, {pi} should be chosen 

while meeting ∑ cti / pi ≤ 1 - CPUf. Let’s denote the elapsed 

time for the c-frame execution of flowi as eti. Applying the 

above idea, cti can be approximated as eti × (1 – CPUf); in 

eti, the time taken by other applications would be eti × CPUf. 

Hence, the condition (C1) can be simplified as follows:  

∑ eti × (1 – CPUf) / pi ≤ 1 – CPUf     

                      ∑ eti / pi ≤ 1 

Leveraging the final derived inequality, SymPhoney can 

perform coordination by measuring {eti} without 

monitoring {cti} or CPUf. To avoid over-utilization caused 

by the approximation error, the right side of the inequality 

needs to be set to less than 1. In the current implementation, 

we set the value to 0.8 after iterative experiments. 

Energy Profiling. It is difficult to measure eci at runtime, 

since off-the-shelf smartphones provide battery monitoring 

functionality only in a process-level and a coarse-grained 

way. Instead, we use an offline profiling method to 

calculate eci, adopted from our previous work [6][18]. It 

pre-builds energy profiles for sensors, CPU, and network 

interfaces on smartphones, which are major hardware 

components used by sensing applications; the network 

interfaces are used to communicate with external sensor 

devices. Then, it estimates eci based on the profiles by 

adding the energy consumed to perform the operations to 

collect and process a c-frame of flowi. For instance, the 

energy consumption of IndoorNavi is calculated by 

correlating the profile for a microphone sensor with 44.1 

kHz, and that for CPU with 21%. Such modeling-based 

energy estimation is well adopted for mobile devices [19]. 

5.3.2 Coordination and Adaptation 
SymPhoney finds the execution intervals of flows, {pi}, 

as defined by the above coordination problem. In many 

cases, the utility functions specified in the objective 

function are represented as decreasing linear or concave 

utility functions of intervals. In such cases, the coordination 

problem becomes a well-known concave maximization 

problem. SymPhoney solves the problem by using the 

Newton’s method [20], which finds better approximation 

values successively. We could further adopt or design other 

algorithms for different optimization goals. Note that such 

optimization algorithms are not the main focus of this paper. 

In addition, SymPhoney continuously adapts {pi} to 

changing resource availability mainly due to foreground 

applications. It is important since any optimal {pi} derived 

at a moment would cause severe under/over utilization of 

resources upon the changes. Specifically, Symphony 

triggers adaptation when the actual gap between the 

availability and demands goes above certain threshold. 

Internally, it is evaluated by monitoring eti and checking if 

 eti / pi exceeds or falls below certain threshold values. To 

avoid frequent adaptation, we set the upper and lower 

threshold to 0.8 and 0.6 in the current implementation, 

respectively. Once triggered, SymPhoney re-executes the 

Newton’s method to find a new solution, {pi}. 

5.4 Flow Scheduling 
Even though the planner coordinates concurrent flows’ 

CPU use in a long term, the CPU allocation for a flow 

might be delayed in a short term by temporarily yielding up 

CPU cycles to others. Naïve ordering in the short-term CPU 

allocation might compromise freshness of the results for 

some sensing flows, to which the fresh result is essential. 
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Note that, in smartphone environments, it is a newly arising 

problem to schedule the execution order of concurrent, 

time-sensitive workloads.  

To address the challenge, the flow scheduler carefully 

determines the execution order of the f-frames piled up in 

the queues, with the following objective function: 

maximize  satisfy(ci),  {ci}, 

where, ci denotes a context result for flowi generated by 

processing the f-frames in the queues, and satisfy(ci) is a 

binary function to evaluate if ci is generated within a 

tolerable delay; satisfy(ci) is 1 if the delay of ci is less than 

its tolerable delay and 0, otherwise. The delay is defined as 

the time taken to generate the context result from the 

moment that the final f-frame in a c-frame is ready. 

To solve the problem, we adopt the least slack time 

(LST) scheduling algorithm [22], which is widely used for 

task scheduling in time-sensitive, real-time systems. It 

calculates the slack times for all queued f-frames and 

dispatches the f-frame with the least slack time, one at a 

time; meanwhile, when a new f-frame is queued, its slack 

time is calculated and reflected in the next scheduling turn.  

