IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

9319

Synergy: Towards On-Body Al via Tiny Al
Accelerator Collaboration on Wearables

Taesik Gong, Member, IEEE, SiYoung Jang, Member, IEEE, Utku Giinay Acer
and Chulhong Min

Abstract—The advent of tiny artificial intelligence (AI) accelera-
tors enables Al to run at the extreme edge, offering reduced latency,
lower power cost, and improved privacy. When integrated into
wearable devices, these accelerators open exciting opportunities,
allowing various AI apps to run directly on the body. We present
Synergy that provides Al apps with best-effort performance via
system-driven holistic collaboration over AI accelerator-equipped
wearables. To achieve this, Synergy provides device-agnostic pro-
gramming interfaces to AI apps, giving the system visibility and
controllability over the app’s resource use. Then, Synergy maxi-
mizes the inference throughput of concurrent Al models by creating
various execution plans for each app considering Al accelerator
availability and intelligently selecting the best set of execution plans.
Synergy further improves throughput by leveraging parallelization
opportunities over multiple computation units. Our evaluations
with 7 baselines and 8 models demonstrate that, on average, Syn-
ergy achieves a 23.0 X improvement in throughput, while reducing
latency by 73.9% and power consumption by 15.8 %, compared to
the baselines.

Index Terms—On-body Al, tiny AI accelerator, accelerator
composition, wearables.

1. INTRODUCTION

HE advent of tiny artificial intelligence (AI) accelera-
T tors, such as the Analog MAX78000 [1], MAX78002 [2],
Google Coral Micro [3] and GreenWaves GAP-9 [4] has brought
Al closer to us than ever before, offering reduced latency,
low power cost, and improved privacy. These accelerators, de-
signed for microcontrollers (MCUs) with small form factors
(e.g., MAX78000: 8 mm x 8 mm in Fig. 1), are becoming
integrated into wearable devices recently [5], [6], [7], [8], e.g.,
smart earbuds, patches, watches, glasses, wristband, and shoes.
This integration transforms wearable devices from smartphone-
dependent accessories—used merely for data collection or no-
tification alerts—into Al-capable devices.

Received 25 September 2024; revised 23 February 2025; accepted 7 April
2025. Date of publication 29 April 2025; date of current version 3 Septem-
ber 2025. Recommended for acceptance by X. Peng. (Corresponding author:
Chulhong Min.)

Taesik Gong was with Nokia Bell Labs, Murray Hill, NJ 07974-0636 USA.
He is now with the UNIST, Ulsan 44919, South Korea (e-mail: taesik.gong@
unist.ac.kr).

SiYoung Jang, Utku Giinay Acer, and Chulhong Min are with Nokia Bell
Labs, Murray Hill, NJ 07974-0636 USA (e-mail: siyoung.jang @nokia-bell-labs.
com; utku_gunay.acer@nokia-bell-labs.com; chulhong.min@nokia-bell-labs.
com).

Fahim Kawsar is with Nokia Bell Labs, Murray Hill, NJ 07974-0636
USA, and also with University of Glasgow, G12 8QQ Glasgow, U.K. (e-mail:
fahim.kawsar @nokia-bell-labs.com).

Digital Object Identifier 10.1109/TMC.2025.3564314

, Member, IEEE,

, Fahim Kawsar

, Member, IEEE

Personal
fitness
coach

Memory

MAX78000
(Tiny Al accelerator)
8mm

Attention
alert

Fig. 1. Wearable computing powered by tiny Al accelerators, simultaneously
running on-body Al apps.

With the proliferation of wearable devices, it is natural to
expect that personal computing environments on the body will
form a network of these Al-capable wearables [9]. This enables
a new class of on-body Al apps to emerge, which enhance
app functionality by leveraging on-device Al capabilities with
diverse sensing capabilities and interaction methods available
across wearables. These apps, running on wearable devices,
continuously monitor a variety of user contexts and proactively
provide context-aware services to users directly via diverse
wearable interfaces. Fig. 1 shows an example scenario with three
concurrent on-body Al apps: (i) memory augmentation detects
greeting words using a smartwatch microphone and captures
nearby faces using glasses-mounted cameras, (ii) attention alert
monitors surrounding visual events through glasses and provides
haptic alerts on a ring, and (iii) personal fitness coach analyzes
exercise routines and vital signs on a smartwatch and smart
shoes, providing auditory feedback via earbuds.

This computing environment, surrounded by Al-capable
wearable devices, presents exciting opportunities for the run-
time system. By leveraging the runtime collaboration of Al
accelerators, it can support on-body Al apps with enhanced
performance efficiently. The system can dynamically select
the most suitable devices to execute tasks for sensing, model
execution, and interaction. By strategically distributing model
workloads across different Al accelerators, the system can pre-
vent resource conflicts and ensure smooth operation, improving
both individual app performance and overall system efficiency.
Additionally, by splitting concurrent models and running the
splitchunks over multiple Al accelerators, the system maximizes

1536-1233 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7222-2145
https://orcid.org/0000-0001-5057-9557
https://orcid.org/0000-0002-5197-9840
mailto:taesik.gong@penalty -@M unist.ac.kr
mailto:taesik.gong@penalty -@M unist.ac.kr
mailto:siyoung.jang@nokia-bell-labs.com
mailto:siyoung.jang@nokia-bell-labs.com
mailto:utku_gunay.acer@nokia-bell-labs.com
mailto:chulhong.min@nokia-bell-labs.com
mailto:chulhong.min@nokia-bell-labs.com
mailto:fahim.kawsar@nokia-bell-labs.com

9320

processing capacity, supporting more models simultaneously
and accommodating larger models that a single Al accelerator
cannot handle.

However, it is not straightforward to realize these benefits.
In the current paradigm for multi-wearable programming, task-
device assignment decisions are often made at the development
time. These individual app-level decisions may not be optimal
at runtime due to the dynamic nature of wearable devices and
dependencies on resource usage between concurrent apps. One
may consider existing model partitioning techniques [10], [11],
[12], [13], [14], [15], [16]. While they support dynamic model
splitting, they mainly focus on optimizing the splitting decision
for a single Al model, thereby lacking a holistic view that consid-
ers (i) interdependency among different tasks—sensing, model
inference, interaction on distributed devices—within an app and
(i1) resource conflict across concurrent apps. Additionally, no
existing partitioning work has been built for tiny Al accelerators
yet, making it difficult to directly adopt them for on-body Al
apps. Note that such dynamic challenges can be addressed
by sending raw sensor and offloading all processing tasks to
smartphones, which can be assumed to be always available.
However, this incurs high communication costs to both wearable
devices and the smartphone, thereby leading to increased power
consumption and degraded inference throughput of Al models,
as discussed in Section II-B.

We present Synergy, a first-of-its-kind runtime system de-
signed to efficiently support on-body Al apps on tiny Al
accelerator-equipped wearable devices. At its core, Synergy
provides runtime orchestration that makes holistic decisions of
task-device assignments for concurrent apps over distributed Al
accelerators. To this end, Synergy decouples task-device assign-
ment decisions from app logic by providing device-agnostic pro-
gramming interfaces. Then, Synergy dynamically creates vari-
ous execution plans (mapping logical tasks to physical devices)
for each app, considering available resources, communication
over devices, model splitting options, etc. Synergy selects the
optimal set of execution plans to maximize the system-wide per-
formance. In this paper, we focus on maximizing the execution
throughput of Al apps, but other objectives can be adopted as
well.

To this end, Synergy has four key components. (i) Synergy
generates holistic collaboration plans, each representing the
mapping of all logical tasks in concurrent apps to physical
resources, by holistically considering resource demands from
concurrent apps and resource availability of wearables. (ii) For
efficient decision-making on resource-constrained MCUs, we
propose a data intensity-aware pipeline accumulation method
that helps Synergy reduce the exponential search cost to linear
cost while providing comparable performance to the complete
search. (iii) We devise a novel latency estimation model de-
signed for tiny Al accelerators which is used to estimate and
compare the throughput of holistic collaboration plans. (vi) After
deployment, Synergy further improves model throughput via an
adaptive task parallelization scheduler. It reduces the latency
of a selected collaboration plan by maximizing parallelization
opportunities of concurrent apps at runtime across distributed

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

I
o
o

N
(=3
o

Energy (mJ)

0 0.140.4
MAXT8000,; \%32650 o 1\32F 7

W AXT 8000 M AX32650 STM32F7

Fig. 2. Performance comparison between Al accelerator (MAX78000) and
MCUs (MAX32650 and STM32F7).

computation units on wearables (e.g., processors, Al accelera-
tors, wireless chips).

We prototyped Synergy on two tiny Al accelerator plat-
forms, MAX78000 and MAX78002. We compare Synergy with
7 baselines including state-of-the-art model partitioning tech-
niques [10], [11], [12], [13], [14], [15], [16]. Our extensive
evaluation with 8 Al models shows that Synergy consistently
outperforms the baselines, with on average 23.0x throughput
gain across various scenarios, while reducing latency by 73.9%
and power consumption by 15.8%. Our in-depth experiments
also show that Synergy effectively adapts to various runtime
environment changes: the number of devices, the number of
pipelines, heterogeneous device resources, different source and
target mapping, and different objectives.

II. BACKGROUND & MOTIVATION
A. Tiny Al Accelerators

The integration of Al accelerators into MCUs represents a
significant move towards distributed, on-device Al, ensuring
enhanced user privacy and minimal latency. Although a number
of tiny-scale accelerators have been proposed recently, very few
products are commercially available and provide access and
control over their underlying operations. In this paper, we chose
Analog MAX78000 [1] and MAX78002 [2] as our primary
platforms since they are the most widely used tiny Al accelerator
research platforms [17], [18], [19], [20], [21], [22], [23], [24],
[25] owing to the disclosed hardware details and open-source
tools, enabling in-depth analysis and modification of operations.

Both MAX78000 and MAX78002 have an Arm Cortex-M4
processor with different memory capacities; 512 KB of flash
and 128 KB of SRAM on MAX78000 and 2.5 MB and 384 KB
on MAX78002. For acceleration, they feature a convolutional
neural network (CNN) accelerator that contains 64 CNN pro-
cessors specially designed for parallel convolutional operations
at ultra-low power. The CNN accelerator has the dedicated
memory; 512 KB of data memory, 442 KB of weight memory,
and 2 KB of bias memory on MAX78000 and 1.3 MB, 2 MB,
and 8 KB on MAX78002, respectively.

