
SensiX: A System for Best-Effort Inference
of Machine Learning Models in
Multi-Device Environments

Chulhong Min , Akhil Mathur, Alessandro Montanari, and Fahim Kawsar ,Member, IEEE

Abstract—Multiple sensory devices on and around us are on the rise and require us to redesign a system to make an inference of ML

models accurate, robust, and efficient at the deployment time. While this multiplicity opens up an exciting opportunity to leverage

sensor redundancy and high availability, it is still extremely challenging to benefit from such multiplicity and boost the runtime

performance of deployed ML models without requiring model retraining and engineering. From our experience of deploying ML models

in multi-device environments, we uncovered two prime caveats, device and data variabilities that affect the runtime performance of ML

models. To this end, we develop an ML system that addresses these variabilities without modifying deployed models by building on prior

algorithmic work. It decouples model execution from sensor data and employs two essential operations between them: a) device-to-

device data translation for principled mapping of training and inference data and b) quality-aware dynamic selection for systematically

choosing the execution pipeline as a function of runtime accuracy. We develop and evaluate a prototype system on wearable devices

with motion and audio-based models. The experimental results show that ML models achieve a 7-13% increase in runtime accuracy

solely by running on top of our system, and the increase goes up to 30% in dynamic environments. This performance gain comes at the

expense of 3 mWon the host device.

Index Terms—Best-effort inference, machine learning, multi-device environments, systems

Ç

1 INTRODUCTION

SENSORY connected devices are now pervasive. Mobile,
wearable, and IoT devices on and around us are increas-

ingly embracing bleeding-edge machine learning (ML)
models to uncover remarkable sensory applications [1], [2],
[3], [4], [5]. In this transformation, we are observing the
emergence of multi-device systems as a natural course of mul-
tiple sensory devices surrounding us. A concrete example
of this is manifested in personal devices/wearables and IoT
devices deployed in our homes. Studies predict more than 9
devices per person by the year 2025 [6] with diverse sensing
capabilities (e.g., motion, vision, acoustics, RF). Therefore,
we believe that focusing on efficient and accurate sensing in
a multi-device environment is of paramount importance
moving forward.

This multiplicity is opening up an exciting opportunity
to leverage sensor redundancy and high availability
afforded by multiple devices, thereby enabling rich, power-
ful, and collaborative ML applications. For instance, once a
motion model for activity recognition is deployed, a per-
sonal health tracker can selectively use a smartwatch, a
smartphone, or a smart earbud to run the model. Similarly,
a safety monitor in a factory can dynamically select a

microphone and a camera nearby workers to detect safety-
relevant events. However, the benefit from such multiplicity
comes at the expense of increasing complexity. In the
deployment of these applications, we identified two key
caveats, device and data variabilities that affect the runtime
performance of a deployed model and hence contribute to
this complexity. They are caused by runtime factors includ-
ing sensing hardware [7], resource budget, device place-
ment [8], etc. In the example of a health tracker, each of
three wearables offers identical sensing capability (e.g.,
motion, audio, etc.), but with contrasting runtime accuracy.
A byproduct of these variabilities causes unexpected perfor-
mance degradation of sensing ML models at runtime. Thus,
it is imperative to take these attributes into account for
designing and building a sensory AI system.

Given that these runtime variabilities can be hardly con-
sidered during the model training time, application devel-
opers often need to design a purpose-built ML model
optimised for a specific device or environment, which inher-
ently limits the coverage of the service deployment. Exten-
sive studies have been conducted in the past to overcome
these variabilities and make ML models robust at the
deployment time, but they are still far from being employed
in practical systems. One research thread is to retrain and
re-engineer ML models by employing ML techniques such
as data augmentation [9], domain adaptation, and transfer
learning [10]. They enable ML models to quickly achieve
satisfactory accuracy on unseen runtime factors without
building a new model from scratch, but require hard
assumptions such as the need for labelled data or visibility
to the original model. The other thread is to leverage multi-

� The authors are with Nokia Bell Labs, Cambridge CB3 0FA, U.K.
E-mail: {chulhong.min, akhil.mathur, alessandro.montanari, fahim.kawsar}
@nokia-bell-labs.com.

Manuscript received 30 July 2021; revised 9 Mar. 2022; accepted 26 Apr. 2022.
Date of publication 10 May 2022; date of current version 4 Aug. 2023.
(Corresponding author: Chulhong Min.)
Digital Object Identifier no. 10.1109/TMC.2022.3173914

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023 5525

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0001-5057-9557
https://orcid.org/0000-0001-5057-9557
https://orcid.org/0000-0001-5057-9557
https://orcid.org/0000-0001-5057-9557
https://orcid.org/0000-0001-5057-9557
mailto:chulhong.min@nokia-bell-labs.com
mailto:akhil.mathur@nokia-bell-labs.com
mailto:alessandro.montanari@nokia-bell-labs.com
mailto:fahim.kawsar@nokia-bell-labs.com

sensor fusion that optimises the inference accuracy while
addressing system issues such as time synchronisation and
missing data [11], [12], [13]. However, fusion models
require the tight coupling between device combinations,
which makes them neither practical nor scalable in the
highly fluid and dynamic environment. For example, a
smartwatch can be unexpectedly turned off due to battery
depletion or a new microphone can be dynamically added
to the factory to expand the monitoring coverage. It would
be incredibly hard to train and deploy different fusion mod-
els for all possible combinations of devices.

In contrast, in this work, we take a system-driven
approach that automatically makes model inference robust
and accurate at runtime. More specifically, when sensing
models are given to runtime systems, we are interested in
finding solutions that address device and data variabilities
without model retraining or engineering, and ensuring
best-effort inference under any condition in multi-device
environments. Here, we define the best-effort inference as the
optimum model accuracy guaranteed by the system given
multiple execution choices.

From our experiences of deploying ML models in multi-
device environments, we uncovered two hidden opportu-
nities: a) device-to-device data translation and b) quality-
aware pipeline selection. By building on prior algorithm
work to realise these operations, we design and develop
SensiX, a system for deploying machine learning in multi-
device environments. SensiX stays between sensory devi-
ces and corresponding models, and performs principled
data engineering to select the best execution path as a
function of model accuracy while externalising model
management and execution away from applications. Sen-
siX achieves this with two purpose-built neural opera-
tions, as shown in Fig. 1. First, a neural translation
operator deals with device variability by mapping data
across devices. Second, a runtime quality assessment oper-
ator deals with data variability by selecting the right execu-
tion path for the best model accuracy. Collectively, these
two operators enable SensiX to dynamically and automati-
cally compose a model execution path under any condition
to ensure best-effort inference while coping with runtime
device and data variabilities.

We evaluate SensiX on two representative multi-device
sensing applications built with motion and audio signals for
physical activity and keyword recognition. Our results sug-
gest that SensiX offers a 7-13% increase in overall accuracy
and up to 30% increase across different environment
dynamics. This performance gain comes at the expense of
3 mW on the host device, however with a significant reduc-
tion of development complexity and cost.

In what follows, we discuss the unique characteristics of
multi-device systems and present systems challenges to
inform our design decisions. Next, we describe the technical
details of SensiX and its different operations. We then move
to the evaluation of SensiX and reflect on some critical
issues before concluding the paper.

2 BACKGROUND AND EXPERIENCE

Over several decades, extensive studies on ML have been
conducted to understand us and the world around us from
raw sensory signals. Since these algorithms, especially deep
learning-based ones, naturally require a substantial amount
of computation, much effort has also been put toward
enabling them to run on resource-constraint devices, e.g.,
using model offloading and partitioning [14], [15], model
compression [16], [17]. On the basis of the insights from
these works, mobile runtime systems have been studied
and built, which take inference pipelines (or ML models) as
the main workload and manage their performance over
dynamic, heterogeneous environments, especially in terms
of accuracy, energy consumption, and latency. Typically,
they exploit alternative, substitutable processing options for
given inference pipelines, e.g., at the level of sensor [18],
[19], processor [20], approximation of model [21], [22], and
dynamically select the best one based on their expected
quality and the system policy.

Although the quality (and corresponding performance)
of a sensing model is dynamic, the runtime assessment of
those systems is mostly limited to resource metrics such as
energy cost and latency. On the contrary, they relatively
have a static view of the accuracy of sensing models and
mostly rely on their average accuracy obtained in the train-
ing phase. This works in the conventional, single-device
environment where the same device is supposed to be used.
However, emerging multi-device environments bring new
challenges, device and data variabilities that make runtime
accuracy of ML models dynamic and unpredictable. We
present data-driven evidence and reflect on key design chal-
lenges for ensuring best-effort inference quality in a multi-
device environment.

Device Variability. Even before a sensor signal reaches the
sensory application (e.g., a classifier), it passes through sev-
eral processing stages including ADC conversion, DSP
processing, OS processing – each of which can introduce
some artefacts in the signal. Naturally, these artefacts vary
across devices, as such different devices capture the same
physical phenomena slightly differently. This heterogeneity
characteristic has a profound impact on model perfor-
mance, especially when different devices are available for
data acquisition. To provide empirical evidence, in Fig. 2,

Fig. 1. SensiX stays between sensors and models and applies transla-
tion and selection operators to selectively choose the execution path for
best-effort inference. Here, SensiX uses watch data and respective
model to guarantee the best accuracy based on the outcome of the
operators.

