
SymPhoney: A Coordinated Sensing Flow Execution Engine

for Concurrent Mobile Sensing Applications

Younghyun Ju, Youngki Lee, Jihyun Yu, Chulhong Min, Insik Shin†, Junehwa Song

Computer Science Department, KAIST, Daejeon, Republic of Korea

{yhju, youngki, jihyun, chulhong, junesong}@nclab.kaist.ac.kr, †insik.shin@cs.kaist.ac.kr

Abstract

Emerging mobile sensing applications are changing the

characteristics of smartphone workloads. Whereas typical

mobile applications run alone in the foreground interacting

with users, sensing applications concurrently run in the

background, providing unobtrusive monitoring services.

Such concurrent sensing workloads raise a new challenge

incurring severe resource contention among themselves and

with other foreground applications. To address the

challenge, we develop SymPhoney, a coordinated sensing

flow execution engine to support concurrent sensing

applications. As its key approach, we develop a novel

sensing-flow-aware coordination. We first introduce the

new concept of frame externalization i.e., to identify and

externalize semantic structures embedded in otherwise flat

sensing data streams. Leveraging the identified frame

structures, SymPhoney develops frame-based coordination

and scheduling mechanisms, which effectively coordinates

the resource use of concurrent contending applications and

maximize their utilities even under severe resource

contention. We implemented several sensing applications

on top of the SymPhoney engine and performed extensive

experiments, showing effective coordination capability of

SymPhoney.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-based Systems]:

Real-time and embedded systems

Keywords

Concurrency, Coordination, Scheduling, Resource, Sensing

flow, Allocation, Mobile Sensing, Dataflow, Smartphone

1. Introduction
Emerging continuous mobile sensing applications

[1][2][3] will significantly change workload patterns

imposed on smartphones. Going beyond the confines of

typical user-interactive mobile applications such as web

browsers and games, they continuously run in the

background and provide autonomous, situation-aware

services without a user’s intervention. This user-

unobtrusive nature enables a smartphone to serve multiple

sensing applications at the same time in spite of its small

display and user mobility. As diverse, useful sensing

applications are emerging, a smartphone will concurrently

serve more of them, accompanying a conventional

foreground application.

Such concurrent workloads will raise an unprecedented

challenge, incurring severe resource contention on

resource-scarce smartphones. The contention is aggravated

due to the continuous and heavy CPU consumption of

individual sensing applications to process high-rate sensor

data; in our study, example applications consume 4%~22%

of CPU cycles to run multi-step operations of sensing,

feature extraction and classification (See Section 2.2). More

important, such sensing and processing workloads should

be handled near real-time to provide timely services. Even

worse, the total resource availability might be limited

further, deteriorating the contention; users won’t exhaust

the whole CPU cycles and battery only for background

applications. Under such contentious situation, greedy

resource use by an application may result in serious

degradation of service qualities of the other applications,

e.g., dragged interval, abrupt delays, and inaccurate context

results. It could also degrade the performance of other daily

use of smartphones, for instance, increasing loading time of

web documents.

To address the challenge, we develop SymPhoney, a

novel sensing flow execution engine for concurrent mobile

sensing applications. It coordinates contentious concurrent

workloads on the whole, and effectively resolves potential

imbalances in the service qualities of applications.

Developers easily build sensing applications without

concerning severe resource contention and the dynamics

caused by concurrent applications. Then, the engine

coordinates the resource use of contending applications

while maximizing their utilities under given resource

conditions. Moreover, it dynamically adapts to the

fluctuating resource availability from foreground

applications, and minimizes the performance degradation of

the interactive applications.

A simple approach to handle concurrent workloads is to

make each sensing application as a process or a thread,

delegating the coordination job to the mobile OS. This

could significantly compromise efficiency and fairness and

incur unexpected starvation or delays. Since the OS deals

with the processes without application-level information, it

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SenSys’12, November 6-9, 2012, Toronto, Canada.

Copyright 2012 ACM 978-1-4503-1169-4 …$10.00.

211

is hard to identify and allocate right amount of resources for

the applications. An alternative is that each application

adapts their resource use to counter contentious resource

situations [17]. However, proper adaptation is difficult in an

application level, as applications have limited view on the

other applications’ resource use, and hardly negotiate with

the others. Moreover, it would be a burden for developers

to implement effective adaptation methods to prepare for

diverse resource situations.

We develop the flow-aware coordination approach,

which enables a system to exploit the internal structure and

resource use patterns of sensing applications for effective

resource coordination. We first introduce the novel concept

of frame externalization, i.e., to identify and externalize

semantic structures embedded in otherwise flat sensing data

streams (See Figure 10); thus extracted knowledge on

framing structure provides valuable hints to address various

challenges of complex system design for sensing

applications. For flow coordination, we specifically focus

on two common types of frames, namely, context-frame (c-

frame), a sequence of sensing data to produce a context

result and feature-frame (f-frame), a sequence to execute

the first-staged feature extraction operations; based on the

frames, we design the new methods of c-frame-based flow

coordination and f-frame-based flow execution.

The c-frame-based flow coordination leverages the c-

frame as the basic unit of resource allocation and flow

coordination. The use of each tiny portion of the allocated

resources effectively contributes to the delivery of

semantically meaningful results, and in turn, influences the

quality of service as perceived by a user. As such, it enables

a system to best coordinate the concurrent flows contending

for limited system resources, maximizing the application

utilities. The f-frame-based flow execution pipelines the

complicated steps of sensing and processing in the unit of

the f-frame, considerably reducing potentially lengthy delay

and enhancing the schedulability of concurrent applications.

SymPhoney is a mobile sensing engine, clearly

distinguishing itself from recently proposed mobile sensing

systems [4][5][6][7][25]. The most important feature is the

coordination among concurrent sensing applications and

with typical smartphone applications. Jigsaw [5] and Kobe

[7] provide optimization and adaptation techniques in the

viewpoint of a single sensing application. SeeMon [4] and

Orchestrator [6] deal with concurrent sensing applications

and provide useful solutions. SeeMon aims at achieving

processing and energy efficiency for multiple applications,

while SymPhoney coordinates their resource usage.

Orchestrator also supports the coordination among

concurrent applications. SymPhoney delves into the

resource coordination on a smartphone.

The contribution of this paper is summarized as follows.

First, we propose SymPhoney, a sensing flow execution

engine for emerging mobile sensing workloads, featuring

the coordination of concurrent applications. Second, we

introduce the concept of frame externalization and based on

the concept, we devise effective c-frame-based flow

coordination and f-frame-based flow execution mechanisms.

Third, we support sensing flow design process based on a

dataflow programming model, and implement several

interesting sensing applications, ChildMon, IndoorNavi,

and CalorieMon, inspired by recent works [1][2][3]. Finally,

we report extensive experimental results on the

coordination capability of the engine using the applications.

 The rest of this paper is organized as follows. In Section

2, we present three example applications and motivating

experiments. Section 3 shows the programming abstraction

of SymPhoney and Section 4 explains our key approach. In

Section 5, we describe the system design and the

coordination mechanisms in detail. Then, we present our

implementation in Section 6 and Section 7 shows

experimental results. We introduce related work in Section

8 and finally conclude the paper in Section 9.