Recent benchmark study [21], [26] quantifies the MAX-
78000’s superior performance in terms of latency and energy
cost. Fig. 2 shows MAX78000 significantly outperforms a con-
ventional MCU, MAX32650 with Cortex-M4 at 120 MHz [27]
and even a high-performance MCU, STM32F7 with Cortex-M7
at216 MHz [28] in key Al models. Latency for keyword spotting
(KWS) is reduced to 2.0 ms compared to 350 ms and 123 ms

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES

(a) Al accelerator collaboration (b) Smartphone offloading

—— : Device-to-device
communication (d2d)

: Model

Fig.3. Comparison between (a) Al accelerator collaboration via Synergy and
(b) phone offloading.

for MAX32650 and STM32F7, respectively. Energy efficiency
is similarly enhanced, with MAX78000 consuming merely 0.40
mlJ for face detection (FacelID), in contrast to 42.1 mJ and 464
mJ consumed by MAX32650 and STM32F7.

B. Al Accelerator Collaboration

With wearable devices integrating tiny Al accelerators, we
foresee a proliferation in on-body Al apps running across dis-
tributed wearables (Fig. 1). These environments offer opportu-
nities to enhance performance through runtime collaboration of
AT accelerators as follows.

Dynamic device selection: The system can dynamically al-
locate tasks such as sensing, model execution, and interaction
to the most suitable devices based on resource availability and
conditions. For example, a higher-performance Al accelerator
can be chosen for an inference task as the set of available
wearable devices changes.

Strategic workload distribution: Concurrent apps often face
resource conflicts. For example, assigning multiple models to
the same Al accelerator can cause out-of-resource (OOR) errors
if their combined size exceeds the capacity. By distributing
workloads across Al accelerators, the system prevents conflicts
and ensures efficient execution of apps.

Optimizing Al accelerator utilization: Tiny Al accelerators
are usually optimized for single-model support. By splitting and
distributing models across multiple Al accelerators, the system
can maximize processing capacity. This approach supports more
models simultaneously and accommodates large models that
cannot fit into a single Al accelerator.

1) Why Not Offloading?: Offloading Al model execution to
a smartphone might seem advantageous due to its higher pro-
cessing capability. In particular, this would be true for conven-
tional mobile apps where model execution occurs intermittently,
mostly upon a user’s request, and the service with the final
inference output is provided on a smartphone. However, this
approach can be inefficient for on-body Al apps because (i) they
require continuous sensing and inference for situational services
and (ii) services are directly provided through wearable devices.
Fig. 3 shows an illustrative comparison when the three apps
introduced in Section I are concurrently running. While the Al
accelerator collaboration can support the concurrent execution
of three apps with four device-to-device (d2d) communications
as shown in Fig. 3(a), smartphone offloading requires seven d2d

9321
§4 4.20 2.0g §30 29.67 1.9g
= 1.8}; ézo 1.8\5 I TPUT
E g e g § 10 v7 g8 —— Power
= |0.07 148 F 130 16%
Offload Synergy Offload Synergy
Workload 1 Workload 2

Fig. 4. Comparison of Synergy and phone offloading.

communications as shown in Fig. 3(b), as the data must pass
through a smartphone regardless of the data path. Thus, such
offloading incurs additional data communication and results in
increased latency and energy costs. These additional transmis-
sion costs are unnecessary when apps run solely on wearables.

Continuous transmission of raw sensor data to a smartphone
also causes communication and energy bottlenecks, affect-
ing both smartphones and wearables. We compared the total
throughput of model execution using Workload 1 and 2 from
Section VI-B. By eliminating unnecessary links, Synergy im-
proves throughput by 57.7 x and 28.8 x compared to smartphone
offloading, as shown in Fig. 4. Despite frequent model execution,
Synergy consumes less or comparable power due to avoiding
energy-intensive data communication.

Based on these findings, we can conclude that offloading
(sending raw sensor data to a smartphone) is not effective when
(1) the size of raw sensor data is larger than that of the interme-
diate or final results, (ii) the final results need to be delivered
to wearable devices for the service, and (iii) the model needs
to be executed frequently for situational and proactive services,
which is the case for on-body Al apps.

III. SYNERGY DESIGN
A. Limitations of Existing Approaches

In the current multi-wearable programming paradigm, task-
device assignments are predetermined at development time, lim-
iting adaptability in dynamic environments with concurrent Al
apps and heterogeneous wearables. This app-level assignment
decision poses several challenges:

e Lack of adaptability to resource contention: If a memory
augmentation app relies on a smartwatch’s Al accelerator,
it may underperform or fail due to competition from other
apps or battery depletion, even when other devices have
available accelerators.

o Limited visibility into available resources: Developers lack
real-time awareness of available Al accelerators and their
capabilities, making it difficult to leverage multiple devices
efficiently.

Existing model partitioning techniques [10], [11], [12], [13],
[14], [15], [16] primarily focus on offloading computation to
powerful devices (e.g., smartphones or cloud). While they could
be adapted for distributed on-body Al accelerators, they have
fundamental limitations:

o Single-model optimization: These techniques optimize

splitting decisions for individual models, without consid-
ering: (i) Resource dependencies between concurrent apps.

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

9322

Pipelines: P1[®>|E|>@] pz@ E‘ CD]

(a)Independent decision (b)Model-centric joint decision (c)Holistic decision

3 execution plan ¥
(R (@8 E8O) (@8 50

PEEOLEEY (PE EFO

d2d: 4 §deploy d2d: 6 d2d: 2
(a) (b) (c)
d Iﬂ d}lﬁ' TPUT (inf/s) N/A 0.33 0.51
Latency (s) N/A 6.1 4.8

Out-of-resource (OOR)

@Source (sensing) EModel @Target(app logic) d Device

*d2d: device-to-device communication counts

Fig. 5. Comparison of decision approaches.

(ii) Interdependencies between model inference and other
tasks (e.g., sensing and interaction).

® [ncompatibility with tiny Al accelerators: No existing
method is specifically designed to partition models onto
tiny Al accelerators, leading to inaccurate performance
modeling in resource-constrained environments.

® [ndependent decision-making: Existing partitioning meth-
ods split and deploy each model independently, ignoring
conflicts among models. This can lead to resource con-
tention and out-of-resource (OOR) failures, particularly
for memory-constrained accelerators. Example: As shown
in Fig. 5(a), if two apps deploy model chunks to the same
device (dy), the full model of p; s m; and the partial model
of p2’s mo may exceed d;’s memory capacity, leading to
OOR failures.

® Model-centric joint decision: Some methods extend model
partitioning to account for memory constraints, filtering out
unsupported cases. However, this model-centric view still
remains suboptimal, as it ignores sensing and interaction
costs in an app’s end-to-end pipeline. Example: As illus-
trated in Fig. 5(b), even when split models of m; and ms
avoid memory conflicts, long-distance execution between
source and target devices increases communication over-
head, degrading overall performance.

These limitations highlight the need for a holistic, system-

driven approach that considers concurrent workloads, device
heterogeneity, and end-to-end execution costs.

B. Our Approach: Al Accelerator Collaboration With a
Holistic View

We propose shifting from app-level independent decision-
making to system-driven collaboration in environments with
concurrent Al applications on distributed AI accelerator-
equipped wearables. Our approach introduces the following key
innovations:

® Decoupled task-device assignment: Existing approaches

tightly couple task execution with app logic, limiting flex-
ibility. We decouple task-device assignment, allowing the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

runtime system to gain system-wide visibility and fine-
grained control over Al accelerator collaboration.
® Device-agnostic programming interface: Synergy provides
a programming model (Section IV-B) that enables devel-
opers to define end-to-end Al pipelines without specifying
target devices. This abstraction facilitates dynamic task
placement, adapting execution based on real-time resource
availability.
® Holistic collaboration and runtime optimization: Unlike
existing methods that optimize resource allocation per app,
Synergy takes a holistic approach, considering both intra-
app and inter-app dependencies. It constructs a system-
wide collaboration plan by leveraging direct knowledge
of concurrent workloads, resource availability, and task
dependencies. The runtime dynamically assigns tasks to
devices based on their capabilities and splits AI models
across distributed Al accelerators to maximize efficiency.

® End-to-end performance optimization: Beyond model par-
titioning, Synergy optimizes task placement by minimizing
communication overhead between source, execution, and
target devices. This improves throughput and reduces over-
all latency. Fig. 5(c) illustrates an example of this holistic
collaboration.

By adopting a system-driven approach, Synergy overcomes
the limitations of independent per-app optimization, improving
efficiency, reducing latency, and enhancing Al accelerator uti-
lization in multi-app distributed Al environments.

C. System Scope

Moderator-initiated orchestration: In our current implemen-
tation, orchestration tasks—discovering and managing devices,
creating and selecting holistic collaboration plans, and deploy-
ing them to devices—are managed by an external moderator,
such as a smartphone. This is due to the limited computing
capabilities of MCUs and their lower accessibility compared
to smartphones, as users may not always wear their wearables.
Orchestration is needed only when there is a change in apps
or device availability. Once set up, runtime model inference
operates independently on wearable devices. We envision a
shift towards a more decentralized approach, embedding these
orchestration capabilities into powerful wearables, facilitating
self-sufficiency in wearable Al systems and reducing the need
for external devices.

Target metric: To execute multiple models across distributed
devices, various system-wide objectives can be considered, such
as maximizing inference throughput, minimizing latency, and
reducing energy consumption. This paper focuses on maxi-
mizing overall system-wide model inference throughput, a key
quality of service metric in Al apps. To ensure fairness among
models, we merge multiple app pipelines into a unified one
and maximize its execution per second. Simply maximizing
total throughput—the number of model executions per second—
could let lower-latency models monopolize resources, causing
fairness issues. This target metric can be replaced with other
objectives, such as minimizing latency or energy costs. Results
are reported in Section VI-C4.

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES

Potential synergy with smartphones: While Synergy primar-
ily focuses on tiny Al accelerators on wearable devices and
their collaboration, and we show its benefits over phone of-
floading for on-body AI apps in Section II-B, incorporating
smartphones could enhance system performance and flexibility
in other scenarios. In particular, a hybrid approach leveraging
both wearables and smartphones can be advantageous for cases
where large Al models need to run with body signals, e.g.,
foundation models with IMU data [29] and optical physiological
signals [30]. Another example would be when the final inference
outcome is served using a mobile Ul on a smartphone, thereby re-
quiring no transmission overhead from a smartphone to wearable
devices. By integrating the synergy with smartphones, Synergy
could extend its applicability to a broader range of Al-driven
wearable apps while maintaining seamless user experiences and
efficient on-body computing. We leave this as future work.