Fig. 2. Mel-spectrograms of a speech segment as captured by (a) Matrix
Voice, (b) ReSpeaker, and (c) their difference.

5526 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

we show mel-spectrograms of a 3-second speech segment as
recorded by two microphones (Matrix Voice and ReSpeaker)
simultaneously. We observe that the microphones exhibit
differences in their frequency responses to the same speech
input - also visualised in the rightmost figure. In [7], the
impact of heterogeneous IMU sensors on the activity recogni-
tion performance has also been thoroughly studied. Since
these variations are common characteristics when different,
heterogeneous devices are involved in a sensing task irrespec-
tive of the modalities, unexpected performance degradation
would be inevitable if a pre-trained model is deployed in
unseen devices or sharedwith different devices. A straightfor-
ward solution would be to train device-specific models, but it
would be almost infeasible considering device heterogeneity
in today’smarket.

Data Variability: Many sensory devices around us share a
standard set of sensors, e.g., IMU, microphone, etc., offering
redundant, substitutable sensing capabilities. For example, a
keyword spotting model can selectively run on one of the
available microphones around a user. Similarly, an activity
recognition model can be performed with one of the IMU-
equipped wearables, e.g., a smartphone, a smartwatch, or
even an earbud. There are several factors that constitute
and affect the expected runtime accuracy, spanning hard-
ware [7], device placement, and even users’ behavioural
characteristics [8], [24]. The dynamic nature of these factors
makes runtime accuracy dynamic even with the fixed com-
position of an inference pipeline (i.e., sensor stream from
the same device with the same sensing model.) To quantify
this aspect, we provide empirical evidence with an activity
recognition model in Fig. 3. With the Opportunity data-
set [23], we selected three IMU devices placed on a hip, a
left lower arm, and a right shoe, which can be mapped to
the typical position of a smartphone, a smartwatch and a
smart shoe, respectively. Then, we trained three models [11]
separately for each device and observed how F1 score of
these models changes every minute. The results show that
1) each device offers varying runtime accuracy over time
and 2) more importantly, the best performing device also
changes over time.

The goodness of an ML model often determines the
goodness of a sensing system. However, while the above
challenges do not necessarily contribute to the goodness of
an ML model at training time (which is solely dependent on
the quality, quantity, and diversity of training data, training
strategy, and model architecture), it is important to note
that the combined effect of these factors could significantly
degrade the runtime performance of ML models.

3 SENSIX DESIGN

3.1 Design Goal

We have seen in the previous section that when an ML
model is deployed in a multi-device setting with heteroge-
neous devices from diverse manufacturers, a certain accu-
racy degradation, compared to the accuracy obtained in the
training phase, is inevitable due to device and data variabil-
ities. Recently, extensive studies have been conducted to
compensate such a gap, e.g., by adopting data augmenta-
tion [9], transfer learning [10], and incremental learning.
They show remarkable performance improvement without
training an entirely new model, but still require a significant
burden for data collection and model engineering. This is
further complicated in the multi-device environment we
consider given the high variability in device forms (e.g.,
phones, watches, wearables, speakers and other IoT devi-
ces) which are built by a plethora of manufacturers and
offer diverse sensing capabilities (e.g., motion, vision,
acoustics, RF). In this context, accounting for all possible
combinations of devices and sensors that users might have
with ad-hoc solutions based on data augmentation or model
engineering is unfeasible.

In this paper, we propose a novel approach of boosting
the runtime accuracy of sensing models, i.e., the system-
driven best-effort inference. Without relying on model engi-
neering and application modification, our approach actively
intervenes between sensor data and sensing models, and
achieves accuracy improvement by dynamically addressing
device and data variabilities in an autonomous manner.

3.2 Separating ML Model Execution
From Application

In conventional sensing systems, applications are entirely
responsible for the execution of sensing models. As shown
in Fig. 4a, an application requests sensor data of interest
(e.g., IMU or audio data) to the system and manages the
end-to-end operations required for model processing, span-
ning over data collection, model design and tuning, deploy-
ment, etc. While there are public model hubs available for
pre-trained models such as Tensorflow Hub [25] and
PyTorch Hub [26], it is still mostly developers’ burden to
construct the full execution pipeline from raw sensor data.

A critical aspect of system-driven best-effort inference is to
separate the execution complexities of a sensing model
from the model training process as well as from the applica-
tion logic (Fig. 4b). This facet is particularly essential in sev-
eral aspects. First, it can take significant, but duplicate

Fig. 3. Runtime accuracy of activity recognition model [11] trained with
the Opportunity dataset [23]; 1) The same device offers varying accu-
racy over time and 2) different devices offer the best accuracy at differ-
ent times.

Fig. 4. System operation; D, S, M, and T represents devices, sensor
data, models and translation functions, respectively.

MIN ETAL.: SENSIX: A SYSTEM FOR BEST-EFFORT INFERENCE OF MACHINE LEARNING MODELS IN MULTI-DEVICE ENVIRONMENTS 5527

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

efforts away from application developers and model
experts. As the execution of sensing models becomes a core,
increasingly demanding operation in ML applications, such
separation naturally becomes a key requirement of sensing
systems; similar to how traditional OSes have abstracted
basic tasks from computer programs such as handling I/O,
controlling peripheral devices, etc. Second, it is almost
infeasible for application developers and model experts to
address those runtime properties in advance at development
time and model training time. On the contrary, the system
can intervene with the execution of sensing models actively
and dynamically because it has more visibility and fine-
grained control over device and data variabilities.

3.2.1 Level of Abstraction

Separating execution operations from application space
demands articulated and useful abstraction hiding the
underlying complexities. One of the design challenges is to
determine at which level of sensing pipelines is abstracted.
A typical pipeline of sensing models consists of sensing,
preprocessing, running models, and delivering context out-
puts. Accordingly, we can imagine the level of abstraction
corresponding to each level of operation. In this paper, we
abstract the complexities of sensing models. That is, applica-
tions specify sensing models of interest for their logic, and
SensiX takes care of the full operations required to execute
the models. Our design decision in Fig. 4b offers several
benefits, including application-side flexibility of choosing
sensing models, a significant reduction of code complexity,
and better system-wide management and coordination.

Our design choice is different from modern mobile oper-
ating systems in diverse aspects. For example, current sen-
sor libraries, e.g., SensorManager 1 on Android, can be seen
to provide an abstraction of sensing. That is, the system han-
dles hardware operation for sensor readings, and the appli-
cation takes care of the rest of the pipelines (See Fig. 4a). In
this case, applications have a high level of flexibility, but it
imposes a significant burden on developers at the same
time. The system also has very little room for performance
optimisation. In another extreme, Android also provides
high-level context, e.g., Activity Recognition API 2 as another
unit of abstraction. If an application specifies the context
type of interest, e.g., activity, the system takes care of the full
sensing pipeline for activity recognition and delivers the
final result only. It relieves all the burden for context infer-
ence from application developers and gives the system
more flexibility, e.g., choice and scheduling of sensing mod-
els, for the system-wide optimisation of the resource use.
However, it limits the flexibility of application logic and
requires a very well-defined and pre-established taxonomy
of context vocabulary.

3.3 Dynamic Translation and Selection

To address device and data variabilities at runtime in multi-
device environments, we devise two purpose-built neural
operators that actively act in the middle of sensors and

models, device-to-device data translator (Section 4.2) and qual-
ity-aware runtime pipeline selector (Section 4.3). First, the
device-to-device data translator minimises the data varia-
tion across devices using a machine-learned component.
When the model is deployed in unseen, different devices,
SensiX collects unlabelled data in the background and
learns the translation function with the collected data,
which maps sensor data from a new device to its equivalent
point in the training distribution. Second, the quality-aware
runtime pipeline selector estimates the runtime quality of
available pipelines (a pair of translated signals and an ML
model) at runtime and selects a pipeline offering the best
quality.

Fig. 4b shows the example operation of SensiX when
three devices (D1, D2, D3) are available and one model (M0)
trained with D0 is given. SensiX first creates the device-to-
device data translation functions (T1;0, T2;0, T3;0) for all devi-
ces and generates multiple, substitutable pipelines by com-
bining a translation function and a sensing model. For
example, T1;0 makes the data from the sensor S1 on D1 simi-
lar to the data from D0 and the corresponding pipeline is
generated by composing a sensor (device), a translation
function, and a model, e.g., < D1; T1;0;M0 > . Then, SensiX
periodically assesses the runtime quality of each pipeline
and then dynamically selects the best one. We put the trans-
lation operator prior to the selection operator because the
translation affects the runtime quality.

4 SENSIX OPERATION

4.1 Architecture

SensiX takes the binary of a sensing model as an input and
provides applications with context outputs of the given
model. Fig. 5 shows the overall architecture of SensiX. It
spans over a host device and multiple sensor devices.

� Host device: Once sensing models are registered, the
host device maintains them in its database for mod-
els. The device manager discovers suitable sensor
devices for the given sensing models and keeps track
of their resource availability. The pipeline coordinator
dynamically creates an optimal execution pipeline
with two primitive operations of SensiX, a neural
translation operation for principled mapping of
device-to-device data (Section 4.2) and a quality-
aware device selection operation (Section 4.3). It also
takes care of the execution of the created pipeline
when the sensor data is delivered. The execution
planner makes the system-wide schedule of the

Fig. 5. System architecture of SensiX.