2. Mobile Sensing Workloads

2.1 Example Applications
We implement three sensing applications on SymPhoney

to motivate and evaluate its effectiveness: (1) ChildMon,

GMM

Sound
8kHz

RMS FFT

512512

Microphone

Normalize

LEFR

MFCCSF

AVG VAR AVG

SR

AVG VAR

20

20

20 2020 20

Smoothing
3

Sound
44.1kHz

1024

Nearest-
neighbor

Window
function

FFT

Filter

Spectrum

Microphone

1000

sensoroperator

x x: window size

Decision
Tree

Accel_X
50Hz

Accel_Y
50Hz

Accel.
right wrist

Accel.
right hip

Accel.
left arm

Accel.
right ankle

Accel.
left thigh

Accel_X
50Hz

Accel_Y
50Hz

Correlation

512

Correlation

512

Correlation
512

FFT

DC

Energy

Entropy

512

FFT

DC

Energy

Entropy

512

(a) ChildMon (b) IndoorNavi (c) CalorieMon
Figure 1. Sensing flows of motivating applications

212

(2) IndoorNavi, and (3) CalorieMon. The core logics of

sensing applications include a flow of operations such as

sensing, feature extraction, and classification to monitor

and recognize contexts of interest, e.g., user activity, place,

and ambience. We call such a flow of operations as a

sensing flow. The sensing flows of the example applications

are presented in Figure 1.

ChildMon allows working parents to be aware of real-

time activities of their kindergarten child during classes and

fieldtrips. It is inspired by our previous works to support

kindergarten education with sensing technology [14][15]. It

monitors children’s activities like talking and playing using

a backpack-attached phone, and notifies their parents of the

distinguished activities. For the activity detection, we adopt

and modify the logic of SoundSense [1]. Figure 1 (a) shows

the sensing flow of the application.

IndoorNavi helps a mobile user to navigate large-scale

building complexes. For the navigation, the application

continuously localizes itself in the level of an office or a

room. The sensing flow for the indoor localization is

inspired by BatPhone [2] and specified in Figure 1 (b).

CalorieMon monitors a user’s physical activities during

daily exercise and estimates real-time caloric expenditure of

the user. Its sensing flow is shown in Figure 1 (c), which is

adopted from [3]. This application utilizes five bi-axis

accelerometers placed in different body limbs.

2.2 Limitations of Current Mobile OS
Current mobile OSs such as Android and iOS hardly

handle resource contentions by concurrent sensing

applications, which motivates us to design a new engine. To

show the limitation of current OSs, we conduct several

experiments on Android Nexus One phones.

Experimental settings: we execute the three sensing

applications; each runs as an Android background service.

In addition, for foreground workloads, we use two common

applications, a Web browser and a video player [10]. The

Web browser represents user-interactive applications that

generate intermittent and dynamic workload. We implement

a simple benchmark that loads a desktop version of

Amazon.com page every 20 seconds. The video player

represents the applications that consistently impose heavy

workloads. We play a 720p video file encoded in Xvid.

Results and observations: we first investigate the CPU

utilization of the applications over time. Figure 2 shows the

results. IndoorNavi alone consumes over 20% of CPU

cycles to continuously execute heavy localization logics

over high-rate sensing data of 44.1 kHz. Such continuous

and significant CPU use could incur severe resource

contention among applications. An interesting observation

is that all the applications show periodic patterns in their

CPU use. This is because sensing applications usually

repeat a series of operations over a sequence of sensing data

to extract a user context. In the perspective of background

operations, we can find a similarity with Android

background services such as netd and vold which handle

occasional I/O events and interrupts. However, they utilize

CPU less than 1%.

To identify the resource contention with foreground

mobile workloads, we measure the CPU utilizations when

the sensing applications run together with the video player.

As shown in Figure 3, due to the consistent CPU use of the

video player, the sensing applications are allocated under

10% of CPU resource. This is much less than their resource

demand, i.e., about 35% of CPU resource in total. For

better understanding, we also measure the total number of

unprocessed sensor data over time. As shown in Figure 4,

the resource shortage makes the applications pile up the

streaming sensor data, which finally results in memory

overflow and potentially terminates the applications.

Figure 5 shows the results when the sensing applications

run together with the Web browser. In this case, the CPU

utilization of the sensing applications dynamically changes

according to the behavior of the browser. More specifically,

the allocated CPU resource is significantly reduced while

the browser is loading web pages. Such reduction degrades

the performance of the sensing applications, especially in

terms of the delay to produce context results. In worst case,

the result delivery is delayed by about 7 seconds. The

sacrifice of the sensing applications occurs because today’s

mobile OSs assign a much higher priority to an activated

foreground application compared to other background ones.

A naïve solution might simply increase the priority of the

sensing applications. Figure 7 shows the results when their

0

10

20

30

40

50

60

0 1

C
P

U
 U

ti
liz

at
io

n
(%

)

Time (min)

IndoorNavi(21.9%)
ChildMon(10.7%)
CalorieMon(3.5%)

Figure 2. CPU utilization of sensing applications

0

20

40

60

80

100

0 1

C
P

U
 U

ti
liz

at
io

n
(%

)

Time (mins)

Video Player Sensing Applications

Figure 3. CPU utilization of sensing applications with a

video player

0

1000

2000

3000

0

20

40

60

80

100

0 1
C

P
U

 U
ti

liz
at

io
n

(%
)

Time (mins)

Video Player Sensing Applications

o

f
u

n
p

ro
ce

ss
ed

d

at
a

Figure 4. Unprocessed data of sensing applications with

a video player

213

priority is set to the same priority with the Web browser.

The sensing applications are allocated with more sufficient

CPU resource and work stably. However, the Web browser

slows down and the average time to load pages increases

from 4.7 to 6.7 seconds.

To examine the resource distribution within the sensing

applications, we measure the number of unprocessed data in

each sensing application, in the same setting as in Figure 5.

As shown in Figure 6, the unprocessed data in IndoorNavi

increases more rapidly than others under contention. This is

because it requires more CPU resource than the others

while Android equally distributes the CPU resource to the

applications under contentious situations. Such simple

distribution regardless of the differences in resource

demand could result in significant imbalance of service

quality among applications. Moreover, a user often has her

own preference for different sensing applications and their

resource use. For instance, even under resource contention,

parents would not want to compromise the quality of

ChildMon, whereas teenagers at a commercial complex

need higher responsiveness of IndoorNavi. Current OSs do

not consider such diverse preferences and different resource

demands of mobile sensing applications, yet.

3. Programming Sensing Flows
Without programming supports from a system like

SymPhoney, it involves multi-lateral challenges to develop

practical mobile sensing applications from scratch [7]. A

primitive challenge is to design sensing flows that capture

the contexts of interest precisely. For example, a ChildMon

developer should carefully select a meaningful feature set

among plenty of sound-extracted features, and an effective

classification algorithm. The developer further requires

significant time and efforts, going through learning and

testing iteratively, to find optimal parameters. More

challenging, such designed sensing flows should be crafted

further, considering scarce resources of smartphones.

Developers need to estimate reasonable range of resource

availability in advance, and undergo serious optimization

process. Also, they may need to adopt complicated

adaptation mechanism to prepare for dynamic changes in

resource availability.

SymPhoney supports both the design and the

optimization process of sensing flows in such complex

programming process. Many different models can be

adopted for the flow design stage. The mechanisms and

approaches for sensing flow coordination proposed in this

paper are generally applied to many models. Currently, it

provides a dataflow programming model in an XML

interface. It helps developers flexibly compose customized

sensing flows and hence, enables rapid prototyping of

complex sensing flows, significantly reducing the time and

effort for design iteration. The dataflow model is well-

suited to represent sensing flows, usually composed of a

series of pipelined computations over sensing data.

SymPhoney provides a set of widely-used operators so that

developers can readily use them. Table 1 lists some

operators provided.

More importantly, SymPhoney takes charge of resource-

aware operation of specified sensing flows on behalf of

developers. Developers just need to register application-

level requirements like a desired monitoring interval and a

tolerable delay. SymPhoney then automatically adapts the

execution of the flows to the runtime resource availability

and concurrent applications’ resource use while meeting

their execution requirements. Furthermore, it efficiently

executes the flows with minimal execution overhead.