IV. SYNERGY RUNTIME TECHNICAL COMPONENTS
A. Overview

This section provides a high-level overview of our approach.
We first summarize the key technical novelties that distinguish
Synergy from existing solutions, followed by a step-by-step
description of Synergy’s operational flow in multi-wearable
environments.

1) Summary of Technical Novelties: Synergy introduces sev-
eral innovations that improve performance and flexibility for
on-body Al applications:

e Device-agnostic programming interface: An abstracted in-
terface for building on-body Al pipelines without specify-
ing target devices at design time.

® Holistic collaboration planning: A global approach that
considers all concurrent apps together, supporting multi-
model splitting and effective resource sharing.

® Progressive search space reduction: A method to mitigate
the combinatorial explosion of multi-pipeline orchestra-
tion, reducing complexity from exponential to near-linear
in the number of pipelines.

® Clock-cycle-based latency modeling: A precise inference-
latency estimator that captures per-layer execution time on
tiny Al accelerators by analyzing hardware clock cycles.

® Online throughput estimation: A lightweight scheme for
dynamically evaluating end-to-end performance in real
time, enabling adaptive selection of the best collaboration
plan.

® Adaptive task parallelization: Mechanisms that exploitidle
computation units by overlapping tasks across multiple
pipelines (inter-pipeline) and consecutive runs (inter-run).

These novelties overcome limitations of per-app approaches
by jointly managing on-body resources. Next, we describe how
Synergy integrates these techniques into its operational flow.

2) Operational Flow: Fig. 6 depicts the runtime stages of
Synergy:

App development & installation stage: On-body Al apps
are developed using the device-agnostic programming interface
(Section IV-B). Developers only need to specify the pipeline’s

9323

rvanes () Ta}-(0) o) L]-Go) P -B-Co)

| Device-Agnostic Programming Interface (§4.1) |

8
Holistic Collaboration Planning (§4.2)

Execution Plans
Holistic Collaboration Plans

%m]}l\
& < d&mv»?ﬁ@vo

ARV > ARV D ARIVO
[?‘ o > > g o OBV 2 »»A@

—

& sensing /\V/Load/unload Dlnference D Tx/Rx O Interaction
$

(a) Development

(b) Orchestration

I

|Progressive Search Space Reduction (§4.4)| | Throughput Estimation (§4.5) |

-
Adaptive Task Parallelization (§4.6) |

Task scheduler O“O“O | I Model Executor |
Communication Manager Resource Monitor

HW McCuU Tiny Al Accelerators Wi-Fi/BT Sensor Actuator

FreeRTOS

(c) Post-Deployment

Fig. 6. An illustration of Synergy’s operational flow.

logical tasks without worrying about which wearables will exe-
cute them. Once the app is installed, the pipeline description is
registered with a moderator that manages device assignments.

Orchestration stage: When running apps or available devices
change, Synergy triggers holistic orchestration by generating
holistic collaboration plans (Section IV-C). It maps all tasks
in concurrent apps to devices by matching task requirements
with device capabilities and potentially splitting model tasks
across distributed Al accelerators. Because exhaustively search-
ing for the best split and device assignment can be compu-
tationally intractable on resource-constrained MCUs, Synergy
applies progressive search space reduction (Section IV-D) to
prune infeasible or suboptimal plans. Once feasible candi-
dates are formed, Synergy employs a novel latency estimation
model and an online throughput estimation method (Section
IV-E) to select the plan expected to yield the highest overall
throughput.

Post-deployment stage: As multiple pipelines execute under
a single holistic collaboration plan, the entire execution cycle
completes when all pipelines finish. This can create idle peri-
ods on certain computation units (e.g., MCUs, Al accelerators,
wireless chips). To further boost throughput at runtime, Syn-
ergy incorporates adaptive task parallelization (Section IV-F),
which overlaps tasks across pipelines (inter-pipeline) and across
multiple runs (inter-run) to reduce idle time and improve overall
system performance.

By coordinating these stages under a single, unified frame-
work, Synergy effectively balances task distribution, model-
splitting decisions, and parallelization strategies to achieve high
performance and resource utilization across multiple on-body
Al accelerators.

B. Device-Agnostic Programming Interface

We structure on-body Al apps as a directed acyclic graph
(DAG) of tasks for several reasons. First, DAGs align well

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

9324

with the architecture of many Al-centered apps. Second, this
structure represents data and device dependencies among tasks,
providing Synergy visibility and controllability of concurrent
apps. Third, DAGs inherently abstract app logic as a series
of tasks, simplifying the division and allocation of these tasks
across distributed devices.

In this work, we categorize tasks into three types: sensing,
model, and interaction. Sensing tasks are specified with require-
ments such as sensor type, resolution, and position. Interaction
tasks are described with requirements like interface type and
physical location. Currently, Synergy supports two types of
requirements: designated device and sensor type for sensing
tasks, and designated device or interface type for interaction
tasks. For model tasks, apps specify an Al model to be executed.
For example, a memory augmentation app pipeline could be
(microphone, KeywordSpotting, camera on glasses), and an
attention alert app could be (camera on glasses, MobileNet,
haptic). In this paper, we support three tasks for a pipeline, but it
can be expanded to a DAG, e.g., conditional inference or fusion
models.

C. Holistic Collaboration Planning

Execution plan creation: As an initial step to exploit available
collaboration options, Synergy creates various execution plans
for each app to run over distributed devices. An execution plan
abstracts the task-device assignment of a pipeline, serving as
the basis for holistic orchestration. The key to obtaining diverse
execution plans from each pipeline is (i) exploring various
combinations of model splitting layers across distributed Al
accelerators and (ii) flexibly mapping source and target tasks
to suitable devices.

An execution plan is defined as a sequence of tuples, each
containing a task and an assigned device (Fig. 6(b)). Synergy
supports seven task types: (i) sensing, (ii) data loading to acceler-
ator memory, (iii) (partial) model inference, (vi) data unloading
from accelerator memory, (v) Tx (transmitting data), (vi) Rx
(receiving data), and (vii) interaction. For two wearables, smart
glasses and a smart ring, a pipeline can be described as (camera
on glasses, EfficientNet, haptic feedback); EfficientNet has 29
layers. Then, one execution plan example would be [camera —
data loading — Ef ficient Net%'® — data unloading — Tx to
ring] for the glasses and [Rx from glasses — data loading —
Ef ficientNet'*?® — data unloading — haptic] for the smart
ring, where E f ficientNet" refers to the model’s layer i to j.

Runnable holistic collaboration plan generation: The next
step is to generate holistic collaboration plans, each integrating
execution plans from all pipelines (one execution plan per each
app). It gives Synergy visibility over resource competition and
dependencies across devices (see Fig. 6(b)). A key consideration
is filtering out plans that cause OOR cases. We consider three
memory constraints: (i) weight memory, (ii) bias memory, and
(iii) the maximum number of layers supported (e.g., 442 KB,
2 KB, 32 for MAX78000 [1] and 1.3 MB, 2 MB, 128 for
MAX78002 [2]). A collaboration plan is runnable if the total
weight memory, bias memory, and number of layers for assigned
tasks do not exceed the Al accelerators’ capacities.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

C— Execution plan
C— Selected plan
p*: sorted pipeline

O(Np, XNp, X +++)

(a) Complete search

pi 24 2 Pu M: # pipelines
— —) l— —)
— —] — N,,: # execution plans
— .)
— r—) — for p;

(b) Progressive search space reduction O(Np; + Np3 +)

Fig.7. Comparison between complete search (a) and our progressive pipeline
selection (b).

D. Progressive Search Space Reduction

We propose a progressive search space reduction method to
reduce the intractable search space for the holistic collaboration
plan selection. For each pipeline p, the number of execution plans
available IV,, can be modeled as: IV, = ZdD:1 pPag-1-1Cyq_1 -
D2, where D and L denote the number of available devices
and model layers, respectively. pP, represents d-permutation
of D, which means possible device orders to use, ;,_1Cy_1 is
d — 1 combinations of L — 1, which is model splitting candi-
dates, and D? is all source/target device mappings, respectively.
This search space grows exponentially for holistic collaboration
planning with concurrent pipelines, i.e., O(Np, X Np, x ...).
For instance, for three small models (a 9-layer KWS, a 14-
layer SimpleNet, and a 19-layer UNet in Section VI-A) with
three MAX78000 devices, the number of holistic collabora-
tion plans that can be generated is 1,971 x 4,941 x 9,261 =
90, 190, 202, 571. It is evident that a complete search algorithm
considering all combinations requires substantial computational
overhead. To mitigate this, we propose data intensity-aware
execution plan accumulation, shown in Fig. 7. This approach
arranges execution plans in sequence via our data intensity
metric and selects an execution plan for one app at a time,
building on the collaboration plan integrated with previously
selected execution plans from earlier apps, thereby reducing
complexity to O(N,, + N, +---).

Pipeline prioritization: The key to data intensity-aware execu-
tion plan accumulation is determining the sequence of pipelines.
Synergy prioritizes data-intensive pipelines for execution plan
selection, meaning pipelines that require the transmission of
larger sensing data and intermediate outputs. The intuition is
that optimizing data-intensive pipelines yields greater overall
benefits for the system. To understand the relationship between
data intensity (i.e., data size) and latency, we conducted a
preliminary measurement. Fig. 8 shows layer-wise latency for
inference, memory, and communication, alongside output data
size using UNet [31] as an example. Compared to inference
latency (1.5 ms), both memory latency (10.6 ms) and com-
munication latency (6869.1 ms) are significantly higher, being
7x and 4579 x greater, respectively. This latency gap between
inference and communication is notable in tiny Al accelerators
designed for fast inference. Moreover, the output size varies
significantly across different layers, with the lowest layer latency
at 4426.2 ms and the highest at 161864.5 ms, indicating a 36 x
difference. These findings suggest that (i) the end-to-end latency

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES

HE Inference Latency SN Memory Latency HEE Communication Latency
@ Output Size

Reeeseeeeed
TITIIIZITT

=

<

Output Size (bytes)

8 9 10 11 12 13 14 15 16 17 18 19
Layer Index

Fig. 8. Layer-wise latency analysis for UNet. The y-axis is in the logarithmic
scale. Since the scale is logarithmic, the total height of each stacked bar
represents the geometric sum of its components, making small values appear
relatively smaller while highlighting differences across orders of magnitude.