1. https://developer.android.com/reference/android/hardware/
SensorManager

2. https://developers.google.com/location-context/activity-
recognition

5528 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorManager
https://developers.google.com/location-context/activity-recognition
https://developers.google.com/location-context/activity-recognition

execution pipelines and dynamically controls the
sensing status of external sensor devices via the com-
munication manager. Once the context information
is generated, it is delivered to the application and
also maintained in the database of context values if
needed for the query of past data, e.g., for the retro-
spective summary.

� Sensor device: The sensor device communicates with
the host device via the sensor-side communication
manager. The sensor manager (de)activates the sens-
ing task based on the execution schedule and the
resource monitor monitors its resource status, e.g.,
remaining battery, CPU/memory usage, and trans-
mits it to the host device periodically or when
requested.

4.2 Device-to-Device Data Translation

Prior literature [27], [28] on sensing systems has estab-
lished that heterogeneities in sensor data are omnipresent
and can be caused by a number of issues, including variabil-
ity in hardware, software or usage dynamics of the sensing
devices. More critically, it has been shown that even subtle
variabilities in sensor data can potentially degrade the per-
formance of state-of-the-art ML models [29], [30]. Indeed,
this poses a major challenge for multi-device sensing sys-
tems, wherein there is a very high likelihood of variability
in the devices owned by a user. For instance, a user may
have multiple microphone-enabled devices on (e.g., an
Apple iPhone) or near their body (e.g., Amazon Echo), each
of which can capture the user’s speech and process it
through a speech recognition model to understand the
user’s intent. However, due to the variations in microphone
hardware and software processing pipelines across manu-
facturers, a model trained on an Apple iPhone microphone
may not work well for an Amazon Echo.

A simple solution would be to train a separate model for
each device in the system, however this would incur signifi-
cant costs to collect and label training data for each new
device that is added to the system. Instead, SensiX makes a
practical and scalable choice: it assumes that there is one
sensing model shared across all the devices – this model
could be trained by a developer either on data collected
from one of the devices or even on a separate off-the-shelf
training dataset collected from one or multiple devices. Fur-
ther, we assume that the developer does not provide access
to the weights of this pre-trained sensing model, i.e., it is a
black-box model – this enables SensiX to support both
open-source and proprietary models.

Under these practical assumptions, the technical chal-
lenge is to enable highly accurate sensing on multiple het-
erogeneous devices, even when the sensing model may not
have been trained on the same device. To this end, SensiX
provides support for device-to-device data translation which
maps (or translates) a given sensor data from any device to
its equivalent point in the training distribution. This transla-
tion happens transparently at inference-time (or test-time)
and aims at reducing the discrepancy between the test data
and the training data on which the sensing model was
trained. Overall, the device-to-device data translation aims
to boost the accuracy of the pre-trained sensing model on

those devices whose data distribution might differ from the
training distribution. Note that when the training and test
device are the same, the translation operation is not needed
and is ignored by SensiX.

The translation component is machine-learned and based
on the principles of Cyclic Generative Adversarial Net-
works (CycleGAN) as proposed in [29], [31]. We extend this
prior work to support the translation of various data modal-
ities, including motion data from IMU (an accelerometer
and a gyroscope) and audio data from a microphone.

We learn a pair-wise translation function between each
user device and the training device (on which the sensing
model was trained). Prior works have shown that Cycle-
GAN models can learn these mapping between data distri-
butions solely based on unlabelled and unpaired data,
which significantly reduces the cost of training the transla-
tion model. We assume that at the time of releasing the sens-
ing model, its developer also provides a small amount of
unlabelled data XTrain sampled from the training distribu-
tion and it is stored on the host device. Further, when a new
device D1 is added to the multi-device ecosystem, SensiX
collects a small amount of unlabelled data XD1

from it with
a user’s permission and also sends it to the host device. This
data need not be time-aligned or paired with the training
data XTrain. Upon receiving unlabelled datasets XTrain and
XD1

, the host device initiates the training of a translation
mapping XD1

! XTrain based on the CycleGAN architec-
ture as shown in Fig. 6. The CycleGAN architecture consists
of four neural networks (2 generators and 2 discriminators)
that are jointly optimised using adversarial learning – in
our implementation, we use a 6-layer CNN with residual
blocks to train the generators and a 4-layer CNN to train the
discriminators. Note that such a training operation is con-
ducted only once and can be offloaded to the cloud. Once
the training process is done, the trained generator XD1

!
XTrain is used to perform real-time translation of the sensor
data collected from device D1 to make it similar to the train-
ing data. After the translation, it is then passed to the next
operations of SensiX for further processing and computing
the inferences.

4.3 Quality-Aware Pipeline Selection

After obtaining the translation function, SensiX con-
structs execution pipelines for each available device by com-
bining the translation function and the ML model. Then, the
next question is how to choose the right pipeline out of mul-
tiple candidates. We identify two challenges that have to be
addressed to make the system practical; (1) how to quantify
the runtime quality and (2) how to minimise the system cost
while maximising the selection benefit?

Fig. 6. Translation process forXD1
! XTrain.

MIN ETAL.: SENSIX: A SYSTEM FOR BEST-EFFORT INFERENCE OF MACHINE LEARNING MODELS IN MULTI-DEVICE ENVIRONMENTS 5529

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

Quality Quantification. There have been prior attempts to
quantify the quality of sensory signals in the domain of sig-
nal processing. The most representative example is the sig-
nal-to-noise ratio (SNR) which was proposed to assess the
purity of a signal. However, such signal-level quality assess-
ment is not suitable to assess the quality of an ML-based
execution pipeline, i.e., its expected runtime accuracy,
because the subsequent operations (translation function
and sensing model) also affect the quality of the model out-
put. For example, the motion signals on a smartwatch in
walking situations would be considered to have the high
quality for movement detection, but can be seen to have the
low quality for hand gesture recognition.

To address this, we present a novel pipeline-level quality
assessment by adopting and modifying the heuristic-based
quality assessment (HQA) method proposed in [32]. Its key
idea is to leverage confidence values reported from a classi-
fier in the sensing model for given (translated) sensory sig-
nals and quantify the quality of the execution pipeline
based on these values. Confidence values represent how
confident a classifier is in the inference output from a given
input data. For example, a final softmax layer in neural net-
works produces a list of probabilities of given sensor data
being a member of each class. Leveraging such characteris-
tics, the concept of uncertainty of inference output was pro-
posed in the domain of active learning, which represents
how uncertainly a given inference instance is to be labelled.
Inspired by this, we quantify the quality of an execution
pipeline by adopting margin sampling [33]. Note that the
uncertainty has no formal definition and can be estimated
using different metrics such as margin sampling, highest
confidence, and entropy of confidence values [34]. In active
learning, the study shows that the best metric is task-depen-
dent [35]. Thus, we used margin sampling which showed
the best performance in our datasets used in the evalua-
tions. Margin sampling is computed by taking the differ-
ence between the probabilities of the two most likely
classes. We can consider that an inference instance with a
higher margin is more certain to be labelled, compared to
the other instance with a lower margin. While the uncer-
tainty-based quality indicates the certainty of inference out-
put from the execution pipeline, more certainty does not
always guarantee more accurate inferences. However, we
empirically show that, when the model is reasonably well
trained, such quality-based assessment and selection con-
tribute to achieving higher overall accuracy in Section 5.

Fig. 7 shows the operational flow and example of the
quality-aware selection. SensiX gathers the sensor data from
all available devices and obtains the translated data (if the
device is different from the device used for training the

input model). SensiX executes the model inference with the
(translated) data and obtains confidence values for all pipe-
line candidates. Then, for each pipeline, SensiX computes
the margin sampling, i.e., the difference of probabilities
between its first and second most probable labels and
selects the execution pipeline which shows the highest mar-
gin sampling.

Energy-Efficient Selection. A practical issue in runtime
selection is to determine a proper interval of the selection.
Since the sensing quality dynamically changes even with
the same topology of devices, continuous quality assess-
ment is needed. However, our quality assessment requires
all execution pipelines to be performed, i.e., sensing, trans-
lating, and model execution, thus the frequent selection
could incur a significant system overhead in terms of energy
and CPU. To avoid such costs and make the system practi-
cal, we adopt a widely used duty-cycling technique for the
quality-aware selection. That is, by leveraging the temporal
locality of human/device contexts, SensiX performs the
quality assessment and selection periodically at the fixed
interval and deactivates unselected pipelines until the next
interval. In this paper, we empirically set the selection inter-
val to 10 seconds, which was optimal in our dataset. Besides
the periodic interval, SensiX also triggers the selection
immediately if it detects system events that can affect the
runtime quality, e.g., registration and deregistration of a
model, and join and leave of a sensor device.

It is important to note that there are a number of system
parameters (e.g., sensor types, inference models, and sens-
ing tasks) that determine the optimal selection interval. It
would also be different depending on an individual’s
behavioural patterns. Considering such complexity, we
believe the optimal interval should be determined at run-
time in an adaptive, personalised way. For example, when a
new model or device is added to SensiX, it can gradually
increase the interval from 1 s, estimate the overall quality
considering the runtime accuracy and resource usage, and
find the saturation point. We leave it as future work.

4.4 SensiX Prototype and Implementation

We implement the SensiX prototype on off-the-shelf
devices. Fig. 8 shows the hardware setup. For the host

Fig. 7. Quality-aware selection; (s)ensor, (t)ranslation, (m)odel. This is
an example when three devices are available and the mode trained one
of these deivces is given.