Specifically, developers implement their applications by

using the following API.

registerMonitoringRequest (flow, requirements)

In the parameter, the flow represents a sensing flow such

as a dataflow graph used for monitoring (See the examples

in Figure 1). A graph is specified as an XML document, as

shown in Figure 8. It consists of operators and edges

connecting the operators. Each operator in the graph

represents a unit of computation or I/O. The edges of the

Table 1. Example operators provided by SymPhoney

Operator types SymPhoney built-in operators

Sensing operators Sound, Accel., Gyro., GPS, …

Feature extractors FFT, MFCC, RMS, Correlation,

Energy, Average, Entropy, …

Classifiers GMM, HMM, kNN, Decision tree, …

0

20

40

60

80

100

0 2

C
P

U
 U

ti
liz

at
io

n
(%

)

Time (mins)

Web browser Sensing Applications

Figure 5. CPU utilization of sensing applications with a

Web browser

0

100

200

300

0 2#
o

f
u

n
p

ro
ce

ss
e

d
 d

at
a

Time (mins)

IndoorNavi
ChildMon
CalorieMon

Figure 6. Unprocessed data of sensing applications with

a Web browser

0

20

40

60

80

100

0 2

C
P

U
 U

ti
liz

at
io

n
(%

)

Time (mins)

Web browser Sensing Applications

Figure 7. CPU utilization in the case of the same priority

214

graph represent data dependencies between operators. An

edge includes the information about how many outputs of

the previous operator is required as an input of the next

operator.

As for the requirements parameter, SymPhoney

supports the monitoring interval and delay.

Monitoring interval represents how often the

application needs to monitor the user’s situation. For

example, CalorieMon may require capturing the user’s

physical activity every several seconds to compute the total

calorie expenditure of a day. Typically, the shorter the

interval is, the higher the utility of the application is.

Applications specify the preferred monitoring interval tied

with utility values for each interval, which is expressed as a

utility function. Figure 9 shows an example utility function

for CalorieMon. SymPhoney attempts to maximize the

utility under changing resource conditions.

Monitoring delay is specified in terms of a maximum

tolerable delay of the application, where the delay means

the time to deliver final context results to the application

from the moment of sensing. The freshness of the results is

important for some applications to provide timely and

responsive services. For example, CalorieMon requires less

than two seconds of delay to provide a runner with real-

time calorie expenditure. The engine aims to meet the delay

requirement of the applications as much as possible.

Another important requirement is the accuracy of

monitoring results. We suppose that it is developers’ role to

design a sophisticated sensing flow that can meet a desired

accuracy requirement. SymPhoney prevents the accuracy

from being undesirably compromised at runtime due to the

abrupt drop of sensing data or temporary fluctuation in

sensing frequency.

4. Flow-aware Coordination of Sensing

Applications
SymPhoney plays a key role to coordinate the resource

use of mobile sensing applications: (1) among themselves,

and (2) with other foreground applications. A main goal of

the coordination is to maximize the utility of sensing

applications even under high CPU contention, and prevent

skewed resource use either by sensing or other foreground

applications. For effective resource coordination of sensing

applications, we develop the new flow-aware coordination

approach. A core of the approach is structuring continuous

sensing streams into meaningful units by looking into

regular processing structure of the sensing applications.

4.1 Frame Externalization of Sensing Data

Streams
A sensing data steam is generated as a flat sequence of

data. However, taken by an application, it is interpreted

with a tailored structure. That is, data samples at different

positions may give distinct meanings to, and hence,

differently used by the application. For example, three

consecutive samples may belong to separate semantic units,

one used to generate a result and the following two used for

the next result. Thus, a flat sensing stream can be

considered to have a virtual structure, given by an

application.

While the structure of a sensing stream is implicit within

an application, identifying and externalizing the structure

provide good potential for system design. Knowledge on

the structure gives useful hints in executing an application

and planning its resource use, especially when a system

should deal with multiple concurrent applications under

contentious situations.

Consider an application A takes a sensing stream S as

input. The virtual structure of S can be extracted by

inspecting the flow of A. We call the process of

externalizing the virtual structure of S with respect to A as

framing or frame externalization of S with A. Then, we call

the resulting structural entity of S as a frame. A stream is

framed differently by different applications. Also, one can

be framed differently even for the same application. Figure

10 shows that a sound stream of 8 kHz is framed by the

ChildMon application in three layers. In the first layer, a

sequence of 512 consecutive samples is framed for feature

extraction, and in the second, 20 of such frames are

combined for classification. Lastly, in the third layer, three

of the second-layer frames are aggregated for post-

processing, constructing a frame of 512×20×3 which is the

unit to generate a final recognition result. The issues of

structuring sensing data streams are distinct from those in

well-structured media stream processing. In the latter, input

streams such as structured video and audio have explicit

and usually standardized frame structures while in the

former, those should be identified and externalized with

respect to individual applications.

Focusing on the purpose of coordination and execution

of contending sensing applications, we identify two

structural layers, i.e., feature extraction and result

generation layers (See Figure 10) that are common to many

sensing applications. We then utilize the two corresponding

frames: (1) context-frame (c-frame), a sequence of sensing

data to produce a context result and (2) feature-frame (f-

<Operator ID=“0” Type=“SensingSound” Parameter=“8000”><..
<Operator ID=“1” Type=“RMS” Parameter=“”></Operator>
<Operator ID=“2” Type=“FFT” Parameter=“512”></Operator>
…
<Edge From=“0” To=“1” WinSize=“512”></Edge>
<Edge From=“0” To=“2” WinSize=“512”></Edge>
…

Figure 8. Example XML specification of ChildMon

Utility

0

1

Monitoring interval (sec)
5 20

Figure 9. Example utility function of CalorieMon

215

frame), a subsequence of a c-frame to execute the first-

staged feature extraction operations. Based on such

structuring, we develop mechanisms for flow coordination

and execution.

Framing sensing data streams requires understanding on

the internal processing structures of applications. Diverse

analysis methods can be designed to inspect different

representations of applications. For a dataflow or a directed

graph, the c-frame and f-frame are identified by a quick

depth-first traversal of its graph from the initial sensing

operators through the subsequent processing operators. The

concept of externalizing the frame structure of a sensing

data stream can be generally applied to handle various

system design issues other than efficient flow execution and

coordination.

4.2 Frame-based Coordination and Execution
c-frame-based flow coordination: the approach first

takes a c-frame as the basic unit of data processing and

resource allocation. This is based on the observation that

collecting a c-frame and performing subsequent operations

can hardly be ceased in the middle, in order to generate an

accurate and timely context result. On the other hand, it is

often tolerable to temporarily pause the whole operations

once a c-frame is completely processed. Accordingly, the

approach first regards ‘collecting and processing a c-frame’

as a unit of resource allocation. Each c-frame is allocated

with the right and deserved amount of resources to collect

and process it. Then, a flow is coordinated by assigning a c-

frame interval, i.e., the interval between successive c-

frames, in a way to guarantee the processing of the c-frame

in each interval with the given resource availability. Figure

11 shows an example. Moreover, for multiple concurrent

flows, the coordination is performed to assign different c-

frame intervals for the different flows and to maximize the

total utility of corresponding applications under the given

resource availability. Figure 12 shows an example with two

concurrent applications. In this way, the approach enables a

system to best utilize its resources and maximize

application utilities under a contentious situation.

The c-frame-based coordination is advantageous in

several ways. First of all, the allocation made in the unit of

a c-frame is directly mapped to the provision of a result

meaningful to an application. For sensing applications, the

service quality perceived by a user is generally affected by

the frequency of result delivery. Thus, the direct mapping

between a result and resource usage allows a system to

easily reflect the requirements from the application under

dynamic resource situations. Second, the approach allows a

system to efficiently utilize its resources without wastage.