TABLE I
WORKLOAD AND MODEL DESCRIPTION USED IN THIS STUDY

Workload Pipeline Models Model Size Input Size Avg. Out Size
1 ConvNet5 71158 28x28x1 14031

1 2 ResSimpleNet[37] 381792 32x32x3 11217

3 UNet([31] 279084 48x48x48 74547

4 KWS[35] 169472 128x128x1 7976

2 5 SimpleNet[38] 166448 32x32x3 9237

6 WideNet[38 313700 32x32x3 10091

3 7 EfficientNetV2[39 627220 32x32x3 66468

4 8 MobileNetV2[36 821164 32x32x3 296318

Sizes are all in bytes.

of a pipeline varies greatly depending on the model split in the
execution plan, (ii) latency is strongly related to the size of data
exchanged, and (iii) prioritizing data-intensive pipelines could
offer more optimization opportunities due to fewer resource
conflicts with other pipelines.

Pipeline arrangement and accumulation: We define a
pipeline’s data intensity as the average data size of transmission
over all execution plans. Specifically, given the input size InSi
and output size Out$*#® for each layer [€ L, the data intensity
of a pipeline is defined as: (In®% +)", Outf*®®)/(L + 1).
The pipelines are sorted in descending order with this metric.
Then, for each pipeline, Synergy generates runnable holistic
collaboration plans by combining each execution plan of the
current pipeline with the previously selected execution plans
from earlier pipelines. Then, Synergy selects the execution plan
of which holistic collaboration plan is expected to have the
highest system-wide throughput based on our online throughput
estimation (Section IV-E).

Comparison with other prioritization methods: We investi-
gate (i) how significantly our selection reduces the search space
compared to a complete search, and (ii) how close our priori-
tization method is to the optimal selection compared to other
alternatives. We compare Synergy with seven baselines:
the complete search (Oracle), ascending order of data in-
tensity (DatalntensityAsc), descending/ascending order of
model size (ModelSizeDes/ModelSizeAsc), and descend-
ing/ascending order of the number of model layers (NumLayers-
Des/NumLayersAsc), and without prioritization (Sequential).
Except for Oracle, the six baselines use the execution plan
accumulation method but with different prioritization objectives.
In this experiment, we assume three concurrent pipelines with
two MAX78000 devices and consider all possible combinations
of three pipelines out of eight (Table I). Fig. 9 shows the

9325

Sequential
NumLayersAsc
NumLayersDes

ModelSizeAsc
ModelSizeDes
DatalntensityAsc
DatalntensityDes (ours)
Oracle

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (ratio)

Fig. 9. Comparison among different pipeline prioritization strategies against
complete search (Oracle).

(1) Sensing / (6) Rx _ (5) Tx
.|||-|||||< Q@E®

Al Accelerator
(3) inference

Ll
Pooling Engine
(2) load v

<= ¥,
(4)unload "y,

G

Conv@ngine

[] 1y
Parallel Processors

Data

Fig. 10. Tasks involved in a pipeline for latency modeling (1)-(6) from the
viewpoint of a device.

relative throughput ratio compared to Oracle by averaging the
throughput over all pipeline combinations. The results validate
our design choice. Synergy outperforms the other alternatives,
showing only a 3.9% degradation in overall throughput com-
pared to the complete search. Additionally, our execution plan
accumulation approach results in a 5576 reduction in search
space compared to Oracle. Note that the other prioritization
methods have the same search space as ours because they are all
based on our progressive pipeline selection.

E. Throughput Estimation for Distributed Tiny Al Accelerators

For holistic collaboration plan selection, evaluating the
throughput of a plan is necessary. To achieve this, we first model
the execution latency for each task and estimate throughput
based on this latency model. Fig. 10 illustrates the operation of
the five types of tasks ((1)-(6)) involved in a device. We present
(i) our novel latency estimation model for model inference tasks,
which reflects the unique characteristics of tiny Al accelerators
(Section IV-E1), and (ii) the latency estimation for other tasks
(Section IV-E2). We then introduce our technique for estimating
the system-wide throughput of a holistic collaboration plan
(Section IV-E3).

1) Latency Modeling for Tiny Al Accelerators: For latency
estimation of model splitting options, existing studies rely on
measurement-driven approaches: online latency measurement
by running each model layer on the target device directly [12],
[13] or offline latency modeling with model configurations [10],
[14], [15], such as learning a regression model based on the
number of model parameters and latency. The first approach—
direct runtime measurement for each layer—is accurate and
feasible for two-tier architectures (e.g., a smartphone and a cloud
server) with limited cases but entails significant overhead in our
scenario involving multiple models and resource-constrained

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

9326

g +
® ConvNet5

104 ‘..; 104 ."r' m KwS
@ * _;_'“'* + @ ‘f A SimpleNet
2108 .*‘-I- + 2108 3 ¥ ResSimpleNet
XA gL > X WideNet
S 102 i "" N $ 102 . + UNet
s ll “ s ‘,"9: EfficientNet

10 X 10! f + MobileNetv2

° ,>v AV
| L
10°10* 10° 10° 10°
Model Parameters # Cycles
(a) b)
Fig. 11. Correlations of latency with (a) trainable parameters (left) and (b)

accelerator clock cycles (right). Each dot means a different layer within a model.

devices. The second approach—latency modeling with offline
profiling—mitigates this issue but has critical limitations in our
environment. First, its scalability is highly limited, requiring
profiling of all possible models and Al accelerators before
app deployment. Second, due to the unique characteristics of
Al accelerators, existing configuration-based latency modeling
may not work. Fig. 11(a) shows the relationship between the
number of model parameters and the corresponding inference
latency of each layer in eight models on MAX78000. Due to
hardware-level optimization in tiny Al accelerators, there is a
weak correlation between these two variables.

To address these issues, we propose a clock cycle-based la-
tency model. Unlike measurement-driven approaches, our model
calculates the number of clock cycles required for arithmetic
operations of a given layer on Al accelerators, reflecting the
internal operation of convolution accelerators on tiny Al ac-
celerators. The number of clock cycles is, by design, propor-
tional to the latency, as the model inference task runs solely on
dedicated hardware (tiny Al accelerator). This approach would
be inaccurate for general-purpose processors because their use
is shared with other system components or apps. Specifically,
the latency within the AI accelerator can be represented as
follows:

Eai_acc - Eload + ﬁinf + £unloada (1)

where L;ys is the inference latency with the Al accelerator,
and L1044/ Lun1oaq 18 the data (un)loading latency between the
processor (Arm Cortex-M4) and Al accelerator via SRAM.

Inference latency modeling: To model L;y: ((3) in Fig. 11),
we calculate the number of clock cycles C at Al accelerators. We
can estimate the latency of the inference by dividing the number
of clock cycles per each layer C; with the clock frequency F;
of the Al accelerator that processing layer [, i.e., Lins =), %.
Specifically, given the shape of an input (Hip, Wiy, Cip) and
the corresponding output (Hout, Wout, Cous) Of a layer, repre-
senting the height, width, and number of channels respectively,
the number of clock cycles for fully connected layers (MLP) and
convolutional layers (CNN) under sequential processors such as
Arm Cortex-M4 are as follows:

@MLP = Hin . Win . Cin ' C'out (2)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

(CCNN - K2 . Hin . Wout . Cin . C'out (3)
K refers to the size of the kernel. Note that tiny Al accelerators
have (i) parallel computation units that parallelize operations
across channels and (ii) convolution engines that process the
convolution with a single clock cycle. Given the number of
parallel convolutional processors, P, the clock cycles on Al
accelerators are reduced to:

CYin

CMLP = Hin . Win . IVP—‘ : C’out (4)
Ci

(CCNN = Hin . Wout ' ’VP-‘ ' C'out (5)

Fig. 11(b) shows the correlation between the clock cycles of
every layer in eight models and the corresponding inference
latency. Unlike Fig. 11(a), our clock cycle-based modeling
shows a strong correlation by design. When we translate the
number of clock cycles to the estimated latency with the clock
frequency, the results show that the gap between the estimated
and measured latency is less than 1%.

For memory operations, such as data loading and unloading
between SRAM and accelerator memory ((2) and (4) in Fig. 11),
we use a measurement-driven approach. We estimate £,,9 and
Lun1oaa by profiling them with different data sizes and creating
a linear regression model. Since data communication between
two memories occurs through the central bus at a dedicated data
transmission rate, the runtime latency of memory operations is
proportional to the data size. As memory latency is not affected
by the model architecture, we can model L1054 and Lyp10aq USIiNg
a few data samples of different sizes.

2) Latency Modeling for Other Tasks: Besides operations
on tiny Al accelerators, on-body Al apps involve sensing and
communication (Rx and Tx) tasks ((1), (5), (6) in Fig. 11). For
sensing tasks, we measure the latency for camera and audio
inputs with different parameters (e.g., different sampling rates)
during the profiling phase and estimate the latency by match-
ing the app’s requirements to the profiles. For communication
latency, similar to memory operations on tiny Al accelerators,
we estimate it by dividing the data size by the bandwidth of
the wireless channel. Advanced methods [10], [12] can address
wireless transmission latency fluctuations, but this is beyond the
scope of this paper.

3) Throughput Estimation of Holistic Collaboration Plan:
The next step is to estimate the throughput of a holistic col-
laboration plan (a collection of execution plans from multiple
apps). To this end, Synergy initially estimates the end-to-end
latency of a holistic collaboration plan based on the latency
estimation of tasks in the plan. Since a holistic collaboration
plan is structured as a DAG with multiple source tasks and target
tasks, its end-to-end latency can be defined as the longest path
from any source task to any target task; the path’s length is
the cumulative latency of all tasks within the path. Then, the
system-wide throughput is calculated by taking the inverse of
the end-to-end latency and then multiplying this value by the
number of pipelines.

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES

| Pipeline p; (1.~ T) ‘ | Pipeline p, (71~ T5) | Idle time (d,-Proc)

2nd ryn start
dy-Proc 7.] 7]
dy-Al Acc AR |
d;-Comm 7.
dy-Proc [l 7 | [7 5] \
d-Al Acc [A !
d,-Comm [T [72] [EA E
Pa'a_l'e' (a) Conventional approach time
units
2nd run start

dy-Proc E Iizl
d;-Al Acc A A2 EA
di-Comm [7]] ...
dProc [7, | 7, | [7. [7.]7] (o] 7 |
dy-Al Acc L n] 7 | 7 7]
d,-Comm T 7 |[7e] ! >

(b) Inter-pipeline parallelization time

2nd run start
dy-Proc A EA I 7, 7]
d;-Al Acc [EA A ES ! X 2 2
di-Comm [[
!

deproc [7 [7 [[7 [o[r) o] 7] [7, |
dy-Al Acc L [n] 7 | L rn [n] 7 |
d,-Comm (A A >

(c) Inter-run parallelization + (b) time

Fig. 12. Comparison between the conventional approach (a) and our proposed

adaptive parallelization mechanisms (b, ¢) across two devices (d; and d2).

