
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

SensiX: A System for Best-effort Inference of
Machine Learning Models in Multi-device

Environments
Chulhong Min, Akhil Mathur, Alessandro Montanari, Fahim Kawsar, Member, IEEE,

Abstract�Multiple sensory devices on and around us are on the rise and require us to redesign a system to make an inference of ML
models accurate, robust, and ef�cient at the deployment time. While this multiplicity opens up an exciting opportunity to leverage
sensor redundancy and high availability, it is still extremely challenging to bene�t from such multiplicity and boost the runtime
performance of deployed ML models without requiring model retraining and engineering. From our experience of deploying ML models
in multi-device environments, we uncovered two prime caveats, device and data variabilities that affect the runtime performance of ML
models. To this end, we develop an ML system that addresses these variabilities without modifying deployed models by building on
prior algorithmic work. It decouples model execution from sensor data and employs two essential operations between them: a)
device-to-device data translation for principled mapping of training and inference data and b) quality-aware dynamic selection for
systematically choosing the execution pipeline as a function of runtime accuracy. We develop and evaluate a prototype system on
wearable devices with motion and audio-based models. The experimental results show that ML models achieve a 7-13% increase in
runtime accuracy solely by running on top of our system, and the increase goes up to 30% in dynamic environments. This performance
gain comes at the expense of 3 mW on the host device.

Index Terms�Machine Learning, Systems, Best-effort Inference, Multi-device Environments

F

1 INTRODUCTION

SENSORY connected devices are now pervasive. Mobile,
wearable, and IoT devices on and around us are in-

creasingly embracing bleeding-edge machine learning (ML)
models to uncover remarkable sensory applications [1], [2],
[3], [4], [5]. In this transformation, we are observing the
emergence ofmulti-device systemsas a natural course of mul-
tiple sensory devices surrounding us. A concrete example
of this is manifested in personal devices/wearables and IoT
devices deployed in our homes. Studies predict more than 9
devices per person by the year 2025 [6] with diverse sensing
capabilities (e.g., motion, vision, acoustics, RF). Therefore,
we believe that focusing on ef�cient and accurate sensing
in a multi-device environment is of paramount importance
moving forward.

This multiplicity is opening up an exciting opportunity
to leverage sensor redundancy and high availability af-
forded by multiple devices, thereby enabling rich, powerful,
and collaborative ML applications. For instance, once a
motion model for activity recognition is deployed, a per-
sonal health tracker can selectively use a smartwatch, a
smartphone, or a smart earbud to run the model. Similarly,
a safety monitor in a factory can dynamically select a
microphone and a camera nearby workers to detect safety-

� C. Min is with Nokia Bell Labs, Cambridge CB3 0FA, United Kingdom.
E-mail: chulhong.min@nokia-bell-labs.com.

� A. Mathur is with Nokia Bell Labs, Cambridge CB3 0FA, United King-
dom. E-mail: akhil.mathur@nokia-bell-labs.com.

� A. Montanari is with Nokia Bell Labs, Cambridge CB3 0FA, United
Kingdom. E-mail: alessandro.montanari@nokia-bell-labs.com.

� F. Kawsar is with Nokia Bell Labs, Cambridge CB3 0FA, United Kingdom.
E-mail: fahim.kawsar@nokia-bell-labs.com.

Manuscript received April 19, 2005; revised August 26, 2015.

Fig. 1. SensiX stays between sensors and models and applies trans-
lation and selection operators to selectively choose the execution path
for best-effort inference. Here, SensiX uses watch data and respective
model to guarantee the best accuracy based on the outcome of the
operators.

relevant events. However, the bene�t from such multiplic-
ity comes at the expense of increasing complexity. In the
deployment of these applications, we identi�ed two key
caveats, device and data variabilitiesthat affect the runtime
performance of a deployed model and hence contribute
to this complexity. They are caused by runtime factors
including sensing hardware [7], resource budget, device
placement [8], etc. In the example of a health tracker, each
of three wearables offers identical sensing capability (e.g.,
motion, audio, etc.), but with contrasting runtime accuracy.
A byproduct of these variabilities causes unexpected per-
formance degradation of sensing ML models at runtime.
Thus, it is imperative to take these attributes into account
for designing and building a sensory AI system.

Given that these runtime variabilities can be hardly
considered during the model training time, application de-
velopers often need to design a purpose-built ML model
optimised for a speci�c device or environment, which in-
herently limits the coverage of the service deployment.

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Extensive studies have been conducted in the past to over-
come these variabilities and make ML models robust at the
deployment time, but they are still far from being employed
in practical systems. One research thread is to retrain and
re-engineer ML models by employing ML techniques such
as data augmentation [9], domain adaptation, and transfer
learning [10]. They enable ML models to quickly achieve
satisfactory accuracy on unseen runtime factors without
building a new model from scratch, but require hard as-
sumptions such as the need for labelled data or visibility to
the original model. The other thread is to leverage multi-
sensor fusion that optimises the inference accuracy while
addressing system issues such as time synchronisation and
missing data [11], [12], [13]. However, fusion models require
the tight coupling between device combinations, which
makes them neither practical nor scalable in the highly �uid
and dynamic environment. For example, a smartwatch can
be unexpectedly turned off due to battery depletion or a
new microphone can be dynamically added to the factory
to expand the monitoring coverage. It would be incredibly
hard to train and deploy different fusion models for all
possible combinations of devices.

In contrast, in this work, we take a system-driven ap-
proach that automatically makes model inference robust
and accurate at runtime. More speci�cally, when sensing
models are given to runtime systems, we are interested in
�nding solutions that address device and data variabilities
without model retraining or engineering, and ensuring best-
effort inference under any condition in multi-device en-
vironments. Here, we de�ne the best-effort inferenceas the
optimum model accuracy guaranteed by the system given
multiple execution choices.

From our experiences of deploying ML models in multi-
device environments, we uncovered two hidden opportu-
nities: a) device-to-device data translation and b) quality-
aware pipeline selection. By building on prior algorithm
work to realise these operations, we design and develop
SensiX, a system for deploying machine learning in multi-
device environments. SensiX stays between sensory devices
and corresponding models, and performs principled data
engineering to select the best execution path as a function of
model accuracy while externalising model management and
execution away from applications. SensiX achieves this with
two purpose-built neural operations, as shown in Figure 1.
First, a neural translation operator deals with device vari-
ability by mapping data across devices. Second, a runtime
quality assessment operator deals with data variability by
selecting the right execution path for the best model ac-
curacy. Collectively, these two operators enable SensiX to
dynamically and automatically compose a model execution
path under any condition to ensure best-effort inference
while coping with runtime device and data variabilities.

We evaluate SensiX on two representative multi-device
sensing applications built with motion and audio signals
for physical activity and keyword recognition. Our results
suggest that SensiX offers a 7-13% increase in overall accu-
racy and up to 30% increase across different environment
dynamics. This performance gain comes at the expense
of 3 mW on the host device, however with a signi�cant
reduction of development complexity and cost.