A key to apply the LST algorithm for f-frame scheduling 

is to compute the slack time of an f-frame. It is notable that 

our slack time calculation reflects the position of an f-frame 

in relation to the whole c-frame and effectively 

approximates the actual remaining time to the deadline. 

Suppose that f-framei,j is the j
th

 f-frame of c-framei that is 

currently processed for flowi. The slack time of f-framei,j 

can be calculated by subtracting the processing time of 

remaining f-frames in c-framei from its delivery deadline. 

For clear understanding, we represent the slack time of f-

framei,j in Figure 16 and formulate it as follows: 

slack_time(f-framei,j) = di + ri,j – epti,j, 

where di is the tolerable delay of flowi, ri,j is the remaining 

time to collect the whole c-frame with upcoming f-frames, 

and epti,j is the expected time to process the unprocessed f-

frames in c-framei., i.e., from f-framei,j to the final f-frame.  

Now, the deadline can be simply calculated as di + ri,j by 

its definition, and the slack time can be acquired by 

subtracting epti,j from the deadline, di + ri,j. SymPhoney 

computes ri,j based on the position of f-framei,j in the c-

framei, the number of data in the f-frame, and the sampling 

rate. For epti,j, SymPhoney continuously profiles processing 

times of f-frames. It estimates epti,j from the profiling 

results for the f-frames of the previous c-frame. 

6. Implementation 
We have implemented the prototype of SymPhoney 

engine on the top of Android phones using Android SDK 

2.3. The implementation is in Java and about 12,000 lines 

of code. The engine runs as a service on the Android 

platform. Mobile sensing applications specify their 

monitoring requests via pre-defined Android service 

interfaces provided by the engine. The engine delivers 

processing results by using intents which are provided by 

Android for inter-process communication.  

On top of the engine, we have easily implemented three 

example applications described in Section 2. The engine 

incorporates more than 50 types of operators commonly 

used in mobile sensing applications. The core sensing flows 

of the applications are concisely specified in the XML 

format by composing the built-in operators; the sensing 

flows for IndoorNavi, ChildMon, and CalorieMon are only 

20, 99, and 190 lines, respectively. 

We have modified Android to guarantee the minimum 

CPU quota for the SymPhoney engine. The functionality is 

implemented on the current CPU scheduler in Android, 

namely Completely Fair Scheduler (CFS) [16], without any 

kernel modification. The CFS provides the functionality to 

divide CPU usage into given portions for multiple process 

groups. Through /proc interface, we designate the engine as 

a separate group, and allocate the minimum CPU quota as a 

user specifies. 

7. Experiments 
We performed extensive experiments with the prototype 

system in the following three aspects. First, we look into the 

effectiveness of our sensing-flow-aware coordination 

mechanisms: c-frame-based flow coordination and f-frame 

scheduling. Then, we examine how SymPhoney coordinates 

resource use between background sensing applications and 

foreground applications, in collaboration with a mobile OS. 

Last, we investigate the overhead of the SymPhoney engine.  

7.1 Experimental Setup 
Mobile sensing workloads: we use CalorieMon, 

ChildMon, and IndoorNavi as sensing workloads. By 

default, all the three applications run simultaneously. We 

set the linear utility functions for the applications as shown 

in Figure 17. We set a minimum interval of an application 

to the duration required to collect a c-frame, which is most 

frequently executable. At this interval, an application 

provides its service at its best quality, where the utility 
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value is set to one. A maximum interval is decided 

considering application characteristics; beyond this interval, 

we assume that the application is of no use, and thus its 

utility value is set to zero.  

Foreground workloads: We consider two types of 

foreground workloads with different characteristics: 

dynamic and constant. To generate the foreground 

workloads, we develop a tool that occupies the specified 

amount of CPU cycles for a given duration. In the case of 

the dynamic workload, we increase or decrease the CPU 

use every 5 minutes (See Figure 18 (a)). For the constant 

one, we fix the CPU utilization to 70% to continuously 

generate resource contention situation. 

SymPhoney-related setting: we conduct the 

experiments by using the Google Nexus One with 1GHz 

Scorpion processor and 512MB RAM. We set the CPU 

quota for SymPhoney to 25%, by default, which would be 

reasonable considering users’ smartphone usage behavior.  