F. Adaptive Task Parallelization

After selecting the best holistic collaboration plan, Synergy
deploys the tasks and their connection to the corresponding de-
vices. As existing model partitioning techniques [10], [11], [12],
[13],[14], [15], [16] focused on a single run for a single model, a
straightforward way to execute a holistic collaboration plan with
concurrent pipelines over multiple runs (continuous inference
over time) is to run each pipeline sequentially—immediately
run another after the completion of the preceding pipeline—in a
continuous manner, as shown in Fig. 12(a). However, since tasks
in the plan runs over different computation units (processors,
Al accelerator, and communication module) from distributed
devices, such a sequential execution yields long idle time for
unused units. The challenge is how to enhance performance
by effectively utilizing these diverse computation units while
keeping the sequential dependency of tasks within each pipeline.

To further enhance the system-wide throughput at runtime,
we propose a method for adaptive task parallelization, which
consists of two parallelization strategies. First, Synergy max-
imizes parallelization opportunities by concurrently executing
tasks among different pipelines (inter-pipeline parallelization),
which utilizes idle parallel computation units (Fig. 12(b)). Note
that, when multiple tasks from different pipelines are competing
with the same computation units, the later-arriving tasks need to
wait until the completion of the earlier tasks. Second, we extend
this concept to tasks from successive runs within a pipeline
(inter-run parallelization) as shown in Fig. 12(c); for example,
the model inference in the second run does not need to wait
for the completion of the pipeline in the first run when the Al
accelerator is idle and the sensor data for the second run is ready.

To enable these strategies, Synergy employs separate task
queues for each type of computation unit, alongside a dedicated
scheduler. At runtime, on each computation unit, its scheduler
is responsible for dequeuing tasks from its queue and initiating

9327

ESP8266
)

L L
MAX78002
EV Kit

MAX78002
ISR (12mm x 12mm)

Fig. 13. Hardware setup.

their execution. Upon task completion, the scheduler adds the
next task to its corresponding queue. This structured approach
maximizes the utilization of computation units, thereby signif-
icantly improving the throughput of the holistic collaboration
plan at runtime.

V. PROTOTYPE IMPLEMENTATION

We prototyped Synergy on the off-the-shelf MAX78000
feather board [32] and MAX78002 Evaluation Kit [33], which
are a development platform for the MAX78000 [1] and
MAX78002 [2], respectively (Fig. 13). Note that although the
development platform is bulky, the actual size of the accelerators
is tiny (e.g., 8 mm x 8 mm for MAX78000).

For wireless communication, we interfaced MAX78000/
MAX78002 with an ESP8266 Wi-Fi module [34]. To ensure
that the communication process via Wi-Fi does not disrupt
the data transmissions with MAX78000/MAX78002, we have
employed around-robin scheduling algorithm on ESP8266. This
mechanism is designed to alternate the data flow: transmitting
data to the wireless communication channel for outward trans-
mission and redirecting to the serial communication channel
upon receiving data from the Wi-Fi interface. Additionally, we
employ lightweight Internet Protocol a compact, standalone
implementation of the TCP/IP protocol tailored for low-power
devices, consuming a mere 40 KB of memory.

The software system of Synergy is implemented on a FreeR-
TOS with C language. We abstract sensor reading, inference,
and networking functionality as individual tasks, and each task
is scheduled on top of the FreeRTOS scheduler. Once a joint plan
is selected based on the target metric, the model is split to allow
parts of the model to run on different Al accelerators. To this
end, we synthesize the partial model for a given range of layers
for a designated Al accelerator. Synthesizing is the process of
generating device-specific code from pre-trained models. This
involves analyzing the pre-trained model and mapping inputs,
weights, and outputs to memory and processor appropriately. In
this study, we generate C codes from pre-trained PyTorch models
for deployment on MAX78000 and MAX78002 devices.

VI. EVALUATION

A. Experimental Setup

1) Workload: To demonstrate the effectiveness of Synergy
orchestrating and executing on-body Al apps, we design four

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

9328

p— Pipeline

workload 2 [m™7] Model (i*" to jt" layers)

S oo, [0, 0,

“"ﬁ'“g“‘m 00y 7 04 0,

22 42

s

46 56

Fig. 14. Example execution plans (workload 2, 4).

workloads with eight pipelines and eight different models (see
Table I). For the workload design, we considered two scenarios:
concurrent apps, each using a different model (type, size) for
different requirements (Workload 1 and 2) and a single app with
a large model for enhanced capability (Workload 3 and 4). For
the device setup, we used four MAX78000 devices, representing
four smart wearables; an earbud, glasses, a watch, and a ring.
We then assign source and target devices and a model based
on the app scenarios. Fig. 14 shows example execution plans
of Workload 2 and 4. Pipeline 4 (keyword spotting), captures
audio from an earbud (d;), runs KWS [35], and sends results to
aring (dy). Similarly, in Workload 4, pipeline 8 (object detector)
captures images on glasses (ds), runs MobileNetV?2 [36] across
devices, and sends results to a ring (d4). For each pipeline,
various execution plans are generated by leveraging the four
Al accelerators, including splitting models at different layers
and assigning chunks to different devices.

2) Baselines: To the best of our knowledge, there are no
existing studies that address model splitting in multi-pipeline
scenarios across multiple devices. Therefore, we devised several
baselines based on different rationales and adapted state-of-the-
art splitting algorithms to evaluate their effectiveness in our
environments. We consider 7 baselines. The first 4 are heuristic
baselines that consider the resource usage of other pipelines
when selecting the holistic collaboration plan. The last 3 are
based on state-of-the-art algorithms.

MinDev: This heuristic aims to avoid model splitting across
devices as much as possible. The rationale is that using fewer de-
vices would reduce communication overhead between devices,
thereby increasing throughput. For each pipeline, it selects an
execution plan that uses the minimum number of devices to run
its model, considering the resource usage of previously selected
plans, similar to Synergy.

MaxDev: In contrast, MaxDev focuses on maximizing model
splitting over distributed Al accelerators, with the rationale
that more devices could enhance task parallelization, thereby
improving throughput. Unlike MinDev, MaxDeyv selects an ex-
ecution plan that splits the model to all available devices.

PriMinDev: Prioritized MinDev (PriMinDev) enhances Min-
Dev by prioritizing splitting points and device assignment or-
der. For each pipeline, it selects an execution plan that mini-
mizes intermediate output sizes from devices, while using the
fewest possible devices. When selecting the device, it prioritizes
MAX78002 over MAX78000 to reduce splitting.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

PriMaxDev: PriMaxDeyv is the same as PriMinDev except that
it considers execution plans that involve all devices.

IndModel: State-of-the-art model partitioning methods [10],
[11], [12], [13], [14] primarily determine the optimal split
execution plan based on metric estimations. However, these
methods are designed for single-model optimization and do not
directly extend to our multi-model scenario. We categorize them
under IndModel and adapt them for our use case. Specifically,
IndModel selects the best-split execution plan for each pipeline
independently, without a holistic view. The final collaborative
execution plan is then formed by aggregating these indepen-
dently selected plans.

JointModel: ITndModel may lead to out-of-resource (OOR)
errors if the cumulative plan exceeds available resources. To
prevent this, JointModel, a multi-tenant version of IndModel,
conducts a joint resource assessment similar to Synergy.

IndE2FE: IndE2E advances IndModel by incorporating source
and target devices alongside model splitting. Each pipeline
independently selects the execution plan expected to yield the
highest throughput by considering end-to-end (E2E) latency,
from sensing to output delivery. However, it does not account
for the resource usage of other pipelines.

3) Performance Metrics: We consider three performance
metrics: throughput, latency, and energy. Throughput is defined
as the total number of model inferences per second, while latency
is the time taken to execute an end-to-end holistic collaboration
plan, respectively. For energy, we report the average power
consumption for the execution of a holistic collaboration plan.
We measured power consumption with Monsoon power moni-
tor [40].

B. Overall Performance

Fig. 15 shows the result of different methods for the four work-
loads. In terms of throughput, Synergy consistently outperforms
all baselines owing to its holistic decision-making process and
adaptive task parallelization. Synergy on average shows 23.0x
higher throughput than the baselines. In Workload 1 and 2 where
multiple pipelines run concurrently, IndModel (state-of-the-art
model partitioning methods) results in OOR situations. In Work-
load 3 and 4, Synergy continues to exhibit 1.8 x and 2.2 x higher
throughput than the second best (IndE2E) respectively. The
results indicate two key points. First, Synergy boosts throughput
without OOR failures when multiple pipelines exist (Workload
1 and 2). Second, Synergy supports large models through the
collaboration of distributed Al accelerators (Workload 3 and 4).

For the other metrics, we first found that Synergy reduces
latency significantly by 73.9% on average, compared to the base-
lines. This is because maximizing throughput is tightly related to
reduced latency; to maximize the throughput, the pipeline should
be streamlined across multiple processors, which in turn reduces
the end-to-end latency. Interestingly, we found that Synergy
reduces power consumption by 15.8% on average, despite its sig-
nificant throughput improvement of 23.0x that naturally entails
more use of computation units. This is because the major source
of power consumption is data transmission between devices,

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES

9329

MinDev K3 MaxDev [PriMinDev E= PriMaxDev - IndModel 5 JointModel B IndE2E EEl Synergy
.@4 2100 2 N 2 2 7
= 3 kS 3
c2 g 5" :20 g2 gl
12 2 2 2
E o o< © 50 o [-4 8 o o E o S o no_ [-4
= o O [53,%!%} [o]% e} = o o 7 o
o' 0 QLAC 0 o Xlo 0 0 ol
Workload 1 Workload 2
7| N % 0.050
217 5
g 50.025
o
o =
0 0.000
Workload 3

Fig. 15.

Throughput, latency, and power consumption result for four different workloads.

TABLE I
ABLATION STUDY OF SYNERGY

‘Workload 1 Workload 2
JRCSTT PSR ATP — 1507 (nis) Latency () Power 0/5) TPUT (inf/s) Latency () Power (775)
OOR OOR OOR OOR OOR OOR
7 0.06 1763 152 2.30 T30 .55
VG 0.92 3.25 159 15.28 0.20 .69
VA A 272 1.10 61 15.28 0.20 .69
Y Y A 320 0.86 147 29.67 0.10 175

The bold values represent the best performance for each performance metric. For TPUT, higher is better. For Latency and

Power, lower is better.

and maximizing throughput in Synergy naturally minimizes data
communication cost.