As it allocates the deserved amount for each c-frame, all of

the allocated resources contribute to the provision of results

and accordingly to the service quality; by ensuring the

deserved amount, it provides applications with timely

results, and does not compromise the accuracy of results

even under contentious situations. As shown in Figure 11, it

also gives chances to save resources by deactivating

unnecessary sensing and corresponding processing during

the intervening periods between assigned c-frames.

As an alternative to adjust the resource use of sensing

applications, we can apply down-sampling of sensing data.

As shown in Figure 13 (b), simply reducing the sampling

rate of sensors, however, could result in inaccurate

processing results since a sensing flow is typically designed

and optimized for a certain sampling rate [7]. Even if the

flow can be re-configured for different sampling rates, a

reduced rate could severely compromise the accuracy of the

resulting contexts [17]. Our approach can be considered as

a kind of sensor duty-cycling method, frame-aware duty

cycling (Figure 13 (d)), crafted for concurrent mobile

sensing applications. It is differently designed from those

used in typical traditional sensor networks [24], where a

single application runs alone and manages sensing data as a

…

GMM

Sound

RMS FFT

512512

Normalize

LEFR

MFCCSF

AVG AVG

2020 20

Smoothing

3

…

…

c-framef-frame

… …

Layer 1

Layer 2

Layer 3

…… …… …

… …… …

… …… … …

… …

512 samples

512 x 20 x 3 samples

…

512 x 20 samples

Figure 10. Framing a sound stream into c-frames and f-

frames with ChildMon example: a sound stream of 8 kHz

is framed in three layers. A c-frame of 512×20×3 samples

is for the inference of a child’s activity. An f-frame of 512

samples is for the first-stage feature extraction operators.

Context
results

Sensing
stream

CPU time

… …

5 sec
skip sensing

… …

500ms

c-frame interval (2 sec)
(b) Available CPU: 10%(a) Available CPU: 40%

Figure 11. c-frame-based resource allocation: When

CPU availability is enough, the c-frame interval is set to its

minimum value, 2sec and results in 25% CPU usage;

processing a c-frame takes 500ms of CPU time. However,

as the available CPU is reduced to 10% (due to contention),

the interval is increased to 5sec and results in 10% as in (b).

216

flat sequence without externalizing its frame structure

(Figure 13 (c)). We argue that the frame structures of the

subsequent flows serve as critical information to duty-cycle

a sensor, turning off the sensor without compromising data

integrity to create a context result. Especially, identifying

the frame structure is important to coordinate the sensor use

of concurrent applications in a system level.

f-frame-based flow execution: SymPhoney further

adopts the f-frame-based execution of a flow. The idea is to

leverage the characteristics of the workloads one step

further, looking into the internal structure of a c-frame; a c-

frame can be decomposed to a sequence of f-frames,

feature-frames. With the f-frame-based execution, the

actual execution of a flow is made in the unit of an f-frame

while the allocation is made for each c-frame.

The f-frame-based execution provides the engine with

the flexibility in the scheduling of the flow execution. For

some applications, the size of a single c-frame would be

large (e.g., about 4MB with IndoorNavi), requiring

significant time for processing (about 1sec). In such a case,

processing the whole c-frame in a single step after its

collection may cause sudden CPU usage peaks and induce

quite a long delay. SymPhoney makes it possible to reduce

delays in processing and delivering a context result through

a pipelined processing of a c-frame in the unit of the f-

frame before the whole c-frame is ready. Also, processing

in the unit of smaller-size f-frames enables the engine to

flexibly schedule concurrent applications in order to meet

their delay requirements under contentious situation.

Structuring sensing data streams into c-frames and f-

frames also helps design the structure of the engine for the

efficient execution of sensing flows. Naïve handling and

processing high-rate data samples may incur considerable

overhead to a system, such as frequent operator scheduling

and data management. To reduce the overhead, SymPhoney

further develops an efficient flow execution method

exploiting the structural characteristics of the sensing data

streams (See Section 5.2).

4.3 Coordination between Sensing and

Foreground Applications
Running on a mobile OS, SymPhoney takes charge of

the resource management for all sensing applications

instead of the OS. It directly coordinates and controls the

sensing applications’ resource use. However, SymPhoney

alone is not able to coordinate between the foreground and

sensing applications. If most of the CPU time is allocated to

a foreground application, the whole SymPhoney engine

could starve. SymPhoney collaborates with the mobile OS

to avoid such situations.

For example, when running on the Android platform, the

OS allocates and guarantees the minimum CPU quotas for

both foreground applications and the SymPhoney engine,

e.g., 20% of total CPU cycle for the engine. While the OS

guarantees the minimum quota, the actual CPU use of the

foreground applications will change over time. SymPhoney

identifies the amount of available CPU and dynamically re-

coordinates the multiple sensing applications to maximize

the application utilities under continuous CPU changes. In

addition, it enforces an energy constraint, e.g., 5% of

battery per hour, to prevent quick battery drain caused by

continuous sensing and processing. CPU and energy quota

can be specified according to users’ preferences.

5. SymPhoney Design

5.1 Architecture Overview
We design the SymPhoney architecture as shown in

Figure 14. The engine serves as a middleware between

sensing applications and OSs. Developers specify sensing

time
6.7 sec

7.1 sec

Available CPU:
(40% 10%)

CPU time

Sensing stream for f0

500ms

2 sec

3 sec

200ms

Sensing stream for f1 Utility functions
of f0, f1

Figure 12. c-frame-based flow coordination: This shows the case that two flows (f0 and f1) run concurrently. As the CPU

availability is dropped to 10% (right figure), the intervals are extended to 7.1 for f0 and 6.7 seconds for f1; they are

coordinated to meet 10% availability (500ms / 7.1sec + 200ms/6.7sec = 10%) while maximizing the total utility of f0 and f1.

… …
(c) duty-cycling

without frame-awareness

… …

(d) c-frame-based duty-cycling

Context
results

Sensing
stream

… …

(a) Continuous processing
(no contention)

(b) Downsampling

… …
longer time window

inaccurate results inaccurate results

not consecutivec-frame c-frame

Figure 13. Comparison of alternative methods to adjust sensing applications’ resource use: in the alternative methods

described in (b) and (c), the c-frames of the sensing flow are compromised and accordingly, inaccurate results are generated.

217

application flows with their QoS requirements on execution

intervals and delay requirements. The flow analyzer

inspects the flows and identifies their frame structures.

Based on the frame structures, the flow execution planner

determines their c-frame intervals under changing resource

conditions and accordingly allocates resources to the

concurrent flows. Then, the flow executor executes each

flow in the unit of an f-frame according to its c-frame

interval and delivers the results to the applications. During

the execution, the flow scheduler determines the order of

execution of the f-frames, in a way to meet the applications’

delay requirements. The resource monitor continuously

monitors the changing resource availability and demands at

runtime. The flow planner and the flow scheduler

dynamically adapt the intervals and the scheduling orders.

5.2 Flow Execution
In this section, we present how each flow is executed by

the flow executor, enforcing the given execution intervals

and scheduling orders. For the ease of understanding, we

present the flow execution before we describe the flow

execution planning and the flow scheduling in Section 5.3

and 5.4. Figure 15 illustrates the design of the flow executor.

The flow executor consists of two major components,

the sensing handler and processing handler. The sensing

handler manages the sensing operators of the registered

flows, each of which runs in a separate thread. A sensing

operator takes a key role in enforcing the framing of an

input sensing stream. Specifically, it repeatedly reads a c-

frame from the stream at the given interval. Throttling the

data early at the foremost operator enables to eliminate

unnecessary sensing as well as processing in the other

operators upstream. It reads the c-frame in the unit of an f-

frame and passes each to the f-frame queue. This reduces

the communication overhead between operators, compared

to the case of delivering individual samples. For energy

efficiency, the operator deactivates the corresponding

sensor module for the periods between consecutive c-

frames.