Fig. 8. Hardware setup: Personal edge as (a) Raspberry Pi 3 with Goo-
gle Coral USB accelerator, sensor devices as (b) Pixel 3 smartphone, (c)
LG Urbane 2 smartwatch, (d) eSense earbuds, and (e) Monsoon power
monitor.

5530 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

device, we used Raspberry Pi 3 with Google Coral USB
accelerator and developed the host device-side components
with Python and Tensorflow 1.X. For sensor devices, we
considered three devices, Pixel 3 smartphone, LG Urbane 2
smartwatch, and eSense [3]) earbuds. For the Android devi-
ces, we developed the sensor-side components that run as
an Android background service. eSense does not have proc-
essing capability on-board and thus we developed an
eSense broker which runs on the host device.

A multi-device system naturally requires a host that
orchestrates the runtime operations and manages the model
execution. In a conventional system, a resource-rich device,
e.g., a smartphone in personal sensing environments can be
assigned with such functionalities. The operations discussed
earlier, some of which are neural operations, demands care-
ful system-wide orchestration and needs to be executed
actively in the background. However, modern smartphones
are optimised exclusively for maximising battery life, as the
OSes often ignore any background operation that has rela-
tively high energy expenses. A clear indication of such deci-
sions of modern mobile OSes is the constrained imposed of
background processing for applications. These restrictions
have severe implications for the performance of a runtime
orchestrator as system-wide optimisation opportunities are
relatively limited. To this end, for the thorough evaluation of
SensiX, we have taken a dedicated subsystem route for host-
ing the runtime orchestrator and implemented it on the AI
accelerator. We envision that SensiX can co-exist with future
smartphones (or other prominentmobile forms).

With a proliferation of multi-device sensing systems,
future OSes may remove such restrictions. We consider run-
time orchestration and related system operations for multi-
device sensing should be designed as a specialised subsys-
tem. Deep learning algorithms drive many sensory models
today, and it is natural to expect neural accelerators will
power these subsystems, which are not adopted yet in cur-
rent smartphones.

This centralised orchestration and execution mean that
SensiX considers every sensor device in the environment as
merely a sensor stream provider equipped with a supported
communication interface. However, if sensor devices afford
processing capability, resource-related system cost would
be expected to reduce, e.g., by using code offloading to sen-
sors or pipeline partitioning [14], [36].

5 EVALUATION

We present extensive experiments to evaluate the effec-
tiveness of SensiX in multi-device scenarios. We use two
multi-device sensing applications built with motion and
audio signals for physical activity and keyword spotting,
respectively. First, we investigate the effect of our device-to-
device data translation and quality-aware selection mecha-
nisms on the runtime accuracy and robustness of sensing
models using the multi-device datasets. Then, we perform
micro-benchmarks on top of our system prototype to under-
stand the overheads of the SensiX operations.

5.1 Experimental Setup

Models, and Datasets. For the evaluation, we use two sensing
tasks: human activity recognition (HAR) with IMU data and

keyword spotting with audio data. We choose these two tasks
because IMUs and microphones are core sensors in per-
sonal, multi-device environments and they are representa-
tive tasks for these sensors. For a comprehensive analysis,
we used the multi-device datasets and conducted repetitive
experiments with different combinations of system parame-
ters and comparison groups.

HAR: For human activity recognition, we develop a deep
learning model proposed in [11], which employs a CNN-
based feature extractor with 4 residual blocks containing 2
convolutional layers each; it takes 1-second-long data as an
input. The model has two fully-connected layers and an out-
put layer. For the analysis, we use the RealWorld dataset [37].
It consists of sensor data recorded from 15 participants with
seven smartphones on their body. Each participant per-
forms eight physical activities; walking, running, sitting,
standing, lying, stairs up, stairs down, and jumping. For the
experiments, we select 3-axis accelerometer and 3-gyro-
scope data from three devices deployed on a forearm, a
head, and a thigh, each of which represents the typical posi-
tion of a smartwatch, an earbud, and a smartphone, respec-
tively; the sampling rate is 50 Hz.

Keyword Spotting.We use the keyword detection architec-
ture proposed in [38]. It takes a two-dimensional tensor
extracted from the 1-second-long audio recording (time
frames on one axis and MFCC on the other axis) as an input.
The architecture consists of two convolutional layers, a
global average pooling layer, and a fully-connected layer.
For training and testing, we use the Keyword dataset [29]
which consists of 65,000 speech keywords re-recorded at
16 kHz on three different embedded microphones (Matrix
Voice, ReSpeaker, USB microphone) simultaneously; each
file has a 1-second long spoken keyword which belongs to
one of 31 keyword classes.

We split all datasets to ensure independence between the
training and test set. For the additional details, refer to [11],
[38] for the architecture of sensing models and [29], [37] for
the datasets.

Sensor Workloads. We consider two types of sensor work-
loads, static and dynamic. In the static workload, all devices
are available all the time. It is to investigate the overall per-
formance of SensiX and the baselines. The dynamic work-
load is to study the robustness of the system in dynamic
situations where some devices become temporarily unavail-
able, e.g., the battery runs out or a watch is left on a desk.
We generate the four dynamic workloads with the follow-
ing availability probability values, 0.7, 0.8, 0.9, 1.0, respec-
tively. For each workload, the availability of each device
(either available or unavailable) is randomly decided based
on the probability value. The decision is made indepen-
dently to other devices.

Comparison. SensiX offers high-accuratey, robust sensing
in the runtime environment with two main operations,
device-to-device data translation and quality-aware pipe-
line selection. To identify the impact of each operation, we
considered the following baselines which also include varia-
tions of SensiX itself:

� Single-avg: The traditional practice in context moni-
toring is to use a single, fixed device for a sensing
model, e.g., either a smartphone, a smartwatch, or an

MIN ETAL.: SENSIX: A SYSTEM FOR BEST-EFFORT INFERENCE OF MACHINE LEARNING MODELS IN MULTI-DEVICE ENVIRONMENTS 5531

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

earbud at runtime as shown in Fig. 4a. Thus, for each
sensing task, we can consider three cases using dif-
ferent devices. Single-avg reports the average perfor-
mance of these three cases.

� SensiX-native: SensiX-native is built on top of the
device discovery, but does not have the capability of
the device-to-device data translation and quality-
aware selection. Note that, by bringing AI execution
to the system layer, SensiX performs device discov-
ery in the background, e.g., using Bluetooth and Wi-
Fi scanning, and dynamically maps sensing models
to available devices. SensiX-native selects the device
for model processing in a round-robin manner out of
available devices.

� SensiX-trans: SensiX-trans adopts the translation
operation on top of SensiX-native, but does not have
the quality-aware selection. That is, the device for
model processing is selected in a round-robin man-
ner, but the translation operation is added and used
if the given model was not trained in the selected
device.

� SensiX-QS: SensiX-QS selects the device with the
quality-aware selection, but without the device-to-
device data translation.

Model and Translation Configuration. We demonstrate the
capabilities of SensiX in several training configurations
where pre-trained models are available only from a subset
of the devices. For the HAR task, we assume that two model
instances (trained with data from head and forearm devices,
respectively) are given and SensiX trains one translation
function (thigh ! head). Indeed, as there is no model
trained for thigh-worn sensors, SensiX performs translation
on the data collected from the thigh to make it resemble the
data from a training device (e.g., head), before passing this
data to the head model for inference. Similarly, for the key-
word spotting model, we assume that one model instance
(trained with the data from Matrix Voice) is given and Sen-
siX trains translation functions for the other two devices
(ReSpeaker ! Matrix Voice and USB microphone ! Matrix
Voice). During training of each sensing model, we use a
held-out validation dataset to evaluate model accuracy and
chose the model with the lowest validation loss. While train-
ing the translation model, we used a quantitative metric
commonly employed in generative modelling literature
called Peak Signal-to-noise ratio (PSNR). PSNR is closely
related to the mean square error and is suggestive of the dis-
tance between the datasets before and after translation. The
model which provided the highest PSNR during the train-
ing process was selected as the final translation model. To
keep the evaluation focused, we only show results on mod-
els pre-trained on data from a single device (e.g., head).
However, note that SensiX data translation does not make
any assumption that the source model is pre-trained only
on data from one device. Prior works have shown the capa-
bilities of data translation in multi-device settings [29].

Performance Metrics. As a key performance metric, we
consider the runtime accuracy of sensing models in the
multi-device setting and compare SensiX against the afore-
mentioned baselines. Since our datasets are imbalanced, we
use the micro-averaged F1 score [39]. In the dynamic work-
loads, the execution of a model cannot be supported if the

dedicated device in Single-avg is unavailable or all the devi-
ces are unavailable in the SensiX variations. To reflect such
scenarios, we set the F1 score to 0 during those moments
when ML execution is not supported.