7.2 Coordination among Sensing Applications 

7.2.1 Effect of c-frame-based flow coordination 
We first examine the effect of our c-frame-based flow 

coordination mechanism. We compare it with two 

alternative methods: OS-Scheduler and SymPhoney-Equal. 

In the former, a sensing flow is executed in a separate 

thread, delegating the resource allocation and scheduling to 

the Android CPU scheduler. The method equally distributes 

available CPU quota to the applications running in the 

background; if some applications underutilize given 

resources, the scheduler re-distributes the remaining cycles 

to the others. Each flow is executed in its minimum interval 

to maximize its utility. SymPhoney-Equal is a modified 

version of SymPhoney, which has the same resource 

allocation policy as the OS-Scheduler, i.e., equal allocation. 

Different from the OS-Scheduler, however, it adapts the 

execution interval of each flow to the allocated resources 

based on c-frames.  

We first evaluate SymPhoney’s resource coordination 

capability under different CPU availability, in comparison 

with OS-Scheduler. We control the available CPU by using 

the dynamic foreground workload (See Figure 18 (a)). We 

first investigate the coordination behavior in a macroscopic 

viewpoint by measuring the CPU utilization and the number 

of unprocessed f-frames over time. Figure 18 and Figure 19 

show the results, respectively. In Figure 18 (b), we can 

observe that SymPhoney properly throttles the CPU use of 

sensing applications under the increasing foreground 

workload, whereas OS-Scheduler does not, undesirably 

terminating the sensing applications at 10 minutes in Figure 

18 (c). When the foreground workload starts to take 50% 

CPU time from 5 minutes, the sensing applications are not 
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Figure 21. Execution intervals on SymPhoney 
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Figure 22. Execution intervals on SymPhoney-Equal 
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Figure 18. CPU usage on SymPhoney and OS-Scheduler 
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allocated with enough resources to run at their minimum 

intervals. From this time, applications cannot process all the 

continuously streaming f-frames by using OS-scheduler, 

and their internal queue is accumulated, as shown in Figure 

19 (b). At 10 minutes, the queue is full by unprocessed 

2500 f-frames, resulting in undesirable buffer overflow.  

On the other hand, SymPhoney effectively coordinates 

the resource use by increasing the execution intervals of c-

frames for sensing applications. Accordingly, the number of 

unprocessed f-frames are rapidly flushed although they are 

piled up temporarily upon the increase of the foreground 

workload (Figure 19 (a)). In addition, SymPhoney quickly 

recovers the CPU use of sensing applications as the 

foreground workload decreases, for example, to 50% at 25 

minutes. It again reduces the execution intervals of c-frames 

to increase the application utility, fully leveraging the whole 

available resources. We also performed the same 

experiment using SymPhoney-Equal. SymPhoney-Equal 

also avoids the system overload by adapting the execution 

intervals of c-frames and shows similar behavior with 

SymPhoney; we do not plot it in the figure.  

Next, we look into the utility of applications to 

investigate the coordination among the sensing applications. 

Figure 20 shows the total sum of utility values for the three 

applications for SymPhoney and SymPhoney-Equal; the 

experiments are performed in the same setting with the 

previous experiment. Most importantly, SymPhoney mostly 

provides the higher utility value compared to SymPhoney-

Equal, especially under contentious situation (10 min ~ 25 

min). This is because SymPhoney considers applications’ 

resource demand and requirements in a holistic view, when 

determining the c-frame execution interval of each flow.  

For more detailed understanding, we additionally plot 

the execution intervals of the three applications adjusted by 

SymPhoney and SymPhoney-Equal (Figure 21 and Figure 

22). The two show different behaviors in coordinating 

multiple applications under contentious situations. From 10 

minutes, the sensing applications should share 40% of the 

CPU cycles since the foreground takes 60%. In the case of 

SymPhoney-Equal, each is allocated 13%. From 10 to 15 

minutes, SymPhoney-Equal selects only IndoorNavi and 

increases its c-frame execution intervals since it takes more 

cycles than the allocated amount while the other two still 

operate well with the 13%. At around 20 minutes, the 

system starts to increase the intervals of ChildMon slightly 

which requires about 11% for the best operation because 

the available CPU gets under 30%, each allocated about 

10%. On the contrary, SymPhoney considers the resource 

requirements of different applications as well as their utility 

functions. Under contention, it increases the intervals of 

ChildMon together with the ones of IndoorNavi, since the 

utility of ChildMon is less sensitive to the increase. In this 

way, it minimally reduces the total utility value of the 

system. Note that SymPhoney can support diverse policy 

functions, although this experiment focuses on the policy to 

maximize the total sum of applications’ utilities.  