The processing handler takes charge of the execution of

the subsequent processing operators. When the flow

scheduler picks an f-frame of a flow, the processing handler

takes it from the flow’s f-frame queue and processes it. It

executes the operators by using a highly-optimized

execution container, called DataBank [11]. The container

significantly reduces the execution overhead of sensing

flows through structured execution and shared data

management.

The decoupling of the sensing operators from the

processing operators facilitates the engine to support

sharing of sensing sources by multiple sensing flows. The

flow executor allocates a sensing operator for each physical

sensor and the operator mediates the concurrent sensing

requests on the sensor from multiple flows. If the flows

require different sampling rates and different sizes of

frames, it collects the data at the highest rate, re-samples

and re-packages them according to each flow’s respective

requirements.

5.3 Flow Execution Planning
The flow execution planner realizes the c-frame-based

flow coordination for the use of the CPU and battery, which

are the major resources competed by concurrent sensing

applications. As described in Section 4.2, it allocates the

resources to concurrent sensing flows while keeping their

CPU and battery use under the availability and maximizing

the application utilities. It adapts the c-frame intervals upon

changes in system resource status.

For clear understanding, we first define the coordination

problem as follows. Given concurrent sensing flows,

{flowi}, the problem is to determine their c-frame execution

intervals, {pi}, with the following objective function and

constraints.
Objective. maximize ∑ ui(pi)

Constraints. ∑ cti / pi ≤ 1 - CPUf -- (C1)

 ∑ eci / pi ≤ Elimit -- (C2)

Monitoring requests
(Sensing flow, execution requirements)

Monitoring
results

Mic.GPSAccelInternal Sensors

Sensing data

Applications

Resource
Monitor

SymPhoney

Flow Executor

Sensing
Handler

Flow
Execution
Planner

Scheduling

Planning

Processing
Handler

Flow
Scheduler

Profile
data

Smartphone

Mobile OSCPU Scheduler

CPU quota

Flow
Analyzer

GyroAccelExternal Sensors

Figure 14. SymPhoney architecture

Mic.GyroAccel

Processing Handler

Sensor
control

Sensing Handler

…

f-frame

c-frame

context result

DataBank

Operator

skip sensing

sensing
operators

processing
operators

f-frame
queue

Figure 15. Flow executor

218

In the formula, ui(pi) is a utility function of flowi that

takes an interval, pi, as its input, and returns the

corresponding utility value. The first constraint checks if

the total CPU use by all flows does not exceed the current

CPU availability. The CPU availability is specified as 1-

CPUf, where CPUf is the CPU portion taken by foreground

applications. In the left side, cti represents the CPU time

required to process a c-frame of flowi and thus cti / pi means

the CPU utilization of flowi when it is executed at the

interval of pi. Similarly, the second constraint stipulates the

energy consumption rate of all flows, ∑ eci / pi, within the

maximum allowance of consumption rate, Elimit.

Note that SymPhoney can flexibly incorporate diverse

coordination policies according to user preferences. For

example, to differentiate the applications with distinct

importance, the objective can be set with weights on the

utilities. Similarly, to reflect fairness of applications, the

objective can be set to maximize the minimum of the

application utilities.

5.3.1 Resource Monitoring and Profiling
A practical challenge to perform the c-frame-based flow

coordination lies in monitoring and measuring resource

availability and demands to evaluate the CPU and energy

constraints. First, it should be performed at runtime in a

light-weight way to continuously reflect the changes in CPU

and energy availability, influenced by foreground

applications. Second, the system should be able to capture

resource demands of diverse, customized sensing flows,

when running at different execution intervals. In this section,

we present our method to monitor the availability and

demand of CPU and energy.

CPU Monitoring. Monitoring the CPU time to execute

c-frames in the OS level ensures accurate measurements,

but, in practice, incurs much overhead due to preemptive

scheduling; it requires keeping track of the allocation of the

CPU in every time slice. To address the challenge, we use a

light-weight method and infer it from the elapsed time for

the c-frame execution, i.e., the time between the start and

end of the c-frame execution. Under contention, the elapsed

time is longer than the CPU time for the execution since it

includes the time taken by the other applications in the

middle. We compensate the excess under the assumption

that foreground applications use the CPU cycles uniformly

over time at a constant rate.

For each coordination decision, {pi} should be chosen

while meeting ∑ cti / pi ≤ 1 - CPUf. Let’s denote the elapsed

time for the c-frame execution of flowi as eti. Applying the

above idea, cti can be approximated as eti × (1 – CPUf); in

eti, the time taken by other applications would be eti × CPUf.

Hence, the condition (C1) can be simplified as follows:

∑ eti × (1 – CPUf) / pi ≤ 1 – CPUf

 ∑ eti / pi ≤ 1

Leveraging the final derived inequality, SymPhoney can

perform coordination by measuring {eti} without

monitoring {cti} or CPUf. To avoid over-utilization caused

by the approximation error, the right side of the inequality

needs to be set to less than 1. In the current implementation,

we set the value to 0.8 after iterative experiments.

Energy Profiling. It is difficult to measure eci at runtime,

since off-the-shelf smartphones provide battery monitoring

functionality only in a process-level and a coarse-grained

way. Instead, we use an offline profiling method to

calculate eci, adopted from our previous work [6][18]. It

pre-builds energy profiles for sensors, CPU, and network

interfaces on smartphones, which are major hardware

components used by sensing applications; the network

interfaces are used to communicate with external sensor

devices. Then, it estimates eci based on the profiles by

adding the energy consumed to perform the operations to

collect and process a c-frame of flowi. For instance, the

energy consumption of IndoorNavi is calculated by

correlating the profile for a microphone sensor with 44.1

kHz, and that for CPU with 21%. Such modeling-based

energy estimation is well adopted for mobile devices [19].

5.3.2 Coordination and Adaptation
SymPhoney finds the execution intervals of flows, {pi},

as defined by the above coordination problem. In many

cases, the utility functions specified in the objective

function are represented as decreasing linear or concave

utility functions of intervals. In such cases, the coordination

problem becomes a well-known concave maximization

problem. SymPhoney solves the problem by using the

Newton’s method [20], which finds better approximation

values successively. We could further adopt or design other

algorithms for different optimization goals. Note that such

optimization algorithms are not the main focus of this paper.

In addition, SymPhoney continuously adapts {pi} to

changing resource availability mainly due to foreground

applications. It is important since any optimal {pi} derived

at a moment would cause severe under/over utilization of

resources upon the changes. Specifically, Symphony

triggers adaptation when the actual gap between the

availability and demands goes above certain threshold.

Internally, it is evaluated by monitoring eti and checking if

 eti / pi exceeds or falls below certain threshold values. To

avoid frequent adaptation, we set the upper and lower

threshold to 0.8 and 0.6 in the current implementation,

respectively. Once triggered, SymPhoney re-executes the

Newton’s method to find a new solution, {pi}.

5.4 Flow Scheduling
Even though the planner coordinates concurrent flows’

CPU use in a long term, the CPU allocation for a flow

might be delayed in a short term by temporarily yielding up

CPU cycles to others. Naïve ordering in the short-term CPU

allocation might compromise freshness of the results for

some sensing flows, to which the fresh result is essential.

219

Note that, in smartphone environments, it is a newly arising

problem to schedule the execution order of concurrent,

time-sensitive workloads.

To address the challenge, the flow scheduler carefully

determines the execution order of the f-frames piled up in

the queues, with the following objective function:

maximize satisfy(ci), {ci},

where, ci denotes a context result for flowi generated by

processing the f-frames in the queues, and satisfy(ci) is a

binary function to evaluate if ci is generated within a

tolerable delay; satisfy(ci) is 1 if the delay of ci is less than

its tolerable delay and 0, otherwise. The delay is defined as

the time taken to generate the context result from the

moment that the final f-frame in a c-frame is ready.