5.2 Effect of SensiX on Accuracy Improvement

5.2.1 Overall Performance

Fig. 9 shows the overall performance under the static work-
load. The results show that SensiX increases the overall
average F1 score of sensing models by up to 0.13 without
modifying them. More specifically, for the HAR task, SensiX
achieves 0.83 of F1 score, whereas the average F1 score of
the cases when a single device is used without any SensiX
operations (Single-avg) is 0.70. It shows that the device-to-
device data translation and quality-aware selection mecha-
nisms enable ML models to have more accurate results. We
break down the performance by looking into and compar-
ing the results of SensiX variations. As expected, Sensis-
native shows similar performance to Single-avg because
SensiX-native selects each device in turn, thus its perfor-
mance converges to the average performance of the cases
when each device is used. In HAR task, the improvement
from the device-to-device translation, i.e., SensiX-trans
(0.71) compared to SensiX-native (0.70), is not meaningful.
This is because the performance of the translated thigh data
with the head model is still much lower than the other two
device cases. However, SensiX-QS shows 0.78 of F1 score,
8% higher than SensiX-native, which shows the effective-
ness of the quality-aware selection when multiple IMU
devices are available. Also, when the translation operation
is used together with the quality-aware selection, SensiX
further achieves a 5% higher F1 score than SensiX-QS. This
shows that, even though the overall performance of the
translation operation (from thigh data to head data) is not
meaningful, our selection mechanism well spots the
moments when the translated thigh data outperforms the
data from the other two devices, and contributes to achiev-
ing the higher overall performance.

As shown in Fig. 9, the keyword spotting model shows a
similar trend. SensiX increases the overall average F1 score
by 7%; the F1 score of SensiX and Single-avg is 0.75 and
0.68, respectively. Note again that, in the keyword spotting
task, only one model trained with the data from Matrix
Voice was used and thus ReSpeaker and USB microphone
suffer poor accuracy when the translation operation is not
applied, due to the heterogeneity issue described in § 4.2.
Different from the HAR case, we can observe the significant
contribution of the translation operation. By adopting the

Fig. 9. Overall performance.

5532 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

translation function only, SensiX-trans achieves 0.72 of F1

score.
It is important to note that the main goal of our work is

not to train the most accurate sensing models and achieve
the high accuracy of each model, but to show that SensiX
operations can increase the accuracy of pre-trained models
in a multi-device sensing system. Our results, i.e., the rela-
tive improvement Single-avg to SensiX, clearly demonstrate
this capability of SensiX.

5.2.2 Robustness in Dynamic Workloads

Fig. 10 shows the F1 score of the HAR model while increas-
ing the availability probability from 0.7 to 1.0. When the
probability is 0.7, each device is available with the probabil-
ity of 0.7; for example, in this case, the probability of having
two available devices out of three is 0.441 (3C2 � 0:7�
0:7� 0:3). The results show that the SensiX capability with
device discovery in multi-device environments achieves a
higher level of robustness of model execution. As expected,
Single-avg shows poorer performance as the availability
probability becomes lower; it shows a linear relationship to
the availability probability. However, the decrease of F1

scores of SensiX variations is not significant. SensiX varia-
tions fail to deliver the model output only when all devices
are unavailable, which is very unlikely when there are mul-
tiple devices. For example, the F1 score of SensiX is 0.77,
0.81, 0.83, and 0.83 when the availability probability is 0.7,
0.8, 0.9, and 1.0, respectively.

Fig. 11 shows the result of the keyword spotting
model in the dynamic workload. The results show a sim-
ilar trend to the HAR model, but the decrease of F1 score
when the availability probability goes down from 1.0 to
0.7 is much smaller, e.g., F1 score of SensiX is 0.75 and
0.72 with 1.0 and 0.7 of the probability, respectively.
This is because the accuracy of keyword models is not
much different across the devices when the translation
operation is applied.

5.3 In-Depth Analysis

5.3.1 Device-to-Device Translation

We look deeper into how much the translation operation
improves the model performance.

Translation Between IMU Sensors. Here, we report two
cases of translation between IMU sensors: (1) placement-
to-placement translation, i.e., between the same type of
IMU sensor, but with different placements and (2)
device-to-device translation, i.e., between the different
type of IMU sensor but with same placements. For the
former, we report the performance of the thigh-to-head
translation which was used in the experiments. For the
latter, we introduce the Opportunity dataset [23] and
investigate the performance of the translation from the
left lower arm device in Opportunity to the smartwatch on
a forearm in RealWorld, which can be seen to be placed
in the same position. Since the collection configuration is
different between Opportunity and RealWorld, we
resample and normalise the Opportunity data before the
translation; the sampling rate and accelerometer range
are 30 Hz and �3g for Opportunity and 50 HZ and �2g
for RealWorld. Fig. 12a shows the accuracy improvement
when the translation operation is applied. More specifi-
cally, for the thigh case, the performance of the original
and translated is reported when the alternative model
(here, head model) is used with the original thigh data
and the translated thigh-to-head data, respectively. The
results show that our translation operation improves the
F1 score from 0.39 and 0.43. In the case of the translation
of watch-worn devices from Opportunity to RealWorld,
F1 score of the original and translated is 0.61 and 0.64,
when the model trained with the forearm device in Real-
World is used with the resampled and normalised data
from left lower arm in Opportunity, without and with the
translation, respectively.

One may argue that, even with the accuracy improve-
ment, translation between IMU sensors can be seen as
impractical due to their poor absolute accuracy. However,
our experimental results in Fig. 9 show that, together with
the quality-aware selection, the translation provides the
meaningful improvement of the system-wide accuracy.
Considering that having device/placement-specific models
requires a significant burden for data collection and model
engineering, SensiX can be used to complement applica-
tions when a new device is added, until the dedicated
model is available. We believe we can further optimise the
translation performance by adopting recent studies on
domain adaptation for IMU sensors and motion models,
e.g., [40], [41].

Fig. 10. Performance of HAR in dynamic workloads.

Fig. 11. Performance of keyword in dynamic workloads.

Fig. 12. Effect of translation operation: (A) HAR (left) and (b) keyword
spotting (right).

MIN ETAL.: SENSIX: A SYSTEM FOR BEST-EFFORT INFERENCE OF MACHINE LEARNING MODELS IN MULTI-DEVICE ENVIRONMENTS 5533

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

Translation Between Microphones. Fig. 12b shows the results
for the keyword spottingmodel.We assume that amodel pre-
trained on Matrix Voice microphone is provided and is now
testedwith data fromReSpeaker andUSBMic.. As such, SensiX
performs the following translation operations: ReSpeaker-to-
Matrix Voice and USB Mic.-to-Matrix Voice. We observe that
due to translation, the F1 score of ReSpeaker increase from
0.62 to 0.68 (i.e., 6% increase) and for USB Mic., the F1 score
increases from 0.67 to 0.74 (i.e., 7% increase). These accuracy
gains are significant for the Keyword Spotting model trained
for Matrix Voice, whose best F1 score is 0.77 when it is trained
and tested on the samemicrophone. In otherwords, the trans-
lation operation is able to recover 40% (for ReSpeaker) and
70% (for USB Mic.) of the drop in F1 score of the Keyword
Spottingmodel due tomicrophone variability.

5.3.2 Quality-Aware Selection

To have a deeper understanding of the behaviour of the
quality-aware selection, we look into how often each device
is selected by the selection operator in the static workload.
Fig. 13 shows the selection ratio of three microphones on
the keyword spotting model. The difference of ratio pat-
terns between SensiX-QS and SensiX represents how the
selection decision changes when the translation functions
are added; note again that SensiX-QS does not have the
translation operation. The results show that our selection
mechanism well reflects the runtime quality, in two differ-
ent ways. First, when the original signal is used without the
translation (i.e., SensiX-QS), MatriX Voice is selected the
most frequently, mainly due to its relatively higher perfor-
mance. Second, on SensiX, the performance of both
ReSpeaker and USB Mic. improves from the translation to
Matrix Voice as shown in Fig. 12b. However, interestingly,
while USB Mic. is selected more often, ReSpeaker is less
selected. This is mainly because translated USB Mic.
achieves comparable performance to Matrix Voice and thus
produces more chances of being selected, especially instead
of ReSpeaker.

5.3.3 Further Analysis on an Imbalanced Dataset

Here, we present a further analysis on an imbalanced data-
set using the Matthews correlation coefficient (MCC), intro-
duced by biochemist B. W. Matthews in 1975 [42] for
biomedical research. The MCC metric is also widely used in
the field of machine learning because it is generally
regarded as a balanced measure that can be used for imbal-
anced datasets [43]. The MCC can be calculated from the
confusion matrix using the following formula:

MCC ¼ TP � TN � FP � FN
ffiðTP þ FP ÞðTP þ FNÞðTN þ FP ÞðTN þ FNÞp

, where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respec-
tively. The MCC value ranges from -1 to 1; -1 and 1 repre-
sent an inverse and perfect prediction, respectively, and 0
presents an average random prediction.

Fig. 14 shows the F1 score andMCCof theHAR task under
the staticworkload. The experimental results show that, while
two metrics show different patterns depending on the base-
lines, we observe that SensiX also increases MCC by up to
0.07 without modifying sensing models. MCC of SensiX is
0.72, whereas MCC of Single-avg (i.e., when a single device is
used without any SensiX operations) is 0.65. Interestingly, we
observe that SensiX-QS shows a relatively lower MCC than
other baselines. It is mainly because the decision from the
quality-aware pipeline selection decreases the number of true
negatives. However, MCC increases again when the device-
to-device data translation is adopted (i.e., SensiX). It again
shows that the two main operations of SensiX complement
each other and contribute to achieving higher overall perfor-
mance. We omit the results of the keyword spotting task
because the trend ofF1 score andMCCwas similar.

5.4 Micro Benchmark of SensiX Prototype

To understand the system behaviours, we conduct the
micro-benchmark of the SensiX prototype with off-the-shelf
devices. Fig. 15 shows the main operations of SensiX. We
first study the resource characteristics of model processing
and then examine the system overhead of SensiX. We mea-
sure the energy cost using a Monsoon power monitor.