7.2.2 Effect of f-frame scheduling 
In this section, we investigate the effect of our slack 

time-based f-frame scheduling method. For comparison, we 

develop two alternative scheduling methods as follows:  

- FIFO: simply, it first schedules the f-frame that is 

generated first. We consider this method as a baseline. 

- Priority: it prioritizes f-frames in the queues according 

to the tolerable delays of the associated sensing flow; it 

first schedules an f-frame of which the associated flow 

has the shortest delay requirement. 

We execute CalorieMon, IndoorNavi, and ChildMon 

together with the constant foreground workload; their delay 

requirements are set to 2, 3, and 5 seconds, respectively. 

We fix the execution interval of each flow to clearly 

understand the effect of the different scheduling methods. 

Figure 23 shows the distribution of the delays of context 

results. Overall, SymPhoney better meets the delay 

requirements of the applications than the other methods. As 

shown in Figure 23 (a), FIFO is not able to meet the delay 

requirements of CalorieMon and IndoorNavi for 30% and 

63% of their context results, respectively. While f-frames 

for IndoorNavi are executed to generate a result, CPU 

consumption quickly goes up, and hence the processing of 

f-frames of all the applications is delayed (up to 4 seconds). 

On the other hand, as shown in Figure 23 (b), Priority meets 

the tight delay requirements of CalorieMon and IndoorNavi, 

while ChildMon experiences significant delay, i.e., above 8 

seconds for 20% of its results. This is because Priority 

always schedules f-frames of CalorieMon and IndoorNavi 

ahead of those of ChildMon, significantly delaying the 

processing of ChildMon. Finally, Figure 23 (c) shows that 
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SymPhoney well meets the delay requirements of all the 

applications. It intelligently schedules f-frames based on the 

actual slack time up to the tolerable delay, rather than only 

the static delay requirement of an application. For example, 

it schedules f-frames of ChildMon first when f-frames of 

the other applications have enough slack time to meet their 

delay requirements, reducing the delays of ChildMon.  

7.3 Coordination between Sensing and 

Foreground Applications 
In this section, we examine how SymPhoney coordinates 

resource use between sensing and foreground applications, 

in collaboration with Android CFS scheduler. We vary the 

CPU quota for SymPhoney and look into the performance 

trade-off between sensing and foreground applications. For 

a realistic foreground workload, we use VideoPlayer 

described in Section 2.  

Table 2 shows the CPU utilization of SymPhoney and 

VideoPlayer with diverse CPU quota setting, together with 

the total utility value of the sensing applications. When the 

CPU quota for SymPhoney is enough, i.e., more than 40%, 

SymPhoney provides the applications with high utilities, 

fully utilizing the available CPU. On the other hand, the 

CPU utilization for VideoPlayer decreases to less than 56%, 

resulting in video frame drops. When the CPU quota for 

SymPhoney is reduced, e.g., 20%, VideoPlayer runs 

smoothly by using the increased available CPU. In that case, 

SymPhoney degrades the utility of the applications to 

accommodate them with the limited resource. 

7.4 System Overhead 
We look into the cost of resource coordination of 

SymPhoney. We observe three major causes of overheads. 

Decision of flow coordination: SymPhoney performs 

the flow coordination whenever a c-frame of an application 

is processed. Even in the case that the execution intervals 

are set to the minimum, the coordination is performed 

occasionally, at the rate of about 0.5Hz, in our setting. It 

takes only 0.6ms per coordination on average. 

Slack time calculation and scheduling: we investigate 

the cost of f-frame scheduling. The scheduling is triggered 

frequently, upon the generation of an f-frame, i.e., 125Hz in 

our setting. However, the cost is relatively small; each 

scheduling decision takes 0.07ms per scheduling on average. 

Overall, it consumes under 1% of CPU cycles. 