To solve the problem, we adopt the least slack time

(LST) scheduling algorithm [22], which is widely used for

task scheduling in time-sensitive, real-time systems. It

calculates the slack times for all queued f-frames and

dispatches the f-frame with the least slack time, one at a

time; meanwhile, when a new f-frame is queued, its slack

time is calculated and reflected in the next scheduling turn.

A key to apply the LST algorithm for f-frame scheduling

is to compute the slack time of an f-frame. It is notable that

our slack time calculation reflects the position of an f-frame

in relation to the whole c-frame and effectively

approximates the actual remaining time to the deadline.

Suppose that f-framei,j is the j
th

 f-frame of c-framei that is

currently processed for flowi. The slack time of f-framei,j

can be calculated by subtracting the processing time of

remaining f-frames in c-framei from its delivery deadline.

For clear understanding, we represent the slack time of f-

framei,j in Figure 16 and formulate it as follows:

slack_time(f-framei,j) = di + ri,j – epti,j,

where di is the tolerable delay of flowi, ri,j is the remaining

time to collect the whole c-frame with upcoming f-frames,

and epti,j is the expected time to process the unprocessed f-

frames in c-framei., i.e., from f-framei,j to the final f-frame.

Now, the deadline can be simply calculated as di + ri,j by

its definition, and the slack time can be acquired by

subtracting epti,j from the deadline, di + ri,j. SymPhoney

computes ri,j based on the position of f-framei,j in the c-

framei, the number of data in the f-frame, and the sampling

rate. For epti,j, SymPhoney continuously profiles processing

times of f-frames. It estimates epti,j from the profiling

results for the f-frames of the previous c-frame.

6. Implementation
We have implemented the prototype of SymPhoney

engine on the top of Android phones using Android SDK

2.3. The implementation is in Java and about 12,000 lines

of code. The engine runs as a service on the Android

platform. Mobile sensing applications specify their

monitoring requests via pre-defined Android service

interfaces provided by the engine. The engine delivers

processing results by using intents which are provided by

Android for inter-process communication.

On top of the engine, we have easily implemented three

example applications described in Section 2. The engine

incorporates more than 50 types of operators commonly

used in mobile sensing applications. The core sensing flows

of the applications are concisely specified in the XML

format by composing the built-in operators; the sensing

flows for IndoorNavi, ChildMon, and CalorieMon are only

20, 99, and 190 lines, respectively.

We have modified Android to guarantee the minimum

CPU quota for the SymPhoney engine. The functionality is

implemented on the current CPU scheduler in Android,

namely Completely Fair Scheduler (CFS) [16], without any

kernel modification. The CFS provides the functionality to

divide CPU usage into given portions for multiple process

groups. Through /proc interface, we designate the engine as

a separate group, and allocate the minimum CPU quota as a

user specifies.

7. Experiments
We performed extensive experiments with the prototype

system in the following three aspects. First, we look into the

effectiveness of our sensing-flow-aware coordination

mechanisms: c-frame-based flow coordination and f-frame

scheduling. Then, we examine how SymPhoney coordinates

resource use between background sensing applications and

foreground applications, in collaboration with a mobile OS.

Last, we investigate the overhead of the SymPhoney engine.

7.1 Experimental Setup
Mobile sensing workloads: we use CalorieMon,

ChildMon, and IndoorNavi as sensing workloads. By

default, all the three applications run simultaneously. We

set the linear utility functions for the applications as shown

in Figure 17. We set a minimum interval of an application

to the duration required to collect a c-frame, which is most

frequently executable. At this interval, an application

provides its service at its best quality, where the utility

di

slack_time
ri,j

epti,j

c-framei

f-framei,j

Sensing stream
of flowi …

CPU time …

Context result

Figure 16. Slack time estimation of f-framei,j

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

U
ti

lit
y

va
lu

e

Time (sec)

IndoorNavi
CalorieMon
ChildMon

Figure 17. Utility functions of sensing applications

220

value is set to one. A maximum interval is decided

considering application characteristics; beyond this interval,

we assume that the application is of no use, and thus its

utility value is set to zero.

Foreground workloads: We consider two types of

foreground workloads with different characteristics:

dynamic and constant. To generate the foreground

workloads, we develop a tool that occupies the specified

amount of CPU cycles for a given duration. In the case of

the dynamic workload, we increase or decrease the CPU

use every 5 minutes (See Figure 18 (a)). For the constant

one, we fix the CPU utilization to 70% to continuously

generate resource contention situation.

SymPhoney-related setting: we conduct the

experiments by using the Google Nexus One with 1GHz

Scorpion processor and 512MB RAM. We set the CPU

quota for SymPhoney to 25%, by default, which would be

reasonable considering users’ smartphone usage behavior.

7.2 Coordination among Sensing Applications

7.2.1 Effect of c-frame-based flow coordination
We first examine the effect of our c-frame-based flow

coordination mechanism. We compare it with two

alternative methods: OS-Scheduler and SymPhoney-Equal.

In the former, a sensing flow is executed in a separate

thread, delegating the resource allocation and scheduling to

the Android CPU scheduler. The method equally distributes

available CPU quota to the applications running in the

background; if some applications underutilize given

resources, the scheduler re-distributes the remaining cycles

to the others. Each flow is executed in its minimum interval

to maximize its utility. SymPhoney-Equal is a modified

version of SymPhoney, which has the same resource

allocation policy as the OS-Scheduler, i.e., equal allocation.

Different from the OS-Scheduler, however, it adapts the

execution interval of each flow to the allocated resources

based on c-frames.

We first evaluate SymPhoney’s resource coordination

capability under different CPU availability, in comparison

with OS-Scheduler. We control the available CPU by using

the dynamic foreground workload (See Figure 18 (a)). We

first investigate the coordination behavior in a macroscopic

viewpoint by measuring the CPU utilization and the number

of unprocessed f-frames over time. Figure 18 and Figure 19

show the results, respectively. In Figure 18 (b), we can

observe that SymPhoney properly throttles the CPU use of

sensing applications under the increasing foreground

workload, whereas OS-Scheduler does not, undesirably

terminating the sensing applications at 10 minutes in Figure

18 (c). When the foreground workload starts to take 50%

CPU time from 5 minutes, the sensing applications are not

0

1

2

3

0 5 10 15 20 25 30

To
ta

l u
ti

lit
y

va
lu

e

Time (min)

SymPhoney

SymPhoney-Equal

Figure 20. Total utility over time

0

10

20

30

0 5 10 15 20 25 30

In
te

rv
al

 (
se

c)

Time (min)

IndoorNavi

CalorieMon

ChildMon

Figure 21. Execution intervals on SymPhoney

0

10

20

30

0 5 10 15 20 25 30

In
te

rv
al

 (
se

c)

Time (min)

IndoorNavi

CalorieMon

ChildMon

Figure 22. Execution intervals on SymPhoney-Equal

0

25

50

75

100

0 5 10 15 20 25 30

C
P

U
 (

%
)

(a) Foreground workload

0

25

50

75

100

0 5 10 15 20 25 30

C
P

U
 (

%
)

Time (min)

(c) Sensing Applications (OS-Scheduler)

termination

0

25

50

75

100

0 5 10 15 20 25 30

C
P

U
 (

%
)

(b) Sensing Applications (SymPhoney)

Figure 18. CPU usage on SymPhoney and OS-Scheduler

0

25

50

75

100

0 5 10 15 20 25 30

C
P

U
 (

%
)

Time (min)

(c) Sensing Apps(OS-Scheduler)

termination
0

2500
(a) SymPhoney

0

2500
(b) OS-Scheduler

#
 o

f
q

u
e

u
ed

 f
-f

ra
m

e
s

Figure 19. Number of queued f-frames over time

221

allocated with enough resources to run at their minimum

intervals. From this time, applications cannot process all the

continuously streaming f-frames by using OS-scheduler,

and their internal queue is accumulated, as shown in Figure

19 (b). At 10 minutes, the queue is full by unprocessed

2500 f-frames, resulting in undesirable buffer overflow.