In what follows, we discuss the unique characteristics

512

1024

2048

4096

8192

H
z

(a) Matrix Voice

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB
(b) ReSpeaker

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB
(c) Difference (a, b)

-40 dB

-20 dB

+0 dB

+20 dB

Fig. 2. Mel-spectrograms of a speech segment as captured by (a) Matrix
Voice, (b) ReSpeaker, and (c) their difference.

of multi-device systems and present systems challenges to
inform our design decisions. Next, we describe the technical
details of SensiX and its different operations. We then move
to the evaluation of SensiX and re�ect on some critical issues
before concluding the paper.

2 BACKGROUND AND EXPERIENCE

Over several decades, extensive studies on ML have been
conducted to understand us and the world around us from
raw sensory signals. Since these algorithms, especially deep
learning-based ones, naturally require a substantial amount
of computation, much effort has also been put toward
enabling them to run on resource-constraint devices, e.g.,
using model of�oading and partitioning [14], [15], model
compression [16], [17]. On the basis of the insights from
these works, mobile runtime systems have been studied
and built, which take inference pipelines (or ML models)
as the main workload and manage their performance over
dynamic, heterogeneous environments, especially in terms
of accuracy, energy consumption, and latency. Typically,
they exploit alternative, substitutable processing options for
given inference pipelines, e.g., at the level of sensor [18],
[19], processor [20], approximation of model [21], [22], and
dynamically select the best one based on their expected
quality and the system policy.

Although the quality (and corresponding performance)
of a sensing model is dynamic, the runtime assessment of
those systems is mostly limited to resource metrics such
as energy cost and latency. On the contrary, they relatively
have a static view of the accuracy of sensing models and
mostly rely on their average accuracy obtained in the train-
ing phase. This works in the conventional, single-device
environment where the same device is supposed to be used.
However, emerging multi-device environments bring new
challenges, device and data variabilitiesthat make runtime
accuracy of ML models dynamic and unpredictable. We
present data-driven evidence and re�ect on key design
challenges for ensuring best-effort inference quality in a
multi-device environment.

Device variability: Even before a sensor signal reaches
the sensory application (e.g., a classi�er), it passes through
several processing stages including ADC conversion, DSP
processing, OS processing � each of which can introduce
some artefacts in the signal. Naturally, these artefacts vary
across devices, as such different devices capture the same
physical phenomena slightly differently. This heterogeneity
characteristic has a profound impact on model performance,
especially when different devices are available for data
acquisition. To provide empirical evidence, in Figure 2,

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

0 2 4 6 8 10 12
Elapsed time (minute)

0.0

0.5

1.0

F 1
 s

co
re

 o
f o

ne
 m

in
ut

e

Phone Watch Shoe

Fig. 3. Runtime accuracy of activity recognition model [11] trained with
the Opportunity dataset [23]; 1) The same device offers varying accu-
racy over time and 2) different devices offer the best accuracy at different
times.

we show mel-spectrograms of a 3-second speech segment
as recorded by two microphones (Matrix Voice and ReS-
peaker) simultaneously. We observe that the microphones
exhibit differences in their frequency responses to the same
speech input - also visualised in the rightmost �gure. In [7],
the impact of heterogeneous IMU sensors on the activity
recognition performance has also been thoroughly studied.
Since these variations are common characteristics when
different, heterogeneous devices are involved in a sensing
task irrespective of the modalities, unexpected performance
degradation would be inevitable if a pre-trained model is
deployed in unseen devices or shared with different devices.
A straightforward solution would be to train device-speci�c
models, but it would be almost infeasible considering device
heterogeneity in today’s market.

Data variability: Many sensory devices around us share
a standard set of sensors, e.g., IMU, microphone, etc., offer-
ing redundant, substitutablesensing capabilities. For example,
a keyword spotting model can selectively run on one of the
available microphones around a user. Similarly, an activity
recognition model can be performed with one of the IMU-
equipped wearables, e.g., a smartphone, a smartwatch, or
even an earbud. There are several factors that constitute
and affect the expected runtime accuracy, spanning hard-
ware [7], device placement, and even users’ behavioural
characteristics [8], [24]. The dynamic nature of these fac-
tors makes runtime accuracy dynamic even with the �xed
composition of an inference pipeline (i.e., sensor stream
from the same device with the same sensing model.) To
quantify this aspect, we provide empirical evidence with an
activity recognition model in Figure 3. With the Opportunity
dataset [23], we selected three IMU devices placed on a hip,
a left lower arm, and a right shoe, which can be mapped
to the typical position of a smartphone, a smartwatch and a
smart shoe, respectively. Then, we trained three models [11]
separately for each device and observed how F1 score of
these models changes every minute. The results show that
1) each device offers varying runtime accuracy over time
and 2) more importantly, the best performing device also
changes over time.

The goodness of an ML model often determines the
goodness of a sensing system. However, while the above
challenges do not necessarily contribute to the goodness of
an ML model at training time (which is solely dependent on
the quality, quantity, and diversity of training data, training
strategy, and model architecture), it is important to note
that the combined effect of these factors could signi�cantly
degrade the runtime performance of ML models.

Fig. 4. System operation; D, S, M, and T represents devices, sensor
data, models and translation functions, respectively.

3 SENSIX DESIGN

3.1 Design Goal

We have seen in the previous section that when an ML
model is deployed in a multi-device setting with hetero-
geneous devices from diverse manufacturers, a certain ac-
curacy degradation, compared to the accuracy obtained
in the training phase, is inevitable due to device and data
variabilities. Recently, extensive studies have been conducted
to compensate such a gap, e.g., by adopting data augmen-
tation [9], transfer learning [10], and incremental learning.
They show remarkable performance improvement without
training an entirely new model, but still require a signi�cant
burden for data collection and model engineering. This is
further complicated in the multi-device environment we
consider given the high variability in device forms (e.g.,
phones, watches, wearables, speakers and other IoT devices)
which are built by a plethora of manufacturers and offer
diverse sensing capabilities (e.g., motion, vision, acoustics,
RF). In this context, accounting for all possible combinations
of devices and sensors that users might have with ad-hoc
solutions based on data augmentation or model engineering
is unfeasible.

In this paper, we propose a novel approach of boosting
the runtime accuracy of sensing models, i.e., the system-
driven best-effort inference. Without relying on model engi-
neering and application modi�cation, our approach actively
intervenes between sensor data and sensing models, and
achieves accuracy improvement by dynamically addressing
device and data variabilities in an autonomous manner.

3.2 Separating ML Model Execution from Application

In conventional sensing systems, applications are entirely
responsible for the execution of sensing models. As shown
in Figure 4 (a), an application requests sensor data of in-
terest (e.g., IMU or audio data) to the system and manages
the end-to-end operations required for model processing,
spanning over data collection, model design and tuning, de-
ployment, etc. While there are public model hubs available
for pre-trained models such as Tensor�ow Hub [25] and
PyTorch Hub [26], it is still mostly developers’ burden to
construct the full execution pipeline from raw sensor data.