1) Ablation Study: We perform an ablative study to under-
stand the effectiveness of each technical component of Synergy.
Table II shows the result. JRC refers to the joint resource con-
sideration among pipelines, and STT refers to device mapping
accounting for source and target tasks (Section IV-C). PSR
means progressive search space reduction (Section IV-D), and
ATP means adaptive task parallelization (Section IV-F). If none
of these are applied, it is the same as the state-of-the-art approach
(IndModel). If all are checked, it becomes Synergy. Overall, the
throughput and latency improve as each of our components is
added. Improving IndModel by addressing resource conflicts
among pipelines to avoid OOR (JRC) is the same as Joint-
Model in our baselines. Note that merely resolving the resource
conflicts is still far from Synergy’s performance. Incorporating
other technical components, STT, PSR, and ATP shows 6.9,
7.6, and 14.3x higher throughput compared to JRC-only, re-
spectively. Similarly, the latency was reduced by 93.0%, 97.3%,
and 98.0% compared to JRC-only, owing to the parallelization
of the pipelines. We also noted that utilizing all components
increased power consumption by around 12.9% compared to
JRC-only, due to the increased use of computation units. These
findings are aligned with the earlier analysis of the overall
performance.

C. In-Depth Analysis

1) Runtime Environment Changes: We investigate how Syn-
ergy adapts to changes in the runtime environment.

Number of devices: In this experiment, we explore Synergy’s
scalability to the change of the number of MAX78000 devices.
We increase the number of devices from two to five while

—e— MinDev MaxDev —4— PriMinDev PriMaxDev
—— IndModel —— JointModel —*— IndBest —#— Synergy @
50.0 =
—20 £
g 40.07 ‘_. —15 &
£ 30.0— 2B
= 20.0- 10 e
> 10.0 05 g
= 00— 3 T 00 §
OOR — : : X — =% —O00R @
2 3 4 5 1 2 3 45 6 <

(a) # Devices (b) # Pipelines
Fig. 16. Impact of runtime environment changes: (a) number of devices and

(b) number of pipelines.

running the same set of four pipelines with ConvNet5, KWS,
SimpleNet, and ResSimpleNet. Fig. 16(a) shows the result.
Interestingly, Synergy significantly outperforms the baselines
as the number of devices increases. This is due to Synergy’s
strategic consideration of accelerator assignments, effectively
minimizing communication overhead between source and target
devices. Conversely, except for IndE2E, the throughput gains for
all other baselines are not notable, even with additional devices.
Another interesting observation is that using more devices does
not always lead to higher throughput. In the case of Synergy,
the throughput saturates once the number of devices reaches 4.
This is because, beyond optimal distribution, further splitting of
models fails to contribute to additional throughput gains.
Number of pipelines: We assessed Synergy’s performance
with a varying number of pipelines, incrementally increasing
from one to six: UNet, ConvNet5, SimpleNet, KWS, ResSim-
pleNet, and WideNet, using four MAX78000 s. To understand
resource competition, we report the average throughput across
pipelines, i.e., the ratio of completed pipelines per second to
the total number of pipelines. Fig. 16(b) shows a downward

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

9330

MinDev KN MaxDev
[T IndModel X™X JointMode! BBl IndE2E

[PriMinDev B3 PriMaxDev
B Synergy

4x MAX78000 3x MAX78000, 1x MAX78002

Fig. 17. Effect of accelerator composition.
MinDev X1 MaxDev [PriMinDev E=3 PriMaxDev
TT IndModel EX1 JointMode! ESBE IndE2E ~ EEEE Synergy
© o £ o
S o S o
o o S o
Any Distributed Overlapped
Fig. 18. Effect of source and target mappings.

trend in average throughput as the number of pipelines increases
for all baselines due to competition for resources. Nonetheless,
Synergy consistently outperforms the baselines, achieving an
average throughput of 1.35 with six pipelines, 19.4x higher
than the second best (PriMaxDev).

2) Composing Heterogeneous Accelerators: To examine
Synergy’s effectiveness in heterogeneous accelerator resources,
we conducted an experiment where one of four MAX78000 de-
vices was substituted with more resource-capable MAX78002.
The workload is comprised of three pipelines: ConvNet5, UNet,
and EfficientNet. Fig. 17 shows the results in two different
setups. The inclusion of a higher-resource device generally led
to an improvement in throughput. With four MAX78000 s,
Synergy achieves a total throughput of 0.93, outperforming the
second best (JointModel) by a factor of 16.4. This throughput
further increases to 3.33 when incorporating one MAX78002.
PriMinDev, which allocates all models exclusively to the single
MAXT78002, results in a significantly low throughput of 0.06.
This discrepancy demonstrates why simply offloading model
execution to a more powerful device (MAX78002) is not always
the best approach. It also underscores the need to account for
communication overhead between source and target devices.
Additionally, we observed that while IndE2E results in an OOR
condition with four MAX78000 s, it achieves the second-highest
throughput when using the MAX78002. This suggests that
IndE2E performs well in resource-rich environments but fails
to manage resources carefully in resource-constrained settings.

3) Source and Target Mapping: We assessed source and
target mapping effects in three scenarios: (i) any device can
be source or target (Any), (ii) source/target devices are evenly
allocated (Distributed), and (iii) the same device is used as both
source and target across pipelines (Overlapped). The Distributed
setup matches Workload 1 from Section VI-B, while the Over-
lapped and Any scenarios only differ in their source and target
device mappings. As shown in Fig. 18, the Overlapped scenario

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

TABLE III
COMPARISON AMONG DIFFERENT OBJECTIVES

Workload 1 TPUT (inf/s) Latency (s) Power (J/s)
TPUT-max 4.20 0.86 1.47
Latency-min 3.15 0.86 1.42
Power-min 0.19 27.17 1.22
Workload 2 TPUT (inf/s) Latency (s) Power (J/s)
TPUT-max 29.67 0.10 1.37
Latency-min 29.67 0.10 3.21
Power-min 1.37 3.21 1.06

The bold values represent the best performance for each performance
metric. For TPUT, higher is better. For Latency and Power, lower is better.

MinDev MaxDev [PriMinDev =3 PriMaxDev
IO IndModel IX™X JointMode! 88 IndE2E ~ EEE Synergy

16

14
@12
310
038
506

0.4
0.2
0.0

Workload 1

Workload 2

Fig. 19. Effect of the objective: minimizing power consumption.

has the lowest throughput due to communication bottlenecks,
while the Any scenario has the highest throughput by distributing
communication costs. The result indicates Synergy’s robustness
in execution planning, considering both source and target fac-
tors.

4) Different Objectives: While Synergy defaults to maximiz-
ing system-wide throughput (TPUT-max), it can also minimize
latency (Latency-min) or power consumption (Power-min).
Table III demonstrates Synergy’s ability to achieve these dif-
ferent objectives effectively. Each objective excels in its met-
ric, though identical latencies do not ensure the same holistic
collaboration plan. Notably, maximizing throughput provides a
balanced performance with low latency and near-minimal power
use. For example, in workload 1, TPUT-max achieves 22.1x
higher throughput with only 1.2x more power consumption
compared to Power-min. This is because maximizing through-
put reduces latency and communication overhead, the primary
power consumption source.

We further investigate the effectiveness of Synergy’s orches-
tration by taking Power-min as an example. Fig. 19 shows
the average power consumption for Workload 1 and Workload
2 when Power-min is set as an objective. The baselines also
select the execution plan, prioritizing the minimization of power
consumption. The results show that Synergy executes multiple
workloads while minimizing power consumption and avoiding
OOR.

VII. RELATED WORK

TinyML: TinyML represents a research field in machine learn-
ing techniques, aiming to bring Al capabilities to the most
resource-constrained devices, such as MCUs. These devices
typically have tens to hundreds of kilobytes of SRAM, and
most of the research efforts in this domain have focused on
minimizing model size. Existing studies have explored mainly

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES

three techniques: model pruning [41], model quantization [42],
and neural architecture search (NAS) [43], [44]. Model prun-
ing [41] reduces model complexity by identifying and eliminat-
ing unnecessary parameters that contribute minimally to output
accuracy. Model quantization [42] decreases both model size and
computational intensity of operations by reducing the precision
of the numerical values used to represent a model’s parameters.
NAS [43], [44] is an automated method for discovering the best
neural network architectures that are tailored to the resource
constraints of a specific device, while balancing efficiency and
accuracy. In contrast, our work focuses on supporting multiple
or large Al models without compromising accuracy, by dy-
namically composing distributed Al accelerators. However, the
combined power of tiny Al accelerators may still be insufficient
to support unmodified, off-the-shelf large Al models. We envi-
sion that Synergy can benefit from these TinyML techniques to
accommodate larger AI models.

Model partitioning: While there are very few attempts for
partitioning Al models over multiple MCU-equipped devices,
there have been active research efforts for layer-wise model par-
titioning over resource-limited embedded and mobile devices.
In common, these methods [10], [11], [12], [13], [14], [15], [16]
allocates few initial layers of a DNN on mobile/embedded device
and the latter in edge or cloud server. Intermediate output from
the initial layer execution is transmitted to powerful resources
such as the cloud or nearby edge device where the subsequent
part of the model is executed. They adapt the splitting layer
depending on network status and server load. While Synergy also
adopts vertical partitioning for distributed inferences, existing
model partitioning studies lack the (i) end-to-end perspective of
the on-body AI app execution (sensor and interface operations
as well as model execution) and (ii) consideration of concurrent
execution of multi-tenant models. Our experiments demon-
strate that Synergy outperforms these studies by solving the
challenges.

DNN workload distribution: An application pipeline often
consists of a (conditional) sequence of multiple DNN mod-
els. Several distributed systems have been proposed to bal-
ance model workloads across distributed devices [45], [46],
[47]. Their key difference with model partitioning methods
is to treat a model as a primitive execution unit and focus
more on scheduling model execution over distributed devices
(without model splitting). For example, a face classification
task can be executed on a different device following object
detection on the initial device, thereby leveraging distributed
resources from multiple devices [45], [46]. Synergy shares
the same high-level objective of distributing multiple model
workloads into multiple devices. However, our target environ-
ment is on-body devices with Al accelerators, which brings
resource challenges. To overcome the limited resources of
these devices, we adopt model partitioning on top of work-
load distribution and devise a tailored solution for tiny Al
accelerators.