Model Execution. As described in Section 4.4, sensor devices
act as a data source and model execution is conducted on a
host device. Thus, the main status of the sensor device is either
deactivated (idle mode), or activated (sensing and streaming
data). Table 1 shows the power profiles of sensor devices for
the HAR task, which are obtained from the Monsoon power
monitor; we omit the result for the keyword spotting task due
to the page limit. We report the power cost of sensing and BLE

Fig. 13. Ratio of selection (keyword spotting).
Fig. 14. Comparison between F1 score and MCC (HAR).

Fig. 15. Main operations of SensiX; (H)ost device and sensor (d)evices.
An example whenD2 is selected.

5534 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

Tx for eSense together because its firmware does not support
those functions separately. The transmission cost for Pixel 3
and LG Urbane is relatively much higher than that of eSense
because Bluetooth classic is used for communicationwith these
Android devices. We expect that further energy saving can be
achieved if the communication is developed on top of BLE.

The network usage is different depending on the sensing
task. On each device, the HAR and keyword spotting tasks
send 300 and 32 k bytes per second, respectively.

The main operations of the host device are to receive sen-
sor data and execute the model processing. Table 2 shows
the energy cost and inference time to be taken to process an
instance of AI model execution on Raspberry Pi 3 and Coral
USB accelerator. We observe that the execution of the key-
word spotting model takes more energy and a longer time
due to its bigger size of the architecture. The average power
to receive motion and audio data via Bluetooth classic
remains around 10 mW. The memory usage of the HAR
and keyword spotting models is 1.84 MB and 3.9 MB.

System Overhead. The major operations of SensiX beyond
model execution are as follows. (1) SensiX discovers nearby
devices by periodically establishing the Bluetooth connection
with paired devices. The time to be taken to establish the con-
nection is measured as 0.9 sec and 5.7 sec for Android devices
and eSense, respectively. We believe that the shorter time for
Android devices comes from their optimisation of Bluetooth
stack. (2) Once a new device is added and the corresponding
model is not available, SensiX generates the translation func-
tion either locally or remotely on the cloud.Once the translation
model is available, SensiX processes it when sensor data from
the added device is received. The average time for the transla-
tion model for one sample, i.e., one-second-long sensor data is
20 ms and 480 ms for the HAR and keyword model, respec-
tively. Their execution takes much longer than the model exe-
cution because the cycle GAN network in the translation
model is much more complex. (3) SensiX performs the quality-
aware selection at the interval of the duty cycle. For one selec-
tion operation, the overhead is to receive the sensor data and
perform the sensing model for all devices during the assess-
ment window (1 sec.), i.e., additional 1.7 mJ and 28.30 mJ for
the HAR and keyword spotting task, respectively; when three
devices are available, additional processing of two models is
needed. Considering the selection interval, 10 secs, the addi-
tional power overhead for themodel execution is 0.17mWand
2.83 mW. The additional energy cost for the network transmis-
sion is negligible because sensor data is sent altogether at once
when a one-second-long segment is gathered, not whenever a
sensor sample is generated and the transmission is also made
once every 10 seconds. After the model execution, SensiX
selects the execution pipeline, which is expected to have the
best runtime quality. Due to the simplicity of margin sampling

computation, the execution time and energy cost are negligible,
< 1ms and < 1mJ, respectively.

6 DISCUSSION

Why not Multi-Device Fusion?.We assume that sensing mod-
els are built using sensor data from a single sensory device.
Recently, a number of studies on multi-sensory fusion have
been conducted to maximise the inference accuracy while
addressing potential system issues such as time synchroni-
sation and missing data [11], [12], [13], [44], [45]. While these
works contributed substantially to achieving higher perfor-
mance, we believe that they are not practical, yet to be used
at the personal-edge in the multi-device environments.
First, the fusion model requires all the devices involved in
the training, to be activated all the time at runtime, thereby
incurring significant system costs. Second, more impor-
tantly, considering the dynamics of multi-device environ-
ments, different fusion models are needed to be built and
trained for all possible combinations of devices, which may
not be feasible. For example, the fusion model trained with
a smartphone and a smartwatch may be useless if a user for-
gets to wear the watch. Similarly, a new model will be
needed if a user buys a new wearable device or an IoT
device around a user becomes available.

Beyond the Accuracy. SensiX can be easily extended to con-
sider resource-related runtime metrics by adopting online
profiling tools for energy [46] and transmission latency [47] or
by leveraging the benchmark study of the model perfor-
mance, e.g., [48], [49]. To this end, SensiX allows the policy to
be specified as a cost function and selects the pipelinewith the
minimum cost output. For example, for the policy ofminimis-
ing the total energy consumption, the corresponding cost
function can be defined as f(D, M) = total_energy_cost(D, M),
whereD andM are a device and a sensingmodel, and total_e-
nergy_cost() is a function that returns the expected total
energy consumption of devices when D is selected for the
processing of M. Several factors can be considered together
by defining a cost function as their weighted sum.

Distributed System Architecture. In this paper, we imple-
mented the system orchestrator part of SensiX on a dedicated
host device, and we envision this could be a smartphone in
the future. This has the advantage that all personal data
remains local to the user, with significant advantages in terms
of privacy protection [50]. An alternative solutionwould be to
implement this functionality on the cloud andmake it accessi-
ble from SensiX clients. In addition to stricter privacy and
security measures to avoid leaking personal data, this
approach would require careful consideration of the latency
and energy cost that might be introduced. In fact, the cloud
service might not always be available due to the overload of
the remote servers or due to connectivity issues. Moreover,
streaming sensor data to the cloud could severely affect

TABLE 1
Power Cost for the Motion Model on Sensor Devices

Operation Power (mW)

Pixel LG Urbane 2 eSense

Idle 28.1 27.8 6.6

Sensing 7.2 8.6 5.0 (BLE)
Bluetooth Tx 177.1 68.5

TABLE 2
Resource Cost for Model Processing on a Host Device

Model Parameters Energy Inference time

HAR 385 k 0.86 mJ 1.93 ms
Keyword 1,846 k 28.12 mJ 62.17 ms

MIN ETAL.: SENSIX: A SYSTEM FOR BEST-EFFORT INFERENCE OF MACHINE LEARNING MODELS IN MULTI-DEVICE ENVIRONMENTS 5535

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

battery lifetime, especially for high-rate sensors. We leave the
study of these tradeoffs for futurework.

Generalisability of Proposed Techniques. In this paper, we
mainly focus on personal-edge environments with IMU and
microphone sensors. A typical context for this is one that con-
siders multiple mobile devices and wearables (e.g., phone,
watch, earbuds, ring) and diverse IoT devices (e.g., smart
speakers, TVs) owned by the same person or the same house-
hold. In this case, the need for device translation when new
devices join the group or device selection due to the dynamic
conditions of daily living is higher. However, since device
and data variabilities are common characteristics also in other
multi-device environments (e.g., industrial settings), we
believe that the main features of SensiX, (a) separating execu-
tion of sensingmodels from application space and (b) propos-
ing device-to-device translation and quality-aware selection,
are still valid in other edge environmentswith a different type
of sensors. One such example is when multiple cameras with
overlapping fields of view are deployed to provide collabora-
tive video analytics services. Due to deployment constraints,
camerasmight be produced by different manufacturers while
the sensingmodels assume a specificmake andmodel. In this
situation, SensiX’s device-to-device translation is of para-
mount importance to ensure the effective use of the cameras.
Similarly, when covering a very large area, the cameras will
not all be subject to the same conditions (e.g., fog, smoke, dirt
on lens), hence the quality-aware selection offered by SensiX
could guarantee optimal performance even in diverse and
challenging situations. However, translation and quality-
assessment algorithms might need to be implemented differ-
ently depending on the environment and sensor type due to
their different characteristics. Also, even inmulti-device envi-
ronmentswith IMU,microphone, and cameras, SensiXwould
not work well if they do not capture the same context, e.g.,
wearables owned by different users, far-placed microphones,
and cameras without overlapping fields of view. Thus it will
be important to quantify the feasibility of SensiX when it is
deployed in new environments.We leave it as futurework.

Alternatives to Inference-Time Data Translation. Our
approach of CycleGAN-based data translation at inference
time was motivated by two key design goals: a) SensiX
should neither require re-training of the sensing model nor
assume that the model developer provides access to the
weights of the pre-trained sensing model, b) SensiX should
not assume the availability of labelled data at inference
time. We note that in the absence of these assumptions,
there are alternative approaches to transfer knowledge from
a source domain to a target domain, e.g., [51] proposed
translating the source domain data to the target domain and
retrain the sensing model. Further, transfer learning
approaches such as model fine-tuning can be used to adapt
the original sensing model to the target device, if adequate
labelled data is available from the target device. Both these
approaches violate the assumptions and design goals of
SensiX, hence we did not employ them.