A critical aspect of system-drivenbest-effort inference is to
separate the execution complexities of a sensing model from
the model training process as well as from the application
logic (Figure 4 (b)). This facet is particularly essential in
several aspects. First, it can take signi�cant, but duplicate

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

efforts away from application developers and model ex-
perts. As the execution of sensing models becomes a core,
increasingly demanding operation in ML applications, such
separation naturally becomes a key requirement of sensing
systems; similar to how traditional OSes have abstracted
basic tasks from computer programs such as handling I/O,
controlling peripheral devices, etc. Second, it is almost in-
feasible for application developers and model experts to
address thoseruntime properties in advance at development
time and model training time. On the contrary, the system
can intervene with the execution of sensing models actively
and dynamically because it has more visibility and �ne-
grained control over device and data variabilities.

3.2.1 Level of abstraction
Separating execution operations from application space de-
mands articulated and useful abstraction hiding the un-
derlying complexities. One of the design challenges is to
determine at which level of sensing pipelines is abstracted.
A typical pipeline of sensing models consists of sensing,
preprocessing, running models, and delivering context out-
puts. Accordingly, we can imagine the level of abstraction
corresponding to each level of operation. In this paper, we
abstract the complexities of sensing models. That is, applica-
tions specify sensing models of interest for their logic, and
SensiX takes care of the full operations required to execute
the models. Our design decision in Figure 4 (b) offers several
bene�ts, including application-side �exibility of choosing
sensing models, a signi�cant reduction of code complexity,
and better system-wide management and coordination.

Our design choice is different from modern mobile op-
erating systems in diverse aspects. For example, current
sensor libraries, e.g., SensorManager1 on Android, can be
seen to provide an abstraction of sensing. That is, the sys-
tem handles hardware operation for sensor readings, and
the application takes care of the rest of the pipelines (See
Figure 4 (a)). In this case, applications have a high level of
�exibility, but it imposes a signi�cant burden on developers
at the same time. The system also has very little room for
performance optimisation. In another extreme, Android also
provides high-level context, e.g.,Activity Recognition API 2

as another unit of abstraction. If an application speci�es
the context type of interest, e.g., activity, the system takes
care of the full sensing pipeline for activity recognition and
delivers the �nal result only. It relieves all the burden for
context inference from application developers and gives
the system more �exibility, e.g., choice and scheduling of
sensing models, for the system-wide optimisation of the
resource use. However, it limits the �exibility of application
logic and requires a very well-de�ned and pre-established
taxonomy of context vocabulary.

3.3 Dynamic Translation and Selection
To address device and data variabilities at runtime in multi-
device environments, we devise two purpose-built neural
operators that actively act in the middle of sensors and

1. https://developer.android.com/reference/android/hardware/
SensorManager

2. https://developers.google.com/location-context/
activity-recognition

Fig. 5. System architecture of SensiX.

models, device-to-device data translator(§4.2) andquality-aware
runtime pipeline selector(§4.3). First, the device-to-device data
translator minimises the data variation across devices using
a machine-learned component. When the model is deployed
in unseen, different devices, SensiX collects unlabelled data
in the background and learns the translation function with
the collected data, which maps sensor data from a new
device to its equivalent point in the training distribution.
Second, the quality-aware runtime pipeline selector esti-
mates the runtime quality of available pipelines (a pair of
translated signals and an ML model) at runtime and selects
a pipeline offering the best quality.

Figure 4 (b) shows the example operation of SensiX when
three devices (D1, D2, D3) are available and one model (M 0)
trained with D0 is given. SensiX �rst creates the device-
to-device data translation functions (T 1;0 , T2;0 , T3;0) for all
devices and generates multiple, substitutable pipelines by
combining a translation function and a sensing model. For
example, T1;0 makes the data from the sensor S1 on D1
similar to the data from D0 and the corresponding pipeline
is generated by composing a sensor (device), a translation
function, and a model, e.g., < D 1; T1;0 ; M 0 >. Then, SensiX
periodically assesses the runtime quality of each pipeline
and then dynamically selects the best one. We put the
translation operator prior to the selection operator because
the translation affects the runtime quality.

4 SENSIX OPERATION

4.1 Architecture
SensiX takes the binary of a sensing model as an input
and provides applications with context outputs of the given
model. Figure 5 shows the overall architecture of SensiX. It
spans over a host device and multiple sensor devices.

� Host device: Once sensing models are registered, the
host device maintains them in its database for models.
The device manager discovers suitable sensor devices
for the given sensing models and keeps track of their
resource availability. The pipeline coordinatordynamically
creates an optimal execution pipeline with two primitive
operations of SensiX, a neural translation operation for
principled mapping of device-to-device data (§4.2) and
a quality-aware device selection operation (§4.3). It also
takes care of the execution of the created pipeline when
the sensor data is delivered. The execution planner makes
the system-wide schedule of the execution pipelines and

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

dynamically controls the sensing status of external sensor
devices via the communication manager. Once the context
information is generated, it is delivered to the application
and also maintained in the database of context values if
needed for the query of past data, e.g., for the retrospec-
tive summary.

� Sensor device: The sensor device communicates with
the host device via the sensor-side communication man-
ager. The sensor manager (de)activates the sensing task
based on the execution schedule and the resource mon-
itor monitors its resource status, e.g., remaining battery,
CPU/memory usage, and transmits it to the host device
periodically or when requested.

4.2 Device-to-Device Data Translation

Prior literature [27], [28] on sensing systems has estab-
lished that heterogeneities in sensor data are omnipresent
and can be caused by a number of issues, including variabil-
ity in hardware, software or usage dynamics of the sensing
devices. More critically, it has been shown that even subtle
variabilities in sensor data can potentially degrade the per-
formance of state-of-the-art ML models [29], [30]. Indeed,
this poses a major challenge for multi-device sensing sys-
tems, wherein there is a very high likelihood of variability in
the devices owned by a user. For instance, a user may have
multiple microphone-enabled devices on (e.g., an Apple
iPhone) or near their body (e.g., Amazon Echo), each of
which can capture the user’s speech and process it through
a speech recognition model to understand the user’s intent.
However, due to the variations in microphone hardware
and software processing pipelines across manufacturers, a
model trained on an Apple iPhone microphone may not
work well for an Amazon Echo.

A simple solution would be to train a separate model
for each device in the system, however this would incur
signi�cant costs to collect and label training data for each
new device that is added to the system. Instead, SensiX
makes a practical and scalable choice: it assumes that there
is one sensing model shared across all the devices � this
model could be trained by a developer either on data
collected from one of the devices or even on a separate
off-the-shelf training dataset collected from one or multiple
devices. Further, we assume that the developer does not
provide access to the weights of this pre-trained sensing
model, i.e., it is a black-box model � this enables SensiX
to support both open-source and proprietary models.