On the other hand, SymPhoney effectively coordinates

the resource use by increasing the execution intervals of c-

frames for sensing applications. Accordingly, the number of

unprocessed f-frames are rapidly flushed although they are

piled up temporarily upon the increase of the foreground

workload (Figure 19 (a)). In addition, SymPhoney quickly

recovers the CPU use of sensing applications as the

foreground workload decreases, for example, to 50% at 25

minutes. It again reduces the execution intervals of c-frames

to increase the application utility, fully leveraging the whole

available resources. We also performed the same

experiment using SymPhoney-Equal. SymPhoney-Equal

also avoids the system overload by adapting the execution

intervals of c-frames and shows similar behavior with

SymPhoney; we do not plot it in the figure.

Next, we look into the utility of applications to

investigate the coordination among the sensing applications.

Figure 20 shows the total sum of utility values for the three

applications for SymPhoney and SymPhoney-Equal; the

experiments are performed in the same setting with the

previous experiment. Most importantly, SymPhoney mostly

provides the higher utility value compared to SymPhoney-

Equal, especially under contentious situation (10 min ~ 25

min). This is because SymPhoney considers applications’

resource demand and requirements in a holistic view, when

determining the c-frame execution interval of each flow.

For more detailed understanding, we additionally plot

the execution intervals of the three applications adjusted by

SymPhoney and SymPhoney-Equal (Figure 21 and Figure

22). The two show different behaviors in coordinating

multiple applications under contentious situations. From 10

minutes, the sensing applications should share 40% of the

CPU cycles since the foreground takes 60%. In the case of

SymPhoney-Equal, each is allocated 13%. From 10 to 15

minutes, SymPhoney-Equal selects only IndoorNavi and

increases its c-frame execution intervals since it takes more

cycles than the allocated amount while the other two still

operate well with the 13%. At around 20 minutes, the

system starts to increase the intervals of ChildMon slightly

which requires about 11% for the best operation because

the available CPU gets under 30%, each allocated about

10%. On the contrary, SymPhoney considers the resource

requirements of different applications as well as their utility

functions. Under contention, it increases the intervals of

ChildMon together with the ones of IndoorNavi, since the

utility of ChildMon is less sensitive to the increase. In this

way, it minimally reduces the total utility value of the

system. Note that SymPhoney can support diverse policy

functions, although this experiment focuses on the policy to

maximize the total sum of applications’ utilities.

7.2.2 Effect of f-frame scheduling
In this section, we investigate the effect of our slack

time-based f-frame scheduling method. For comparison, we

develop two alternative scheduling methods as follows:

- FIFO: simply, it first schedules the f-frame that is

generated first. We consider this method as a baseline.

- Priority: it prioritizes f-frames in the queues according

to the tolerable delays of the associated sensing flow; it

first schedules an f-frame of which the associated flow

has the shortest delay requirement.

We execute CalorieMon, IndoorNavi, and ChildMon

together with the constant foreground workload; their delay

requirements are set to 2, 3, and 5 seconds, respectively.

We fix the execution interval of each flow to clearly

understand the effect of the different scheduling methods.

Figure 23 shows the distribution of the delays of context

results. Overall, SymPhoney better meets the delay

requirements of the applications than the other methods. As

shown in Figure 23 (a), FIFO is not able to meet the delay

requirements of CalorieMon and IndoorNavi for 30% and

63% of their context results, respectively. While f-frames

for IndoorNavi are executed to generate a result, CPU

consumption quickly goes up, and hence the processing of

f-frames of all the applications is delayed (up to 4 seconds).

On the other hand, as shown in Figure 23 (b), Priority meets

the tight delay requirements of CalorieMon and IndoorNavi,

while ChildMon experiences significant delay, i.e., above 8

seconds for 20% of its results. This is because Priority

always schedules f-frames of CalorieMon and IndoorNavi

ahead of those of ChildMon, significantly delaying the

processing of ChildMon. Finally, Figure 23 (c) shows that

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

C
D

F

Delay (Sec)

IndoorNavi

CalorieMon

ChildMon

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

C
D

F

Delay (Sec)

IndoorNavi

CalorieMon

ChildMon

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

C
D

F

Delay (Sec)

IndoorNavi

CalorieMon

ChildMon

(a) FIFO (b) Priority (c) SymPhone y

Figure 23. CDF of delays on diverse scheduling methods

222

SymPhoney well meets the delay requirements of all the

applications. It intelligently schedules f-frames based on the

actual slack time up to the tolerable delay, rather than only

the static delay requirement of an application. For example,

it schedules f-frames of ChildMon first when f-frames of

the other applications have enough slack time to meet their

delay requirements, reducing the delays of ChildMon.

7.3 Coordination between Sensing and

Foreground Applications
In this section, we examine how SymPhoney coordinates

resource use between sensing and foreground applications,

in collaboration with Android CFS scheduler. We vary the

CPU quota for SymPhoney and look into the performance

trade-off between sensing and foreground applications. For

a realistic foreground workload, we use VideoPlayer

described in Section 2.

Table 2 shows the CPU utilization of SymPhoney and

VideoPlayer with diverse CPU quota setting, together with

the total utility value of the sensing applications. When the

CPU quota for SymPhoney is enough, i.e., more than 40%,

SymPhoney provides the applications with high utilities,

fully utilizing the available CPU. On the other hand, the

CPU utilization for VideoPlayer decreases to less than 56%,

resulting in video frame drops. When the CPU quota for

SymPhoney is reduced, e.g., 20%, VideoPlayer runs

smoothly by using the increased available CPU. In that case,

SymPhoney degrades the utility of the applications to

accommodate them with the limited resource.

7.4 System Overhead
We look into the cost of resource coordination of

SymPhoney. We observe three major causes of overheads.

Decision of flow coordination: SymPhoney performs

the flow coordination whenever a c-frame of an application

is processed. Even in the case that the execution intervals

are set to the minimum, the coordination is performed

occasionally, at the rate of about 0.5Hz, in our setting. It

takes only 0.6ms per coordination on average.

Slack time calculation and scheduling: we investigate

the cost of f-frame scheduling. The scheduling is triggered

frequently, upon the generation of an f-frame, i.e., 125Hz in

our setting. However, the cost is relatively small; each

scheduling decision takes 0.07ms per scheduling on average.

Overall, it consumes under 1% of CPU cycles.

Runtime CPU monitoring: instead of tracking CPU

time at kernel level, SymPhoney records the elapsed time of

f-frame processing. This is negligible, under 1% of CPU.

8. Related Work
Initial trials to provide a common platform for mobile

sensing applications were made in SeeMon [4] and

Orchestrator [6]. They support concurrent applications, and

provide a high-level declarative query language so that

applications simply specify their queries in a context level.

On the other hand, SymPhoney provides a more generic

way of specifying sensing applications as dataflow. As a

platform, the major objective of SeeMon is to efficiently

support multiple sensing applications, whereas SymPhoney

focuses on the coordination between them rather than

efficiency. Orchestrator provides coordination

functionalities similar to SymPhoney, but it focuses on the

coordination on external sensor devices, not effectively

dealing with resource contention on a smartphone.