Model Monitoring and Update. An important issue related
to the deployment of ML models on edge devices is the
need to perform continuous monitoring and necessary
updates to the model. Among other factors, the need for
updating the models can be necessitated by the change in
underlying data distribution of the sensor devices, e.g., due

to a faulty sensor or significant variations in how the device
is worn or used. In such cases, both the sensing and transla-
tion models would need to be updated. Although exploring
this topic was out of scope of this paper, we highlight two
broad questions that can be studied in future work. First,
we need a way to monitor the data distribution of each
device and determine that a significant distribution shift
has happened. To this end, both data-driven approaches or
techniques based on monitoring system events could be
explored. Second, once a distribution shift is detected, how
do we trigger the retraining of the translation and sensing
models? Should the retraining operation run as a back-
ground process and once the models are retrained, they
replace the existing models. Or should the system inform
the user that the models are no longer valid and cause appli-
cation downtime while the models are being updated? We
believe all of these are important future research topics for
SensiX and edge ML in general.

7 RELATED WORK

Context-Aware Middleware for Body Sensor Networks (BSNs).
There have been research efforts to develop context-aware
middleware platforms for BSNs. They have developed
abstractions to tackle challenges associated with context
retrieval, device discovery, and user mobility, thereby making
it easier to develop context-aware applications.Onemain, rele-
vant direction is the dynamic sensor selection work [18], [52],
[53]. Grounded on the understanding of the effect of different
characteristics on recognition accuracy, e.g., sensor type and
composition, and device placement, they dynamically select
the best sensor with the objective of optimising a system pol-
icy, e.g., maximising accuracy, minimising energy cost. While
they have presented execution strategies for various purposes,
their consideration of the runtime accuracy has been limited.
Theymostly assumed that the runtime accuracy is static while
the associated devices are available and made the decision
based on the average accuracy.

Our work contributes to this rich body of BSN research by
offering novel systematic aspects and addressing the dynamic
nature of runtime accuracy. First, SensiX automatically gener-
ates sensing pipelines to make a given sensing model work in
new, unseen devices by presenting device-to-device transla-
tion [29]. Second, by adopting the selection mechanism [32],
SensiX ensures best-effort inference ofMLmodels.

Support for ML Model Inference. A number of model serv-
ing platforms have been proposed to facilitate the model
deployment into production and enhance the runtime per-
formance, but they mostly focus on the inference latency.
TensorFlow Serving is a serving system developed by Goo-
gle for TensorFlow models [54]. Crankshaw et al. presented
Clipper, an online prediction serving system that deploys
ML models in separate containers and reduces prediction
latency by employing caching and batching technique [55].
InferLine has been proposed to meet the tight end-to-end
latency requirements by optimally configuring ML predic-
tion pipelines [56]. Unlike these work, SensiX primarily tar-
gets the runtime accuracy as the main performance metric
of ML models and proposes novel, practical system-driven
solutions that address device and data variabilities without
model modification.

5536 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

Streaming Architectures. From the point of view that sen-
sor devices act as a data source, streaming processing archi-
tectures like Amazon Kinesis [57] and Apache Kafka [58]
can be seen similar to SensiX. Those systems are built as
cloud-side messaging queue systems to deal with a high
volume and number of streaming data durably, reliably,
and with scalability. In this regard, they mainly focus on the
data management layer, lacking the system aspects such as
heterogeneity management for sensing quality. SensiX tar-
gets the execution pipeline layer to achieve accurate and
robust sensing on top of the data management layer.

8 CONCLUSION

We presented SensiX, a purpose-built runtime component for
the personal edge to offer best-effort inference in amulti-device
sensing environment. SensiX sits between the sensor devices
and the corresponding sensory models in a personal edge
device and comprises of two neural operators. A device-to-
device data translation operator and a quality-aware device
selection operator to cope with the device and data variabilities
while externalising the model management and execution
away from the applications. The combination of these twooper-
ators enables SensiX to boost the runtime accuracy of sensory
models in a multi-device sensory environment. We discussed
different design cardinals, operational principles and imple-
mentation details of SensiX. We demonstrated the efficacy of
SensiX through extensive testing with real-world motion and
acoustic sensing workloads, including three different public
datasets and two different models. Our evaluation highlighted
the ability of SensiX in boosting the overall runtime accuracy of
different sensing models in multi-device sensing applications
by 7-13% and up to 30% increase across different environment
dynamics. We showed that this gain comes at the minimal
expense of 3 mW on the personal edge device, however with a
significant reduction of development complexity and cost.

In the current version of SensiX, we assume that applica-
tion developers provide model binaries. However, we envi-
sion that public repositories for pre-trained sensing models
such as [25], [26] can be easily used with SensiX, thereby
allowing developers to choose and execute pre-trained mod-
els efficiently. We anticipate such ability of SensiX will enable
application developers to focus on the application logic and
model developers to focus on accuratemodel design.

In our future avenue ofwork, we plan to deploy and evalu-
ate SensiX in a real-world personal edge environment with
multiple sensory devices. Besides, we want to explore the
applicability of SensiXwith othermodalities, and in particular
for vision-based applications. Finally, we aspire to assess the
efficacy of SensiX in reducing code complexity by engaging
developers in buildingmulti-device sensing systems.

REFERENCES

[1] E.Miluzzo et al., “Sensingmeetsmobile social networks: The design,
implementation and evaluation of the cenceme application,” inProc.
6th ACMConf. EmbeddedNetw. Sensor Syst., 2008, pp. 337–350.

[2] Y. Li, A.Miller, A. Liu, K. Coburn, and L. J. Salazar, “Acoustic meas-
ures for real-time voice coaching,” in Proc. 26th ACM SIGKDD Int.
Conf. Knowl. Discov. DataMining, 2020, pp. 2755–2763.

[3] F. Kawsar, C. Min, A. Mathur, and A. Montanari, “Earables for
personal-scale behavior analytics,” IEEE Pervasive Comput.,
vol. 17, no. 3, pp. 83–89, Jul.–Sep. 2018.

[4] Y. Shen, M. Voisin, A. Aliamiri, A. Avati, A. Hannun, and A. Ng,
“Ambulatory atrial fibrillationmonitoring usingwearable photople-
thysmography with deep learning,” in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discov. DataMining, 2019, pp. 1909–1916.

[5] A. Ferlini, A. Montanari, C. Min, H. Li, U. Sassi, and F. Kawsar,
“In-ear PPG for vital signs,” IEEE Pervasive Comput., vol. 21, no. 1,
pp. 65–74, Jan.–Mar. 2021.

[6] B. Safaei, A. M. H. Monazzah, M. B. Bafroei, and A. Ejlali,
“Reliability side-effects in Internet of Things application layer proto-
cols,” inProc. 2nd Int. Conf. SystemRel. Saf., 2017, pp. 207–212.

[7] A. Stisen et al., “Smart devices are different: Assessing and mitiga-
tingmobile sensing heterogeneities for activity recognition,” in Proc.
13th ACMConf. EmbeddedNetw. Sensor Syst., 2015, pp. 127–140.

[8] C. Min, A. Mathur, A. Montanari, and F. Kawsar, “An early char-
acterisation of wearing variability on motion signals for wear-
ables,” in Proc. 23rd Int. Symp. Wearable Comput., 2019, pp. 166–168.

[9] T. T. Um et al., “Data augmentation of wearable sensor data for
parkinson’s disease monitoring using convolutional neural
networks,” in Proc. 19th ACM Int. Conf. Multimodal Interact., 2017,
pp. 216–220.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[11] L. Peng, L. Chen, Z. Ye, and Y. Zhang, “AROMA: A deep multi-
task learning based simple and complex human activity recogni-
tion method using wearable sensors,” Proc. ACM Interactive Mobile
Wearable Ubiquitous Technol., vol. 2, no. 2, pp. 74:1–74:16, Jul. 2018.

[12] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “DeepSense: A
unified deep learning framework for time-series mobile sensing data
processing,” inProc. 26th Int. Conf.WorldWideWeb, 2017, pp. 351–360.

[13] Y. Vaizman, N. Weibel, and G. Lanckriet, “Context recognition in-
the-wild: Unified model for multi-modal sensors and multi-label
classification,” Proc. ACM Interactive Mobile Wearable Ubiquitous
Technol., vol. 1, no. 4, pp. 168:1–168:22, Jan. 2018.

[14] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” inProc. 8th Int. Conf.Mobile Syst. Appl. Serv., 2010, pp. 49–62.

[15] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanar-
ayanan, “Towards wearable cognitive assistance,” in Proc. 12th
Annu. Int. Conf. Mobile Syst. Appl. Serv., 2014, pp. 68–81.

[16] N. D. Lane et al., “DeepX: A software accelerator for low-power
deep learning inference on mobile devices,” in Proc. 15th Int. Conf.
Inf. Process. Sensor Netw., 2016, pp. 1–6.

[17] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand
deep model compression for mobile devices: A usage-driven
model selection framework,” in Proc. 16th Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2018, pp. 389–400.

[18] S. Kang et al., “Orchestrator: An active resource orchestration
framework for mobile context monitoring in sensor-rich mobile
environments,” in Proc. IEEE Int. Conf. Pervasive Comput. Com-
mun., 2010, pp. 135–144.

[19] A. Bakar, T. Rahman, A. Montanari, J. Lei, R. Shafik, and F. Kawsar,
“Logic-based intelligence for batteryless sensors,” in Proc. 23rd
Annu. Int.WorkshopMobile Comput. Syst. Appl., 2022, pp. 22–28.

[20] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “LEO:
Scheduling sensor inference algorithms across heterogeneous
mobile processors and network resources,” in Proc. 22nd Annu.
Int. Conf. Mobile Comput. Netw., 2016, pp. 320–333.

[21] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “MCDNN: An approximation-based execu-
tion framework for deep stream processing under resource con-
straints,” in Proc. 14th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2016, pp. 123–136.