Under these practical assumptions, the technical chal-
lenge is to enable highly accurate sensing on multiple het-
erogeneous devices, even when the sensing model may not
have been trained on the same device. To this end, SensiX
provides support for device-to-device data translationwhich
maps (or translates) a given sensor data from any device
to its equivalent point in the training distribution. This
translation happens transparently at inference-time (or test-
time) and aims at reducing the discrepancy between the test
data and the training data on which the sensing model was
trained. Overall, the device-to-device data translation aims
to boost the accuracy of the pre-trained sensing model on
those devices whose data distribution might differ from the

Fig. 6. Translation process for X D 1 ! X T rain

training distribution. Note that when the training and test
device are the same, the translation operation is not needed
and is ignored by SensiX.

The translation component is machine-learned and
based on the principles of Cyclic Generative Adversarial
Networks (CycleGAN) as proposed in [29], [31]. We extend
this prior work to support the translation of various data
modalities, including motion data from IMU (an accelerom-
eter and a gyroscope) and audio data from a microphone.

We learn a pair-wise translation function between each
user device and the training device (on which the sensing
model was trained). Prior works have shown that Cycle-
GAN models can learn these mapping between data dis-
tributions solely based on unlabelled and unpaired data,
which signi�cantly reduces the cost of training the trans-
lation model. We assume that at the time of releasing the
sensing model, its developer also provides a small amount
of unlabelled data X T rain sampled from the training dis-
tribution and it is stored on the host device. Further, when
a new device D1 is added to the multi-device ecosystem,
SensiX collects a small amount of unlabelled data X D 1

from it with a user’s permission and also sends it to the
host device. This data need not be time-aligned or paired
with the training data X T rain . Upon receiving unlabelled
datasets X T rain and X D 1 , the host device initiates the
training of a translation mapping X D 1 ! X T rain based
on the CycleGAN architecture as shown in Figure 6. The
CycleGAN architecture consists of four neural networks (2
generators and 2 discriminators) that are jointly optimised
using adversarial learning � in our implementation, we use
a 6-layer CNN with residual blocks to train the generators
and a 4-layer CNN to train the discriminators. Note that
such a training operation is conducted only once and can be
of�oaded to the cloud. Once the training process is done, the
trained generator X D 1 ! X T rain is used to perform real-
time translation of the sensor data collected from device D1
to make it similar to the training data. After the translation,
it is then passed to the next operations of SensiX for further
processing and computing the inferences.

4.3 Quality-Aware Pipeline Selection

After obtaining the translation function, SensiX con-
structs execution pipelines for each available device by
combining the translation function and the ML model. Then,
the next question is how to choose the right pipeline out of
multiple candidates. We identify two challenges that have
to be addressed to make the system practical; (1) how to
quantify the runtime quality and (2) how to minimise the
system cost while maximising the selection bene�t?

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 7. Quality-aware Selection; (S)ensor, (T)ranslation, (M)odel. This is
an example when three devices are available and the mode trained one
of these deivces is given.

Quality quanti�cation: There have been prior attempts
to quantify the quality of sensory signals in the domain of
signal processing. The most representative example is the
signal-to-noise ratio (SNR) which was proposed to assess
the purity of a signal. However, such signal-level quality
assessment is not suitable to assess the quality of an ML-
based execution pipeline, i.e., its expected runtime accuracy,
because the subsequent operations (translation function and
sensing model) also affect the quality of the model output.
For example, the motion signals on a smartwatch in walking
situations would be considered to have the high quality for
movement detection, but can be seen to have the low quality
for hand gesture recognition.

To address this, we present a novel pipeline-level quality
assessment by adopting and modifying the heuristic-based
quality assessment (HQA) method proposed in [32]. Its
key idea is to leverage con�dence values reported from a
classi�er in the sensing model for given (translated) sensory
signals and quantify the quality of the execution pipeline
based on these values. Con�dence values represent how
con�dent a classi�er is in the inference output from a
given input data. For example, a �nal softmax layer in
neural networks produces a list of probabilities of given
sensor data being a member of each class. Leveraging such
characteristics, the concept ofuncertaintyof inference output
was proposed in the domain of active learning, which
represents how uncertainly a given inference instance is to
be labelled. Inspired by this, we quantify the quality of an
execution pipeline by adopting margin sampling [33]. Note
that the uncertainty has no formal de�nition and can be
estimated using different metrics such as margin sampling,
highest con�dence, and entropy of con�dence values [34].
In active learning, the study shows that the best metric is
task-dependent [35]. Thus, we used margin sampling which
showed the best performance in our datasets used in the
evaluations. Margin sampling is computed by taking the
difference between the probabilities of the two most likely
classes. We can consider that an inference instance with a
higher margin is more certainto be labelled, compared to the
other instance with a lower margin. While the uncertainty-
based quality indicates the certainty of inference output
from the execution pipeline, more certainty does not always
guarantee more accurate inferences. However, we empiri-
cally show that, when the model is reasonably well trained,
such quality-based assessment and selection contribute to
achieving higher overall accuracy in Section 5.

Figure 7 shows the operational �ow and example of
the quality-aware selection. SensiX gathers the sensor data

from all available devices and obtains the translated data
(if the device is different from the device used for training
the input model). SensiX executes the model inference with
the (translated) data and obtains con�dence values for all
pipeline candidates. Then, for each pipeline, SensiX com-
putes the margin sampling, i.e., the difference of proba-
bilities between its �rst and second most probable labels
and selects the execution pipeline which shows the highest
margin sampling.

Energy-ef�cient selection: A practical issue in runtime
selection is to determine a proper interval of the selection.
Since the sensing quality dynamically changes even with the
same topology of devices, continuous quality assessment is
needed. However, our quality assessment requires all execu-
tion pipelines to be performed, i.e., sensing, translating, and
model execution, thus the frequent selection could incur a
signi�cant system overhead in terms of energy and CPU.
To avoid such costs and make the system practical, we
adopt a widely used duty-cycling technique for the quality-
aware selection. That is, by leveraging the temporal locality
of human/device contexts, SensiX performs the quality
assessment and selection periodically at the �xed interval
and deactivates unselected pipelines until the next interval.
In this paper, we empirically set the selection interval to 10
seconds, which was optimal in our dataset. Besides the peri-
odic interval, SensiX also triggers the selection immediately
if it detects system events that can affect the runtime quality,
e.g., registration and deregistration of a model, and join and
leave of a sensor device.

It is important to note that there are a number of sys-
tem parameters (e.g., sensor types, inference models, and
sensing tasks) that determine the optimal selection interval.
It would also be different depending on an individual’s be-
havioural patterns. Considering such complexity, we believe
the optimal interval should be determined at runtime in
an adaptive, personalised way. For example, when a new
model or device is added to SensiX, it can gradually increase
the interval from 1 second, estimate the overall quality
considering the runtime accuracy and resource usage, and
�nd the saturation point. We leave it as future work.

4.4 SensiX Prototype and Implementation

We implement the SensiX prototype on off-the-shelf
devices. Figure 8 shows the hardware setup. For the host
device, we used Raspberry Pi 3 with Google Coral USB
accelerator and developed the host device-side components
with Python and Tensor�ow 1.X. For sensor devices, we
considered three devices, Pixel 3 smartphone, LG Urbane
2 smartwatch, and eSense [3]) earbuds. For the Android
devices, we developed the sensor-side components that run
as an Android background service. eSense does not have
processing capability on-board and thus we developed an
eSense broker which runs on the host device.