Model serving systems: Several platforms, such as Tensor-
Flow serving [48], Sagemaker [49], and Azure ML [50], have
been proposed to facilitate model inference serving by offering
containerized environments for model execution in diverse de-
vices. Research platforms, such as Velox [51] and Clipper [52],

9331

focus on low-latency prediction serving, together with optimiz-
ing cloud server performance. However, in wearable computing,
the main challenge lies in dynamically composing distributed
tiny Al accelerators. Our device-agnostic programming inter-
Jface addresses this by mapping software logic to physical re-
sources and optimizing performance by considering pipeline
interdependencies and resource usage.

Middleware for body sensor networks: Several decades ago,
body sensor networks (BSNs) received attention for recognizing
human contexts using sensory signals from multiple wearable
devices. Early work focused on fusion techniques to effectively
and robustly concatenate multiple data streams [53], [54], [55],
[56], [57] when different devices introduced several challenges,
e.g., time synchronization, missing data, and varying sampling
rates. Another focus was handling dynamic device availabil-
ity [58], [59], [60], [61], [62], i.e., when the set of available
devices changes over time. To tackle this problem, many studies
have explored the effects of different characteristics on recog-
nition accuracy, e.g., types, compositions, and placements of
sensors, and have proposed methods to dynamically select the
best sensor based on predefined parameters.

Although these works provide a foundation for sensing and
processing in multi-device environments, their consideration
of sensing pipelines and target devices has been limited to
support on-body Al apps we envision. First, Sensing pipelines
in BSNs was simple, so pipeline partitioning across devices
was not actively studied. Second, due to insufficient processing
capabilities, wearable devices were primarily treated as sensor
data streamers, with most processing assumed to be run on a
smartphone. However, we argue that on-body sensing pipelines
have evolved with the introduction of numerous DNN-based Al
models, and wearable devices have begun to feature on-device
Al capabilities, with the emergence of tiny Al accelerators. This
insight necessitates revisiting existing strategies for on-body
sensing and processing in multi-wearable environments. To the
best of our knowledge, our work is the first to efficiently support
on-body Al applications on wearable devices equipped with tiny
Al accelerators.

VIII. CONCLUSION

We presented Synergy, a novel system that supports on-body
Al apps through the collaboration of tiny Al accelerators on
wearables. Synergy’s device-agnostic programming interface
simplifies integrating diverse Al applications. Its runtime dy-
namically distributes model execution tasks to available device
resources for optimal inference. Our evaluation showed Synergy
achieves higher throughput than baselines.

Future work aims to enhance collaboration among Al accel-
erators by expanding from layer-wise model splitting to include
channel-wise splitting [63], [64], [65], [66], [67], [68], en-
abling Synergy to handle larger inputs and optimize performance
through a combination of both techniques [69]. Additionally, we
plan to extend Synergy to support more complex model architec-
tures, such as sensor fusion and conditional chaining of multiple
models, to meet real-world application demands. Lastly, we aim
to enrich the device-agnostic programming interface by adding

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

9332

features like detailed taxonomy for sensor and target device map-
ping and supporting customized functions, thereby providing
developers with greater flexibility in designing on-body Al apps.

REFERENCES

[1] Analog MAX78000. Accessed: Nov. 30, 2023. [Online]. Available: https:
//www.analog.com/en/products/max78000.html

[2] Analog MAX78002. Accessed: Nov. 30, 2023. [Online]. Available: https:
/Iwww.analog.com/en/products/max78002.html

[3] Google Coral Micro. Accessed: Nov. 30, 2023. [Online]. Available: https:
//coral.ai/products/dev-board-micro/

[4] Greenwaves Technology. Accessed: Nov. 30, 2023. [Online]. Available:
https://greenwaves-technologies.com/low-power-processor/

[5] A.N.BalajiandL.-S.Peh, “Al-on-skin: Towards enabling fast and scalable
on-body Al inference for wearable on-skin interfaces,” in Proc. ACM
Hum.-Comput. Interaction, vol. 7, no. EICS, pp. 1-34, 2023.

[6] OmniBuds. Accessed: Mar. 15, 2024. [Online]. Available: https:/
omnibuds.tech/

[7] Shift Moonwalkers. Accessed: Mar. 15, 2024. [Online]. Available: https:
/Ishiftrobotics.io/

[8] TWS Processor with GAP9. Accessed: Mar. 15, 2024. [Online]. Available:
https://greenwaves-technologies.com/tws_processor/

[9] C. Min et al., “An Al-native runtime for multi-wearable environments,”
2024. [Online]. Available: https://arxiv.org/abs/2403.17863

[10] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615-629, 2017.

[11] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 1423-1431.

[12] S. Zhang et al., “Towards real-time cooperative deep inference over the
cloud and edge end devices,” in Proc. ACM Interactive, Mobile, Wearable
Ubiquitous Technol., vol. 4, no. 2, pp. 1-24, 2020.

[13] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic progressive inference of neural networks over device
and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1-15.

[14] H.-J.Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proc. ACM Symp. Cloud Comput., 2018, pp. 401-411.

[15] H.Wang, B. Guo,J. Liu, S. Liu, Y. Wu, and Z. Yu, “Context-aware adaptive
surgery: A fast and effective framework for adaptative model partition,”
in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 5,
no. 3, pp. 1-22, 2021.

[16] A. Banitalebi-Dehkordi, N. Vedula, J. Pei, F. Xia, L. Wang, and Y. Zhang,
“Auto-split: A general framework of collaborative edge-cloud AL” in
Proc. 27th ACM SIGKDD Conf. Knowl. Discov. Data Mining, 2021,
pp- 2543-2553.

[17] J. Moosmann, M. Giordano, C. Vogt, and M. Magno, “TinyissimoYOLO:
A quantized, low-memory footprint, TinyML object detection network for
low power microcontrollers,” in Proc. IEEE 5th Int. Conf. Artif. Intell.
Circuits Syst., 2023, pp. 1-5.

[18] T. Riiegg, M. Giordano, and M. Magno, “KP2Dtiny: Quantized neural
keypoint detection and description on the edge,” in Proc. IEEE 5th Int.
Conf. Artif. Intell. Circuits Syst., 2023, pp. 1-5.

[19] A.Bakar et al., “Protean: An energy-efficient and heterogeneous platform
for adaptive and hardware-accelerated battery-free computing,” in Proc.
20th ACM Conf. Embedded Netw. Sensor Syst., 2022, pp. 207-221.

[20] L. Caronti, K. Akhunov, M. Nardello, K. S. Yildirim, and D. Brunelli,
“Fine-grained hardware acceleration for efficient batteryless intermittent
inference on the edge,” ACM Trans. Embedded Comput. Syst., vol. 22,
no. 5, pp. 1-19, 2023.

[21] A. Moss, H. Lee, L. Xun, C. Min, F. Kawsar, and A. Montanari, “Ultra-
low power DNN accelerators for IoT: Resource characterization of the
max78000,” in Proc. 20th ACM Conf. Embedded Netw. Sensor Syst., 2022,
pp. 934-940.

[22] T. Gong, F. Kawsar, and C. Min, “DEX: Data channel extension for
efficient CNN inference on tiny Al accelerators,” in Proc. 38th Annu.
Conf. Neural Inf. Process. Syst., 2024, pp. 43925-43951.

[23] C. Jeon, T. Gong, J. Yi, F. Kawsar, and C. Min, “TinyMem: Boosting
multi-DNN inference on tiny Al accelerators with weight memory virtu-
alization,” in Proc. 26th ACM Int. Workshop Mobile Comput. Syst. Appl.,
New York, NY, USA, 2025, pp. 1-6, doi: 10.1145/3708468.3711888.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

S. Jang, F. Kawsar, and C. Min, “Thermal characterization of Al applica-
tions on Al accelerators-equipped microcontrollers,” in Proc. ACM Work-
shop Body-Centric Comput. Syst., New York, NY, USA, 2024, pp. 17-22,
doi: 10.1145/3662009.3662020.

Y. Huang, T. Gong, S. Jang, F. Kawsar, and C. Min, “Energy characteriza-
tion of tiny Al accelerator-equipped microcontrollers,” in Proc. 2nd ACM
Int. Workshop Hum.-Centered Sens. Netw. Multi-Device Syst., New York,
NY, USA, 2024, pp. 1-6, doi: 10.1145/3698388.3699628.

Cutting the Al Power Cord: Technology to Enable True Edge Inference.
Accessed: Nov. 30, 2023. [Online]. Available: https://cms.tinyml.org/wp-
content/uploads/talks2020/tinyML_Talks_Kris_Ardis_and_Robert_
Muchsel_-201027.pdf

Analog MAX32650. Accessed: Nov. 30, 2023. [Online]. Available: https:
//www.analog.com/en/products/max32650.html

STM32F7 Series. Accessed: Nov. 30, 2023. [Online]. Available: https:
/Iwww.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
A. M. Das, C. I. Tang, F. Kawsar, and M. Malekzadeh, “PRIMUS:
Pretraining IMU encoders with multimodal self-supervision,” in Proc.
NeurlPS Workshop Time Ser. Age Large Models, 2024.

A. Pillai, D. Spathis, F. Kawsar, and M. Malekzadeh, “PaPaGei: Open
foundation models for optical physiological signals,” in Proc. 13th
Int. Conf. Learn. Representations, 2025. [Online]. Available: https://
openreview.net/forum?id=kYwTmlq6Vn

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assist. Intervention, Munich, Germany, Springer, Oct.
5-9, 2015, pp. 234-241.

Analog MAX78000FTHR. Accessed: Nov. 30, 2023. [Online]. Available:
https://www.analog.com/en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/max78000fthr.html

Analog MAX78002EVKIT. Accessed: Nov. 30,2023. [Online]. Available:
https://www.analog.com/en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/max78002evkit.html

Adafruit HUZZAH ESP8266. Accessed: Nov. 30, 2023. [Online]. Avail-
able: https://www.adafruit.com/product/2821

Analog Keywords Spotting. Accessed: Nov. 30, 2023. [Online].
Available: https://www.analog.com/en/design-notes/keywords-spotting-
using-the-max78000.html

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

S. H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou, “Lets keep it
simple, using simple architectures to outperform deeper and more complex
architectures,” 2016, arXiv:1608.06037.

M. Tan and Q. Le, “EfficientNetV2: Smaller models and faster training,”
in Proc. Int. Conf. Mach. Learn., PMLR, 2021, pp. 10 096-10 106.
Monsoon solutions. Accessed: Mar. 15, 2024. [Online]. Available: https:
//www.msoon.com/high-voltage-power-monitor

E.Liberis and N. D. Lane, “Differentiable neural network pruning to enable
smart applications on microcontrollers,” in Proc. ACM Interactive, Mobile,
Wearable Ubiquitous Technol., vol. 6, no. 4, pp. 1-19, 2023.