Jigsaw [5] and Kobe [7] were also proposed to provide

system supports for mobile sensing applications. Jigsaw

focuses on supporting three types of widely-used contexts,

and devises optimization techniques for each context. On

the other hand, SymPhoney targets far wider and highly

customized sensing applications. Kobe conducts runtime

optimization for an application by identifying the best

configuration based on the tradeoff between energy, latency,

and accuracy. Different from SymPhoney, however, it does

not deal with the issues of concurrent sensing applications

running with other typical smartphone applications.

In mobile and sensor systems, there have been

considerable efforts to reduce resource consumption for

continuous sensing and data processing [8][9]. A variety of

techniques have been proposed, such as an energy-fidelity

tradeoff [8], user interest-based sensor management [4] and

hierarchical sensor management [9]. Recently, an approach

is proposed to leverage in-situ collaboration among nearby

users [18], They focus on optimizing resource use for a

single sensing application whereas SymPhoney newly aims

to coordinate resource uses in consideration of multiple

concurrent applications. These techniques designed for

individual applications can be incorporated into

SymPhoney and further improve its performance supporting

concurrent applications more efficiently.

In the field of data stream processing, several dataflow

execution engines have been proposed in server

environments [12][13]. They mostly focus on the dataflow

graphs composed of relational operators, such as selection,

join, and aggregation. SymPhoney is a new trial to develop

a sensing flow execution engine for a smartphone,

specialized for sensing applications; it deals with diverse

operators for sensing, feature extraction (FFT, MFCC), and

context inference (GMM, Decision tree). Recently, a server

engine, XStream [13], has been proposed to support

operators for signal processing. However, it does not deal

with the resource contention problem arising when

executing concurrent application flows.

Scheduling workloads subject to deadlines has been

substantially studied for several decades [21][22]. Many

successful scheduling techniques such as EDF and LST

Table 2. Quality tradeoff

Quota for SymPhoney 50% 40% 30% 20%

VideoPlayer Avg. CPU 50.4% 55.6% 67.6% 75.3%

SymPhoney Avg. CPU 44.2% 39.3% 29.1% 20.2%

Total utility 3 2.94 2.65 2.13

223

have been introduced for a variety of scheduling objectives,

constraints, and system models. Building upon such

theoretical results, SymPhoney adopts the principle of LST

into sensing flow scheduling. Interestingly, sensing

applications are associated with their own characteristics,

such as soft real-time, continuous and patterned workloads,

and energy constraints. This raises new challenges in

development of general real-time scheduling theories to

accommodate such sensing workloads on smartphones.

9. Conclusion
In this paper, we show that concurrency and

coordination is a key to accelerate the deployment of

mobile sensing applications, which is different from

conventional sensing applications. This is mainly because

smartphones are used as a generic personal computing

platform, whereas other sensor platforms such as motes are

mainly designed for a single specialized application. As we

capture such differences, we propose SymPhoney, a novel

sensing flow execution engine to support concurrent

sensing applications. Through the sensing-flow-aware

coordination approach and methods, it coordinates the

resource use of sensing applications effectively, maximizing

the service qualities with respect to utility and delay. We

demonstrate the coordination capability of our engine

through in-depth experiments.

10. Acknowledgements
This work was supported by the National Research

Foundation of Korea grant (No. 2012-0005733 and No.

2012-0006422) funded by the Korean Government (MEST),

and the SW Computing R&D Program of KEIT (2011-

10041313, UX-oriented Mobile SW Platform) funded by

the Ministry of Knowledge Economy of Korea. The authors

thank Bupjae Lee for his support for experiments.

11. References
[1] H. Lu, et al., Soundsense: scalable sound sensing for people-

centric applications on mobile phones, Proceedings of The
7th International Conference on Mobile Systems,
Applications, and Services (Mobisys '09).

[2] S. P. Tarzia, et al., Indoor Localization without Infrastructure
using the Acoustic Background Spectrum, Proceedings of
The 9th International Conference on Mobile Systems,
Applications, and Services (Mobisys '11).

[3] L. Bao, et al., Activity Recognition from User-Annotated
Acceleration Data, Proceedings of The Second International
Conference on Pervasive Computing (Pervasive '04).

[4] S. Kang, et al., SeeMon: scalable and energy-efficient
context monitoring framework for sensor-rich mobile
environments, Proceedings of The 6th International
Conference on Mobile Systems, Applications, and Services
(Mobisys '08).

[5] H. Lu, et al., The Jigsaw continuous sensing engine for
mobile phone applications, Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems
(SenSys '10).

[6] S. Kang, et al., Orchestrator: An Active Resource
Orchestration Framework for Mobile Context Monitoring in
Sensor-rich Mobile Environments, Proceedings of The IEEE
Pervasive Computing and Communication (PerCom '10).

[7] D. Chu, et al., Balancing Energy, Latency and Accuracy for
Mobile Sensor Data Classification, Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems
(SenSys '11).

[8] B. D. Noble, et al., Agile application-aware adaptation for
mobility, Proceedings of The ACM Symposium on
Operating Systems Principles (SOSP '97).

[9] T. Park, et al., E-Gesture: A Collaborative Architecture for
Energy-efficient Gesture Recognition with Hand-worn
Sensor and Mobile Device, Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems
(SenSys '11).

[10] VPlayer,
https://play.google.com/store/apps/details?id=me.abitno.vpla
yer.t&hl=en.

[11] Y. Ju, et al., An Efficient Dataflow Execution Method for
Mobile Context Monitoring Applications, Proceedings of
The IEEE Pervasive Computing and Communication
(PerCom '12).

[12] D. Carney, et al., Monitoring streams: a new class of data
management applications, Proceedings of 28th International
Conferences on Very Large Data Bases (VLDB '02).

[13] L. Girod, et al., XStream: A signal-oriented data stream
management system, Proceedings of the 24th International
Conference on Data Engineering, (ICDE '08).

[14] I. Hwang, et al., Leveraging Children’s Behavioral
Distribution and Singularities in New Interactive
Environments: Study in Kindergarten Field Trips,
Proceedings of The Tenth International Conference on
Pervasive Computing (Pervasive '12).

[15] H. Jang, et al., RubberBand: Augmenting Teacher’s
Awareness of Spatially Isolated Children on Kindergarten
Field Trips, Proceedings of The 14th International
Conference on Ubiquitous Computing (Ubicomp '12).

[16] Completely Fair Scheduler ,
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler.

[17] A. Krause, et al., Trading off prediction accuracy and power
consumption for context-aware wearable computing,
Proceedings of The International Symposium on Wearable
Computers (ISWC '05).

[18] Y. Lee, et al., CoMon: Cooperative Ambience Monitoring
Platform with Continuity and Benefit Awareness,
Proceedings of The 10th International Conference on Mobile
Systems, Applications, and Services (Mobisys '12).

[19] L. Zhang, et al., Accurate Online Power Estimation and
Automatic Battery Behavior Based Power Model Generation
for Smartphones, Proceedings of The International
Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS '10).

[20] Newton’s method,
http://en.wikipedia.org/wiki/Newton%27s_method.

[21] C. L. Liu, et al., Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment, Journal of
the ACM, Vol. 20, No. 1, January 1973.

[22] J. Leung, A New Algorithm for Scheduling Periodic, Real-
Time Tasks, Algorithmica, Vol. 4, 1989.

[23] J. Lester, Validated caloric expenditure estimation using a
single body-worn sensor, The 11th International Conference
on Ubiquitous Computing (Ubicomp '09).

[24] Y. Gu, et al., Data Forwarding in Extremely Low Duty-Cycle
Sensor Networks with Unreliable Communication Links,
Proceedings of the 5th ACM Conference on Embedded
Networked Sensor Systems (SenSys '07).

[25] Y. Lee, et al., MobiCon: Mobile Context-Monitoring
Platform, Communications of the ACM, March 2012.

224

http://en.wikipedia.org/wiki/Completely_Fair_Scheduler