A multi-device system naturally requires a host that
orchestrates the runtime operations and manages the model
execution. In a conventional system, a resource-rich device,
e.g., a smartphone in personal sensing environments can be
assigned with such functionalities. The operations discussed
earlier, some of which are neural operations, demands care-
ful system-wide orchestration and needs to be executed

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 8. Hardware setup: personal edge as (a) Raspberry Pi 3 with
Google Coral USB accelerator, sensor devices as (b) Pixel 3 smart-
phone, (c) LG Urbane 2 smartwatch, (d) eSense earbuds, and (e)
Monsoon power monitor

actively in the background. However, modern smartphones
are optimised exclusively for maximising battery life, as the
OSes often ignore any background operation that has rela-
tively high energy expenses. A clear indication of such deci-
sions of modern mobile OSes is the constrained imposed of
background processing for applications. These restrictions
have severe implications for the performance of a runtime
orchestrator as system-wide optimisation opportunities are
relatively limited. To this end, for the thorough evaluation
of SensiX, we have taken a dedicated subsystem route for
hosting the runtime orchestrator and implemented it on the
AI accelerator. We envision that SensiX can co-exist with
future smartphones (or other prominent mobile forms).

With a proliferation of multi-device sensing systems,
future OSes may remove such restrictions. We consider
runtime orchestration and related system operations for
multi-device sensing should be designed as a specialised
subsystem. Deep learning algorithms drive many sensory
models today, and it is natural to expect neural accelerators
will power these subsystems, which are not adopted yet in
current smartphones.

This centralised orchestration and execution mean that
SensiX considers every sensor device in the environment as
merely a sensor stream provider equipped with a supported
communication interface. However, if sensor devices afford
processing capability, resource-related system cost would be
expected to reduce, e.g., by using code of�oading to sensors
or pipeline partitioning [14], [36].

5 EVALUATION

We present extensive experiments to evaluate the effec-
tiveness of SensiX in multi-device scenarios. We use two
multi-device sensing applications built with motion and
audio signals for physical activity and keyword spotting,
respectively. First, we investigate the effect of our device-to-
device data translation and quality-aware selection mecha-
nisms on the runtime accuracy and robustness of sensing
models using the multi-device datasets. Then, we perform
micro-benchmarks on top of our system prototype to under-
stand the overheads of the SensiX operations.

5.1 Experimental Setup

Models, and datasets: For the evaluation, we use two sens-
ing tasks: human activity recognition(HAR) with IMU data
and keyword spottingwith audio data. We choose these two
tasks because IMUs and microphones are core sensors in
personal, multi-device environments and they are represen-
tative tasks for these sensors. For a comprehensive analysis,
we used the multi-device datasets and conducted repetitive
experiments with different combinations of system parame-
ters and comparison groups.

HAR: For human activity recognition, we develop a deep
learning model proposed in [11], which employs a CNN-
based feature extractor with 4 residual blocks containing 2
convolutional layers each; it takes 1-second-long data as an
input. The model has two fully-connected layers and an out-
put layer. For the analysis, we use the RealWorlddataset [37].
It consists of sensor data recorded from 15 participants
with seven smartphones on their body. Each participant
performs eight physical activities; walking, running, sitting,
standing, lying, stairs up, stairs down, and jumping. For the
experiments, we select 3-axis accelerometer and 3-gyroscope
data from three devices deployed on a forearm, a head, and
a thigh, each of which represents the typical position of a
smartwatch, an earbud, and a smartphone, respectively; the
sampling rate is 50 Hz.

Keyword spotting: We use the keyword detection archi-
tecture proposed in [38]. It takes a two-dimensional tensor
extracted from the 1-second-long audio recording (time
frames on one axis and MFCC on the other axis) as an
input. The architecture consists of two convolutional layers,
a global average pooling layer, and a fully-connected layer.
For training and testing, we use the Keyword dataset [29]
which consists of 65,000 speech keywords re-recorded at
16 kHz on three different embedded microphones (Matrix
Voice, ReSpeaker, USB microphone) simultaneously; each
�le has a 1-second long spoken keyword which belongs to
one of 31 keyword classes.

We split all datasets to ensure independence between the
training and test set. For the additional details, refer to [11],
[38] for the architecture of sensing models and [29], [37] for
the datasets.

Sensor workloads: We consider two types of sensor
workloads, static and dynamic. In the static workload, all
devices are available all the time. It is to investigate the
overall performance of SensiX and the baselines. The dy-
namic workload is to study the robustness of the system in
dynamic situations where some devices become temporarily
unavailable, e.g., the battery runs out or a watch is left
on a desk. We generate the four dynamic workloads with
the following availability probabilityvalues, 0.7, 0.8, 0.9, 1.0,
respectively. For each workload, the availability of each
device (either available or unavailable) is randomly decided
based on the probability value. The decision is made inde-
pendently to other devices.

Comparison: SensiX offers high-accuratey, robust sens-
ing in the runtime environment with two main opera-
tions, device-to-device data translation and quality-aware
pipeline selection. To identify the impact of each operation,
we considered the following baselines which also include
variations of SensiX itself:

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

� Single-avg: The traditional practice in context monitoring
is to use a single, �xed device for a sensing model,
e.g., either a smartphone, a smartwatch, or an earbud at
runtime as shown in Figure 4 (a). Thus, for each sensing
task, we can consider three cases using different devices.
Single-avg reports the average performance of these three
cases.

� SensiX-native: SensiX-native is built on top of the device
discovery, but does not have the capability of the device-
to-device data translation and quality-aware selection.
Note that, by bringing AI execution to the system layer,
SensiX performs device discovery in the background, e.g.,
using Bluetooth and Wi-Fi scanning, and dynamically
maps sensing models to available devices. SensiX-native
selects the device for model processing in a round-robin
manner out of available devices.

� SensiX-trans: SensiX-trans adopts the translation opera-
tion on top of SensiX-native, but does not have the quality-
aware selection. That is, the device for model processing
is selected in a round-robin manner, but the translation
operation is added and used if the given model was not
trained in the selected device.

� SensiX-QS: SensiX-QS selects the device with the quality-
aware selection, but without the device-to-device data
translation.

Model and translation con�guration: We demonstrate
the capabilities of SensiX in several training con�gurations
where pre-trained models are available only from a subset
of the devices. For the HAR task, we assume that two model
instances (trained with data from headand forearmdevices,
respectively) are given and SensiX trains one translation
function (thigh ! head). Indeed, as there is no model trained
for thigh-worn sensors, SensiX performs translation on the
data collected from the thigh to make it resemble the data
from a training device (e.g., head), before passing this data
to the headmodel for inference. Similarly, for the keyword
spotting model, we assume that one model instance (trained
with the data from Matrix Voice) is given and SensiX trains
translation functions for the other two devices (ReSpeaker
! Matrix Voice and USB microphone ! Matrix Voice).
During training of each sensing model, we use a held-out
validation dataset to evaluate model accuracy and chose the
model with the lowest validation loss. While training the
translation model, we used a quantitative metric commonly
employed in generative modelling literature called Peak
Signal-to-noise ratio (PSNR). PSNR is closely related to the
mean square error and is suggestive of the distance between
the datasets before and after translation. The model which
provided the highest PSNR during the training process was
selected as the �nal translation model. To keep the evalua-
tion focused, we only show results on models pre-trained
on data from a single device (e.g., head). However, note
that SensiX data translation does not make any assumption
that the source model is pre-trained only on data from one
device. Prior works have shown the capabilities of data
translation in multi-device settings [29].