M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on mi-
crocontrollers,” in Proc. Mach. Learn. Syst., vol. 2, pp. 326-335,
2020.

E. Liberis, £. Dudziak, and N. D. Lane, “uNAS: Constrained neural
architecture search for microcontrollers,” in Proc. 1st Workshop Mach.
Learn. Syst., 2021, pp. 70-79.

I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “Sparse: Sparse
architecture search for CNNs on resource-constrained microcontrollers,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 4977-4989.

X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: Scaling live video
analytics with workload-adaptive distributed edge intelligence,” in Proc.
18th Conf. Embedded Netw. Sensor Syst., 2020, pp. 409-421.

S. Y. Jang, B. Kostadinov, and D. Lee, “Microservice-based edge device
architecture for video analytics,” in Proc. IEEE/ACM Symp. Edge Comput.,
2021, pp. 165-177.

Z.Dong, Y. Lu, G. Tong, Y. Shu, S. Wang, and W. Shi, “Watchdog: Real-
time vehicle tracking on geo-distributed edge nodes,” ACM Trans. Internet
Things, vol. 4, no. 1, pp. 1-23, 2023.

Google. Accessed: Nov. 30, 2023. [Online]. Available: https://www.
tensorflow.org/tfx

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

https://www.analog.com/en/products/max78000.html
https://www.analog.com/en/products/max78000.html
https://www.analog.com/en/products/max78002.html
https://www.analog.com/en/products/max78002.html
https://coral.ai/products/dev-board-micro/
https://coral.ai/products/dev-board-micro/
https://greenwaves-technologies.com/low-power-processor/
https://omnibuds.tech/
https://omnibuds.tech/
https://shiftrobotics.io/
https://shiftrobotics.io/
https://greenwaves-technologies.com/tws_processor/
https://arxiv.org/abs/2403.17863
https://dx.doi.org/10.1145/3708468.3711888
https://dx.doi.org/10.1145/3662009.3662020
https://dx.doi.org/10.1145/3698388.3699628
https://cms.tinyml.org/wp-content/uploads/talks2020/tinyML_Talks_Kris_Ardis_and_Robert_Muchsel_-201027.pdf
https://cms.tinyml.org/wp-content/uploads/talks2020/tinyML_Talks_Kris_Ardis_and_Robert_Muchsel_-201027.pdf
https://cms.tinyml.org/wp-content/uploads/talks2020/tinyML_Talks_Kris_Ardis_and_Robert_Muchsel_-201027.pdf
https://www.analog.com/en/products/max32650.html
https://www.analog.com/en/products/max32650.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
https://openreview.net/forum{?}id$=$kYwTmlq6Vn
https://openreview.net/forum{?}id$=$kYwTmlq6Vn
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max78000fthr.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max78000fthr.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max78002evkit.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max78002evkit.html
https://www.adafruit.com/product/2821
https://www.analog.com/en/design-notes/keywords-spotting-using-the-max78000.html
https://www.analog.com/en/design-notes/keywords-spotting-using-the-max78000.html
https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor
https://www.tensorflow.org/tfx
https://www.tensorflow.org/tfx

GONG et al.: SYNERGY: TOWARDS ON-BODY AI VIA TINY AI ACCELERATOR COLLABORATION ON WEARABLES 9333

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Amazon SageMaker. Accessed: Nov. 30, 2023. [Online]. Available: https:
/laws.amazon.com/sagemaker/?ncl=h_ls

Azure Machine Learning. Accessed: Nov. 30, 2023. [Online]. Available:
https://azure.microsoft.com/en- gb/products/machine-learning

D. Crankshaw et al., “The missing piece in complex analytics:
Low latency, scalable model management and serving with velox,”
2014, arXiv:1409.3809.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and 1.
Stoica, “Clipper: A low-latency online prediction serving system,” in Proc.
14th USENIX Symp. Netw. Syst. Des. Implementation, 2017, pp. 613-627.
F. J. Ordéiiez and D. Roggen, “Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, 2016, Art. no. 115. [Online]. Available: https://www.mdpi.
com/1424-8220/16/1/115

L. Peng, L. Chen, Z. Ye, and Y. Zhang, “Aroma: A deep multi-task learn-
ing based simple and complex human activity recognition method using
wearable sensors,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous
Technol., vol. 2, no. 2, pp. 74:1-74:16, Jul. 2018, doi: 10.1145/3214277.
S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “DeepSense:
A unified deep learning framework for time-series mobile sensing data
processing,” in Proc. 26th Int. Conf. World Wide Web, 2017, pp. 351-360,
doi: 10.1145/3038912.3052577.

S. Yao, Y. Zhao, S. Hu, and T. Abdelzaher, “QualityDeepSense: Quality-
aware deep learning framework for Internet of Things applications
with sensor-temporal attention,” in Proc. 2nd ACM Int. Workshop Em-
bedded Mobile Deep Learn., New York, NY, USA, 2018, pp. 42-47,
doi: 10.1145/3212725.3212729.

Y. Vaizman, N. Weibel, and G. Lanckriet, “Context recognition in-the-
wild: Unified model for multi-modal sensors and multi-label classifica-
tion,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol.,
vol. 1, no. 4, pp. 168:1-168:22, Jan. 2018, doi: 10.1145/3161192.

P. Zappi et al., “Activity recognition from on-body sensors: Accuracy-
power trade-off by dynamic sensor selection,” in Wireless Sensor Net-
works, R. Verdone, Ed. Berlin, Heidelberg: Springer, 2008, pp. 17-33.

S. Kang et al., “SeeMon: Scalable and energy-efficient context monitoring
framework for sensor-rich mobile environments,” in Proc. 6th ACM Int.
Conf. Mobile Syst., Appl., Serv., New York, NY, USA, 2008, pp. 267-280,
doi: 10.1145/1378600.1378630.

S. Kang et al., “Orchestrator: An active resource orchestration frame-
work for mobile context monitoring in sensor-rich mobile environ-
ments,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun., 2010,
pp. 135-144.

Y. Lee, C. Min, Y. Ju, S. Kang, Y. Rhee, and J. Song, “An active resource
orchestration framework for pan-scale, sensor-rich environments,” IEEE
Trans. Mobile Comput., vol. 13, no. 3, pp. 596-610, Mar. 2014.

M. Keally, G. Zhou, G. Xing,J. Wu, and A. Pyles, “PBN: Towards practical
activity recognition using smartphone-based body sensor networks,” in
Proc. 9th ACM Conf. Embedded Netw. Sensor Syst., New York, NY, USA,
2011, pp. 246-259, doi: 10.1145/2070942.2070968.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN: Local
distributed mobile computing system for deep neural network,” in Proc.
IEEE Des. Automat. Test Europe Conf. Exhib., 2017, pp. 1396-1401.

J. Mao et al., “MeDNN: A distributed mobile system with enhanced
partition and deployment for large-scale DNNSs,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., 2017, pp. 751-756.

L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Cooperative
DNN inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 595-608,
Apr. 2021.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
adaptive deep learning inference on resource-constrained IoT edge clus-
ters,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37,
no. 11, pp. 2348-2359, Nov. 2018.

X. Hou, Y. Guan, T. Han, and N. Zhang, “DistrEdge: Speeding up con-
volutional neural network inference on distributed edge devices,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2022, pp. 1097-1107.

C. Hu and B. Li, “Distributed inference with deep learning models across
heterogeneous edge devices,” in Proc. IEEE Conf. Comput. Commun.,
2022, pp. 330-339.

B. Pang et al., “AdaMEC: Towards a context-adaptive and dynamically
combinable DNN deployment framework for mobile edge computing,”
ACM Trans. Sensor Netw., vol. 20, no. 1, pp. 1-28, 2023.

Taesik Gong (Member, IEEE) received the PhD
degree in computer science from KAIST in 2023.
He is an assistant professor with the Department of
Computer Science and Engineering at UNIST. During
the PhD degree, he interned with Google Research,
Microsoft Research, and Nokia Bell Labs. Before
joining UNIST, he was a research scientist with Nokia
Bell Labs and a visiting scholar with the University of
Cambridge. He is also a recipient of the Google PhD
Fellowship. His research interests include on-device
Al human-centered Al, and ubiquitous computing.

SiYoung Jang (Member, IEEE) received the PhD
degree from the School of Computing, KAIST, South
Korea. He is aresearch scientist with Nokia Bell Labs,
Cambridge U.K. His research interests lie broadly
in designing efficient and scalable machine learning
solutions for real-world applications, with a focus on
mobile computing, on-device Al, and networked edge
Al systems.

Utku Giinay Acer received the PhD degree from
the Electrical, Computer and Systems Engineering
department of Rensselaer Polytechnic Institute, Troy,
NY. He is a principal research scientist with Nokia
Bell Labs in Antwerp, Belgium. His research in-
terests lie broadly in pervasive systems and edge
computing. His current work focuses on collaborative
and distributed sensing with on-device ML inference
for next-generation mobile, wearable, and embedded
devices.

Fahim Kawsar (Member, IEEE) currently leads Per-
vasive Systems Research with Nokia Bell Labs, Cam-
bridge. He holds a mobile systems professorship in
computing science from the University of Glasgow.
He studies the forms and intelligence of emerging
mobile, IoT, and wearable devices.

Chulhong Min (Member, IEEE) received the PhD
degree in computer science from KAIST in 2016. He
is a principal research scientist leading the Device
Systems team, Nokia Bell Labs in Cambridge, U.K.
His current research explores next-generation sensory
systems to realize multi-modal, multi-device, and
multi-sensory functionalities for collaborative and
interactive services. Broadly, his research interests
include mobile systems, edge computing, on-device
Al, and IoT.

Authorized licensed use limited to: Nokia. Downloaded on September 10,2025 at 08:37:54 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/sagemaker/{?}nc1$=$h_ls
https://aws.amazon.com/sagemaker/{?}nc1$=$h_ls
https://azure.microsoft.com/en-gb/products/machine-learning
https://www.mdpi.com/1424-8220/16/1/115
https://www.mdpi.com/1424-8220/16/1/115
https://dx.doi.org/10.1145/3214277
https://dx.doi.org/10.1145/3038912.3052577
https://dx.doi.org/10.1145/3212725.3212729
https://dx.doi.org/10.1145/3161192
https://dx.doi.org/10.1145/1378600.1378630
https://dx.doi.org/10.1145/2070942.2070968

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

