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HIGHLIGHTS

1. Proposed a new problem setting, TSMDS, which
exists in many domains in the real world but has

not been thoroughly explored yet. Positive
2. A novel framework, GSL, addressing the TSMDS

problem, utilizing the principles of contrastive
learning in a group setting.
3. Early results demonstrate that GSL outperforms Anchor
supervised and semi-supervised training baselines
proposed in the HAR literature by as high as 0.15
in F-1 score. r

METHODOLOGY: Group-supervised learning (GSL)

e Group-supervised learning. A contrastive self-supervised
learning framework which extends contrastive learning to a
setting with groups of time-aligned devices

e Key intuition. Take the time-aligned samples from devices
similar to anchor device , and pull them closer to it in the
embedding space while pushing samples from dissimilar devices
away

e Group Supervised Contrastive Loss. We train the model using
a novel loss function called Group Supervised Contrastive Loss,
which is an extension of the standard contrastive loss function
but compatible with multiple positive and negative samples
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e Given: Time-aligned unlabeled data samples from K
devices including an anchor device

e Goal: Leverage the time-aligned, unlabeled multi-device
datasets to |learn a feature extractor that can generate

RESULTS
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