Performance metrics: As a key performance metric, we
consider the runtime accuracy of sensing models in the
multi-device setting and compare SensiX against the afore-
mentioned baselines. Since our datasets are imbalanced,

Fig. 9. Overall Performance

we use the micro-averaged F1 score [39]. In the dynamic
workloads, the execution of a model cannot be supported
if the dedicated device in Single-avg is unavailable or all
the devices are unavailable in the SensiX variations. To
re�ect such scenarios, we set the F1 score to 0 during those
moments when ML execution is not supported.

5.2 Effect of SensiX on Accuracy Improvement

5.2.1 Overall performance
Figure 9 shows the overall performance under the static
workload. The results show that SensiX increases the overall
average F1 score of sensing models by up to 0.13 without
modifying them. More speci�cally, for the HAR task, SensiX
achieves 0.83 ofF1 score, whereas the averageF1 score of
the cases when a single device is used without any SensiX
operations (Single-avg) is 0.70. It shows that the device-to-
device data translation and quality-aware selection mecha-
nisms enable ML models to have more accurate results. We
break down the performance by looking into and comparing
the results of SensiX variations. As expected, Sensis-native
shows similar performance to Single-avg because SensiX-
native selects each device in turn, thus its performance
converges to the average performance of the cases when
each device is used. In HAR task, the improvement from the
device-to-device translation, i.e., SensiX-trans (0.71) com-
pared to SensiX-native (0.70), is not meaningful. This is
because the performance of the translated thigh data with
the headmodel is still much lower than the other two device
cases. However, SensiX-QS shows 0.78 ofF1 score, 8%
higher than SensiX-native, which shows the effectiveness
of the quality-aware selection when multiple IMU devices
are available. Also, when the translation operation is used
together with the quality-aware selection, SensiX further
achieves a 5% higherF1 score than SensiX-QS. This shows
that, even though the overall performance of the translation
operation (from thigh data to head data) is not meaningful,
our selection mechanism well spots the moments when the
translated thigh data outperforms the data from the other
two devices, and contributes to achieving the higher overall
performance.

As shown in Figure 9, the keyword spotting model
shows a similar trend. SensiX increases the overall average
F1 score by 7%; theF1 score of SensiX and Single-avg is 0.75
and 0.68, respectively. Note again that, in the keyword spot-
ting task, only one model trained with the data from Matrix
Voice was used and thus ReSpeaker and USB microphone

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 10. Performance of HAR in dynamic workloads

Fig. 11. Performance of keyword in dynamic workloads

suffer poor accuracy when the translation operation is not
applied, due to the heterogeneity issue described in § 4.2.
Different from the HAR case, we can observe the signi�cant
contribution of the translation operation. By adopting the
translation function only, SensiX-trans achieves 0.72 of F1
score.

It is important to note that the main goal of our work is
not to train the most accurate sensing models and achieve
the high accuracy of each model, but to show that SensiX
operations can increase the accuracy of pre-trained models
in a multi-device sensing system. Our results, i.e., the rela-
tive improvement Single-avg to SensiX, clearly demonstrate
this capability of SensiX.

5.2.2 Robustness in dynamic workloads
Figure 10 shows the F1 score of the HAR model while
increasing the availability probability from 0.7 to 1.0. When
the probability is 0.7, each device is available with the
probability of 0.7; for example, in this case, the probabil-
ity of having two available devices out of three is 0.441
(3C2 � 0:7� 0:7� 0:3). The results show that the SensiX capa-
bility with device discovery in multi-device environments
achieves a higher level of robustness of model execution.
As expected, Single-avg shows poorer performance as the
availability probability becomes lower; it shows a linear
relationship to the availability probability. However, the
decrease ofF1 scores of SensiX variations is not signi�cant.
SensiX variations fail to deliver the model output only when
all devices are unavailable, which is very unlikely when
there are multiple devices. For example, the F1 score of
SensiX is 0.77, 0.81, 0.83, and 0.83 when the availability
probability is 0.7, 0.8, 0.9, and 1.0, respectively.

Figure 11 shows the result of the keyword spotting
model in the dynamic workload. The results show a similar
trend to the HAR model, but the decrease of F1 score when
the availability probability goes down from 1.0 to 0.7 is

Fig. 12. Effect of translation operation: (a) HAR (left) and (b) keyword
spotting (right)

much smaller, e.g., F1 score of SensiX is 0.75 and 0.72 with
1.0 and 0.7 of the probability, respectively. This is because
the accuracy of keyword models is not much different across
the devices when the translation operation is applied.

5.3 In-depth Analysis
5.3.1 Device-to-device translation
We look deeper into how much the translation operation
improves the model performance.

Translation between IMU sensors: Here, we report two
cases of translation between IMU sensors: (1) placement-to-
placement translation, i.e., between the same type of IMU
sensor, but with different placements and (2) device-to-
device translation, i.e., between the different type of IMU
sensor but with same placements. For the former, we report
the performance of the thigh-to-headtranslation which was
used in the experiments. For the latter, we introduce the
Opportunity dataset [23] and investigate the performance of
the translation from the left lower armdevice in Opportunity
to the smartwatch on a forearmin RealWorld, which can be
seen to be placed in the same position. Since the collection
con�guration is different between Opportunity and Real-
World, we resample and normalise the Opportunity data
before the translation; the sampling rate and accelerometer
range are 30 Hz and �3g for Opportunity and 50 HZ and
�2g for RealWorld. Figure 12 (a) shows the accuracy im-
provement when the translation operation is applied. More
speci�cally, for the thigh case, the performance of theoriginal
and translatedis reported when the alternative model (here,
headmodel) is used with the original thigh data and the
translated thigh-to-headdata, respectively. The results show
that our translation operation improves the F1 score from
0.39 and 0.43. In the case of the translation of watch-worn
devices from Opportunity to RealWorld, F1 score of the
original and translated is 0.61 and 0.64, when the model
trained with the forearmdevice in RealWorld is used with
the resampled and normalised data from left lower arm in
Opportunity, without and with the translation, respectively.

One may argue that, even with the accuracy improve-
ment, translation between IMU sensors can be seen as
impractical due to their poor absolute accuracy. However,
our experimental results in Figure 9 show that, together
with the quality-aware selection, the translation provides
the meaningful improvement of the system-wide accuracy.
Considering that having device/placement-speci�c models
requires a signi�cant burden for data collection and model
engineering, SensiX can be used to complement applications
when a new device is added, until the dedicated model is
available. We believe we can further optimise the translation

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 13. Ratio of selection (Keyword spotting)

performance by adopting recent studies on domain adapta-
tion for IMU sensors and motion models, e.g., [40], [41].