[22] A. Montanari, M. Sharma, D. Jenkus, M. Alloulah, L. Qendro, and
F. Kawsar, “ePerceptive: Energy reactive embedded intelligence
for batteryless sensors,” in Proc. 18th Conf. Embedded Netw. Sensor
Syst., 2020, pp. 382–394.

[23] D. Roggen et al., “Collecting complex activity datasets in highly
rich networked sensor environments,” in Proc. 7th Int. Conf. Netw.
Sens. Syst., 2010, pp. 233–240.

[24] M. Kreil, B. Sick, and P. Lukowicz, “Dealing with human variabil-
ity in motion based, wearable activity recognition,” in Proc. IEEE
Int. Conf. Pervasive Comput. Commun. Workshops, 2014, pp. 36–40.

[25] Tensorflowmodels & dataset, Accessed: Feb. 9, 2020. [Online]. Avail-
able: https://www.tensorflow.org/resources/models-datasets

[26] Pytorch hub. Accessed: Jul. 1, 2020. [Online]. Available: https://
pytorch.org/hub/

[27] A.Das,N. Borisov, andM.Caesar, “Do youhearwhat I hear?: Finger-
printing smart devices through embedded acoustic components,” in
Proc. ACMSIGSACConf. Comput. Commun. Secur., 2014, pp. 441–452.

MIN ETAL.: SENSIX: A SYSTEM FOR BEST-EFFORT INFERENCE OF MACHINE LEARNING MODELS IN MULTI-DEVICE ENVIRONMENTS 5537

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

https://www.tensorflow.org/resources/models-datasets
https://pytorch.org/hub/
https://pytorch.org/hub/

[28] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi3,
“Accelprint: Imperfections of accelerometers make smartphones
trackable,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[29] A. Mathur, A. Isopoussu, F. Kawsar, N. Berthouze, and N. D.
Lane, “Mic2Mic: Using cycle-consistent generative adversarial
networks to overcome microphone variability in speech systems,”
in Proc. 18th Int. Conf. Inf. Process. Sensor Netw., 2019, pp. 169–180.

[30] A. Mathur et al., “Using deep data augmentation training to
address software and hardware heterogeneities in wearable and
smartphone sensing devices,” in Proc. 17th ACM/IEEE Int. Conf.
Inf. Process. Sensor Netw., 2018, pp. 200–211.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2223–2232.

[32] C. Min, A. Montanari, A. Mathur, and F. Kawsar, “A closer look at
quality-aware runtime assessment of sensing models in multi-
device environments,” in Proc. 17th Conf. Embedded Netw. Sensor
Syst., 2019, pp. 271–284.

[33] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden Markov
models for information extraction,” in Advances in Intelligent Data
Analysis, F. Hoffmann, D. J. Hand, N. Adams, D. Fisher, and
G. Guimaraes ed., Berlin, Germany: Springer, 2001, pp. 309–318.

[34] C. E. Shannon, “A mathematical theory of communication,” Bell
Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[35] C. K€orner and S. Wrobel, “Multi-class ensemble-based active
learning,” in Proc. Eur. Conf. Mach. Learn., 2006, pp. 687–694.

[36] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,
“Wishbone: Profile-based partitioning for sensornet applications,” in
Proc. 6th USENIX Symp. Netw. Syst. Des. Implementation, 2009,
pp. 395–408.

[37] T. Sztyler andH. Stuckenschmidt, “On-body localization of wearable
devices: An investigation of position-aware activity recognition,” in
Proc. IEEE Int. Conf. Pervasive Comput. Commun., 2016, pp. 1–9.

[38] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” 2018, arXiv:abs/1804.03209.

[39] V. Van Asch, “Macro-and micro-averaged evaluation measures,”
Belgium: CLiPS, vol. 49, 2013.

[40] Y. Chang, A. Mathur, A. Isopoussu, J. Song, and F. Kawsar,
“A systematic study of unsupervised domain adaptation for
robust human-activity recognition,” Proc. ACM Interactive Mobile
Wearable Ubiquitous Technol., vol. 4, no. 1, pp. 1–30, Mar. 2020.

[41] C. Chen et al., “Motiontransformer: Transferring neural inertial
tracking between domains,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 8009–8016.

[42] B. W. Matthews, “Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme,” Biochimica et Biophysica
Acta Protein Struct., vol. 405, no. 2, pp. 442–451, 1975.

[43] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for
imbalanced data using matthews correlation coefficient metric,”
PLoS One, vol. 12, no. 6, 2017, Art. no. e0177678.

[44] F. J. Ord�o~nez and D. Roggen, “Deep convolutional and LSTM
recurrent neural networks for multimodal wearable activity rec-
ognition,” Sensors, vol. 16, no. 1, 2016, Art. no. 115.

[45] S. Yao, Y. Zhao, S. Hu, and T. Abdelzaher, “Qualitydeepsense:
Quality-aware deep learning framework for Internet of Things
applications with sensor-temporal attention,” in Proc. 2nd Int.
Workshop Embedded Mobile Deep Learn., 2018, pp. 42–47.

[46] A. Pathak, Y. C.Hu, andM. Zhang, “Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with
Eprof,” inProc. 7th ACMEur. Conf. Comput. Syst., 2012, pp. 29–42.

[47] A. G€onther and C. Hoene, “Measuring round trip times to deter-
mine the distance between WLAN nodes,” in Proc. Int. Conf. Res.
Netw., 2005, pp. 768–779.

[48] M. Antonini, T. H. Vu, C. Min, A. Montanari, A. Mathur, and F.
Kawsar, “Resource characterisation of personal-scale sensing
models on edge accelerators,” in Proc. 1st Int. Workshop Challenges
Artif. Intell. Mach. Learn. Internet Things, 2019, pp. 49–55.

[49] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese,
“DeFog: Fog computing benchmarks,” in Proc. 4th ACM/IEEE
Symp. Edge Comput., 2019, pp. 47–58.

[50] A. Montanari, A. Mashhadi, A. Mathur, and F. Kawsar,
“Understanding the privacy design space for personal connected
objects,” in Proc. 30th Int. BCS Hum. Comput. Interact. Conf., 2016,
pp. 1–13.

[51] W. Luo, Z. Yan, Q. Song, and R. Tan, “PhyAug: Physics-directed data
augmentation for deep sensing model transfer in cyber-physical sys-
tems,” inProc. 20th Int. Conf. Inf. Process. SensorNetw., 2021, pp. 31–46.

[52] P. Zappi et al., “Activity recognition from on-body sensors: Accu-
racy-power trade-off by dynamic sensor selection,” Wireless Sensor
Networks, R. Verdone ed., Berlin, Germany: Springer, 2008, pp. 17–33.

[53] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, “PBN: Towards
practical activity recognition using smartphone-based body sen-
sor networks,” in Proc. 9th ACM Conf. Embedded Netw. Sensor Syst.,
2011, pp. 246–259.

[54] Tensorflow serving. Accessed: Feb. 9, 2021. [Online]. Available:
https://www.tensorflow.org/tfx/guide/serving

[55] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving
system,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2017, pp. 613–627.

[56] D. Crankshaw et al., “InferLine: latency-aware provisioning and
scaling for prediction serving pipelines,” in Proc. 11th ACM Symp.
Cloud Comput., 2020, pp. 477–491.

[57] Amazon kinesis. Accessed: Jul. 1, 2020. [Online]. Available:
https://aws.amazon.com/kinesis

[58] Apache kafka. Accessed: Jul. 1, 2020. [Online]. Available: https://
kafka.apache.org/

Chulhong Min received the PhD degree in com-
puter science from KAIST, in 2016. He is currently a
research scientist with Nokia Bell Labs, Cambridge,
U.K. In 2017, he joinedNokia Bell Labs. His research
interests include mobile and wearable systems, on-
device AI, and edge computing. He is an associated
editor for ACM Proceedings on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT),
and also on the program committees of various
primer conferences.

Akhil Mathur received themaster’s degree in com-
puter science from the University of Toronto, and the
PhD degree in computer Science from University
College London. He is currently a principal research
scientist with Nokia Bell Labs, Cambridge, UK. He
is on the editorial board of ACM Proceedings on
Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies, and was a committee member for leading
mobile and sensor systems venues. His research
has been covered by several media organizations,
including the New Yorker, Financial Times, Livemint,
andCanadianBroadcastingCorporation.

Alessandro Montanari received the master’s
degree (cum laude) in computer engineering from
the University of Bologna, Italy, and the PhD
degree in computer science from the University of
Cambridge, U.K. He is currently a senior research
scientist with Nokia Bell Labs, Cambridge, U.K.
His current research interests include embedded
systems, earables for vital signs sensing, and
ultra-low power applied machine learning. He is
committee member of leading mobile and sensor
systems conferences and journals.

Fahim Kawsar (Member, IEEE) currently leads
Pervasive Systems Research with Nokia Bell Labs,
Cambridge. He holds a mobile systems professor-
ship in computing science from the University of
Glasgow. He studies the forms and intelligence of
emergingmobile, IoT, wearable devices.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

5538 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Nokia. Downloaded on December 09,2023 at 10:18:47 UTC from IEEE Xplore. Restrictions apply.

https://www.tensorflow.org/tfx/guide/serving
https://aws.amazon.com/kinesis
https://kafka.apache.org/
https://kafka.apache.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