Runtime CPU monitoring: instead of tracking CPU 

time at kernel level, SymPhoney records the elapsed time of 

f-frame processing. This is negligible, under 1% of CPU. 

8. Related Work 
Initial trials to provide a common platform for mobile 

sensing applications were made in SeeMon [4] and 

Orchestrator [6]. They support concurrent applications, and 

provide a high-level declarative query language so that 

applications simply specify their queries in a context level. 

On the other hand, SymPhoney provides a more generic 

way of specifying sensing applications as dataflow. As a 

platform, the major objective of SeeMon is to efficiently 

support multiple sensing applications, whereas SymPhoney 

focuses on the coordination between them rather than 

efficiency. Orchestrator provides coordination 

functionalities similar to SymPhoney, but it focuses on the 

coordination on external sensor devices, not effectively 

dealing with resource contention on a smartphone. 

Jigsaw [5] and Kobe [7] were also proposed to provide 

system supports for mobile sensing applications. Jigsaw 

focuses on supporting three types of widely-used contexts, 

and devises optimization techniques for each context. On 

the other hand, SymPhoney targets far wider and highly 

customized sensing applications. Kobe conducts runtime 

optimization for an application by identifying the best 

configuration based on the tradeoff between energy, latency, 

and accuracy. Different from SymPhoney, however, it does 

not deal with the issues of concurrent sensing applications 

running with other typical smartphone applications. 

In mobile and sensor systems, there have been 

considerable efforts to reduce resource consumption for 

continuous sensing and data processing [8][9]. A variety of 

techniques have been proposed, such as an energy-fidelity 

tradeoff [8], user interest-based sensor management [4] and 

hierarchical sensor management [9]. Recently, an approach 

is proposed to leverage in-situ collaboration among nearby 

users [18], They focus on optimizing resource use for a 

single sensing application whereas SymPhoney newly aims 

to coordinate resource uses in consideration of multiple 

concurrent applications. These techniques designed for 

individual applications can be incorporated into 

SymPhoney and further improve its performance supporting 

concurrent applications more efficiently. 

In the field of data stream processing, several dataflow 

execution engines have been proposed in server 

environments [12][13]. They mostly focus on the dataflow 

graphs composed of relational operators, such as selection, 

join, and aggregation. SymPhoney is a new trial to develop 

a sensing flow execution engine for a smartphone, 

specialized for sensing applications; it deals with diverse 

operators for sensing, feature extraction (FFT, MFCC), and 

context inference (GMM, Decision tree). Recently, a server 

engine, XStream [13], has been proposed to support 

operators for signal processing. However, it does not deal 

with the resource contention problem arising when 

executing concurrent application flows.  

Scheduling workloads subject to deadlines has been 

substantially studied for several decades [21][22]. Many 

successful scheduling techniques such as EDF and LST 

Table 2. Quality tradeoff 

Quota for SymPhoney 50% 40% 30% 20%

VideoPlayer Avg. CPU 50.4% 55.6% 67.6% 75.3%

SymPhoney Avg. CPU 44.2% 39.3% 29.1% 20.2%

Total utility 3 2.94 2.65 2.13
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have been introduced for a variety of scheduling objectives, 

constraints, and system models. Building upon such 

theoretical results, SymPhoney adopts the principle of LST 

into sensing flow scheduling. Interestingly, sensing 

applications are associated with their own characteristics, 

such as soft real-time, continuous and patterned workloads, 

and energy constraints. This raises new challenges in 

development of general real-time scheduling theories to 

accommodate such sensing workloads on smartphones.  

9. Conclusion 
In this paper, we show that concurrency and 

coordination is a key to accelerate the deployment of 

mobile sensing applications, which is different from 

conventional sensing applications. This is mainly because 

smartphones are used as a generic personal computing 

platform, whereas other sensor platforms such as motes are 

mainly designed for a single specialized application. As we 

capture such differences, we propose SymPhoney, a novel 

sensing flow execution engine to support concurrent 

sensing applications. Through the sensing-flow-aware 

coordination approach and methods, it coordinates the 

resource use of sensing applications effectively, maximizing 

the service qualities with respect to utility and delay. We 

demonstrate the coordination capability of our engine 

through in-depth experiments. 
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