Translation between microphones: Figure 12 (b) shows
the results for the keyword spotting model. We assume that
a model pre-trained on Matrix Voice microphone is provided
and is now tested with data from ReSpeakerand USB Mic..
As such, SensiX performs the following translation oper-
ations: ReSpeaker-to-Matrix Voiceand USB Mic.-to-Matrix
Voice. We observe that due to translation, the F1 score of
ReSpeaker increase from 0.62 to 0.68 (i.e., 6% increase) and
for USB Mic., the F1 score increases from 0.67 to 0.74 (i.e.,
7% increase). These accuracy gains are signi�cant for the
Keyword Spotting model trained for Matrix Voice, whose
best F1 score is 0.77 when it is trained and tested on the
same microphone. In other words, the translation operation
is able to recover 40% (for ReSpeaker) and 70% (for USB
Mic.) of the drop in F1 score of the Keyword Spotting model
due to microphone variability.

5.3.2 Quality-aware selection

To have a deeper understanding of the behaviour of the
quality-aware selection, we look into how often each device
is selected by the selection operator in the static workload.
Figure 13 shows the selection ratio of three microphones on
the keyword spotting model. The difference of ratio patterns
between SensiX-QS and SensiX represents how the selection
decision changes when the translation functions are added;
note again that SensiX-QS does not have the translation
operation. The results show that our selection mechanism
well re�ects the runtime quality, in two different ways. First,
when the original signal is used without the translation (i.e.,
SensiX-QS), MatriX Voice is selected the most frequently,
mainly due to its relatively higher performance. Second, on
SensiX, the performance of both ReSpeaker and USB Mic.
improves from the translation to Matrix Voice as shown in
Figure 12 (b). However, interestingly, while USB Mic. is se-
lected more often, ReSpeaker is less selected. This is mainly
because translated USB Mic. achieves comparable perfor-
mance to Matrix Voice and thus produces more chances of
being selected, especially instead of ReSpeaker.

5.3.3 Further analysis on an imbalanced dataset

Here, we present a further analysis on an imbalanced
dataset using the Matthews correlation coef�cient (MCC),
introduced by biochemist B. W. Matthews in 1975 [42] for
biomedical research. The MCC metric is also widely used in
the �eld of machine learning because it is generally regarded
as a balanced measure that can be used for imbalanced

Fig. 14. Comparison between F1 score and MCC (HAR)

Fig. 15. Main operations of SensiX; (H)ost device and sensor (D)evices.
An example when D 2 is selected.

datasets [43]. The MCC can be calculated from the confusion
matrix using the following formula:

MCC =
T P � T N � F P � F N

p
(T P + F P)(T P + F N)(T N + F P)(T N + F N)

, where TP, TN, FP, and FN are the number of true pos-
itives, true negatives, false positives, and false negatives,
respectively. The MCC value ranges from -1 to 1; -1 and
1 represent an inverse and perfect prediction, respectively,
and 0 presents an average random prediction.

Figure 14 shows the F1 score and MCC of the HAR task
under the static workload. The experimental results show
that, while two metrics show different patterns depending
on the baselines, we observe that SensiX also increases MCC
by up to 0.07 without modifying sensing models. MCC of
SensiX is 0.72, whereas MCC of Single-avg (i.e., when a
single device is used without any SensiX operations) is 0.65.
Interestingly, we observe that SensiX-QS shows a relatively
lower MCC than other baselines. It is mainly because the
decision from the quality-aware pipeline selection decreases
the number of true negatives. However, MCC increases
again when the device-to-device data translation is adopted
(i.e., SensiX). It again shows that the two main operations of
SensiX complement each other and contribute to achieving
higher overall performance. We omit the results of the
keyword spotting task because the trend of F1 score and
MCC was similar.

5.4 Micro Benchmark of SensiX Prototype

To understand the system behaviours, we conduct the
micro-benchmark of the SensiX prototype with off-the-shelf
devices. Figure 15 shows the main operations of SensiX. We
�rst study the resource characteristics of model processing
and then examine the system overhead of SensiX. We mea-
sure the energy cost using a Monsoon power monitor.

Model execution: As described in §4.4, sensor devices
act as a data source and model execution is conducted on

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 1
Power cost for the motion model on sensor devices

Operation Power (mW)
Pixel LG Urbane 2 eSense

Idle 28.1 27.8 6.6
Sensing 7.2 8.6 5.0 (BLE)Bluetooth Tx 177.1 68.5

TABLE 2
Resource cost for model processing on a host device

Model Parameters Energy Inference time
HAR 385k 0.86 mJ 1.93 ms

Keyword 1,846k 28.12 mJ 62.17 ms

a host device. Thus, the main status of the sensor device
is either deactivated(idle mode), or activated(sensing and
streaming data). Table 1 shows the power pro�les of sensor
devices for the HAR task, which are obtained from the Mon-
soon power monitor; we omit the result for the keyword
spotting task due to the page limit. We report the power
cost of sensing and BLE Tx for eSense together because its
�rmware does not support those functions separately. The
transmission cost for Pixel 3 and LG Urbane is relatively
much higher than that of eSense because Bluetooth classic is
used for communication with these Android devices. We
expect that further energy saving can be achieved if the
communication is developed on top of BLE.

The network usage is different depending on the sensing
task. On each device, the HAR and keyword spotting tasks
send 300 and 32k bytes per second, respectively.

The main operations of the host device are to receive
sensor data and execute the model processing. Table 2 shows
the energy cost and inference time to be taken to process
an instance of AI model execution on Raspberry Pi 3 and
Coral USB accelerator. We observe that the execution of the
keyword spotting model takes more energy and a longer
time due to its bigger size of the architecture. The average
power to receive motion and audio data via Bluetooth
classic remains around 10 mW. The memory usage of the
HAR and keyword spotting models is 1.84 MB and 3.9 MB.

System overhead: The major operations of SensiX be-
yond model execution are as follows. (1) SensiX discovers
nearby devices by periodically establishing the Bluetooth
connection with paired devices. The time to be taken to
establish the connection is measured as 0.9 sec and 5.7 sec
for Android devices and eSense, respectively. We believe
that the shorter time for Android devices comes from their
optimisation of Bluetooth stack. (2) Once a new device is
added and the corresponding model is not available, SensiX
generates the translation function either locally or remotely
on the cloud. Once the translation model is available, SensiX
processes it when sensor data from the added device is
received. The average time for the translation model for
one sample, i.e., one-second-long sensor data is 20 ms and
480 ms for the HAR and keyword model, respectively.
Their execution takes much longer than the model execution
because the cycle GAN network in the translation model is
much more complex. (3) SensiX performs the quality-aware
selection at the interval of the duty cycle. For one selection
operation, the overhead is to receive the sensor data and

perform the sensing model for all devices during the as-
sessment window (1 sec.), i.e., additional 1.7 mJ and 28.30
mJ for the HAR and keyword spotting task, respectively;
when three devices are available, additional processing of
two models is needed. Considering the selection interval, 10
secs, the additional power overhead for the model execution
is 0.17 mW and 2.83 mW. The additional energy cost for the
network transmission is negligible because sensor data is
sent altogether at once when a one-second-long segment
is gathered, not whenever a sensor sample is generated
and the transmission is also made once every 10 seconds.
After the model execution, SensiX selects the execution
pipeline, which is expected to have the best runtime quality.
Due to the simplicity of margin sampling computation, the
execution time and energy cost are negligible, < 1 ms and
< 1 mJ, respectively.

6 DISCUSSION

Why not multi-device fusion? We assume that sensing
models are built using sensor data from a single sensory
device. Recently, a number of studies on multi-sensory
fusion have been conducted to maximise the inference accu-
racy while addressing potential system issues such as time
synchronisation and missing data [11], [12], [13], [44], [45].
While these works contributed substantially to achieving
higher performance, we believe that they are not practical,
yet to be used at the personal-edge in the multi-device
environments. First, the fusion model requires all the de-
vices involved in the training, to be activated all the time at
runtime, thereby incurring signi�cant system costs. Second,
more importantly, considering the dynamics of multi-device
environments, different fusion models are needed to be built
and trained for all possible combinations of devices, which
may not be feasible. For example, the fusion model trained
with a smartphone and a smartwatch may be useless if a
user forgets to wear the watch. Similarly, a new model will
be needed if a user buys a new wearable device or an IoT
device around a user becomes available.

Beyond the accuracy: SensiX can be easily extended
to consider resource-related runtime metrics by adopting
online pro�ling tools for energy [46] and transmission la-
tency [47] or by leveraging the benchmark study of the
model performance, e.g., [48], [49]. To this end, SensiX al-
lows the policy to be speci�ed as a cost function and selects
the pipeline with the minimum cost output. For example,
for the policy of minimising the total energy consumption,
the corresponding cost function can be de�ned as f(D , M)
= total energy cost(D, M), where D and M are a device and
a sensing model, and total energy cost() is a function that
returns the expected total energy consumption of devices
when D is selected for the processing of M . Several factors
can be considered together by de�ning a cost function as
their weighted sum.

Distributed system architecture: In this paper, we
implemented the system orchestrator part of SensiX on a
dedicated host device, and we envision this could be a
smartphone in the future. This has the advantage that all
personal data remains local to the user, with signi�cant
advantages in terms of privacy protection [50]. An alter-
native solution would be to implement this functionality

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

on the cloud and make it accessible from SensiX clients. In
addition to stricter privacy and security measures to avoid
leaking personal data, this approach would require careful
consideration of the latency and energy cost that might be
introduced. In fact, the cloud service might not always be
available due to the overload of the remote servers or due
to connectivity issues. Moreover, streaming sensor data to
the cloud could severely affect battery lifetime, especially
for high-rate sensors. We leave the study of these tradeoffs
for future work.

Generalisability of proposed techniques: In this paper,
we mainly focus on personal-edge environments with IMU
and microphone sensors. A typical context for this is one
that considers multiple mobile devices and wearables (e.g.,
phone, watch, earbuds, ring) and diverse IoT devices (e.g.,
smart speakers, TVs) owned by the same person or the same
household. In this case, the need for device translation when
new devices join the group or device selection due to the
dynamic conditions of daily living is higher.

However, since device and data variabilities are common
characteristics also in other multi-device environments (e.g.,
industrial settings), we believe that the main features of
SensiX, (a) separating execution of sensing models from
application space and (b) proposing device-to-device trans-
lation and quality-aware selection, are still valid in other
edge environments with a different type of sensors. One
such example is when multiple cameras with overlapping
�elds of view are deployed to provide collaborative video
analytics services. Due to deployment constraints, cameras
might be produced by different manufacturers while the
sensing models assume a speci�c make and model. In
this situation, SensiX’s device-to-device translation is of
paramount importance to ensure the effective use of the
cameras. Similarly, when covering a very large area, the
cameras will not all be subject to the same conditions (e.g.,
fog, smoke, dirt on lens), hence the quality-aware selection
offered by SensiX could guarantee optimal performance
even in diverse and challenging situations. However, trans-
lation and quality-assessment algorithms might need to be
implemented differently depending on the environment and
sensor type due to their different characteristics. Also, even
in multi-device environments with IMU, microphone, and
cameras, SensiX would not work well if they do not capture
the same context, e.g., wearables owned by different users,
far-placed microphones, and cameras without overlapping
�elds of view. Thus it will be important to quantify the fea-
sibility of SensiX when it is deployed in new environments.
We leave it as future work.

Alternatives to Inference-time Data Translation. Our
approach of CycleGAN-based data translation at inference
time was motivated by two key design goals: a) SensiX
should neither require re-training of the sensing model nor
assume that the model developer provides access to the
weights of the pre-trained sensing model, b) SensiX should
not assume the availability of labelled data at inference time.
We note that in the absence of these assumptions, there are
alternative approaches to transfer knowledge from a source
domain to a target domain, e.g., [51] proposed translating
the source domain data to the target domain and retrain
the sensing model. Further, transfer learning approaches
such as model �ne-tuning can be used to adapt the original

sensing model to the target device, if adequate labelled data
is available from the target device. Both these approaches
violate the assumptions and design goals of SensiX, hence
we did not employ them.

Model Monitoring and Update. An important issue
related to the deployment of ML models on edge devices is
the need to perform continuous monitoring and necessary
updates to the model. Among other factors, the need for
updating the models can be necessitated by the change in
underlying data distribution of the sensor devices, e.g., due
to a faulty sensor or signi�cant variations in how the device
is worn or used. In such cases, both the sensing and transla-
tion models would need to be updated. Although exploring
this topic was out of scope of this paper, we highlight two
broad questions that can be studied in future work. Firstly,
we need a way to monitor the data distribution of each
device and determine that a signi�cant distribution shift
has happened. To this end, both data-driven approaches
or techniques based on monitoring system events could
be explored. Secondly, once a distribution shift is detected,
how do we trigger the retraining of the translation and
sensing models? Should the retraining operation run as a
background process and once the models are retrained, they
replace the existing models. Or should the system inform
the user that the models are no longer valid and cause
application downtime while the models are being updated?
We believe all of these are important future research topics
for SensiX and edge ML in general.

7 RELATED WORK

Context-aware middleware for body sensor networks
(BSNs): There have been research efforts to develop context-
aware middleware platforms for BSNs. They have devel-
oped abstractions to tackle challenges associated with con-
text retrieval, device discovery, and user mobility, thereby
making it easier to develop context-aware applications. One
main, relevant direction is the dynamic sensor selection
work [18], [52], [53]. Grounded on the understanding of
the effect of different characteristics on recognition accuracy,
e.g., sensor type and composition, and device placement,
they dynamically select the best sensor with the objective of
optimising a system policy, e.g., maximising accuracy, min-
imising energy cost. While they have presented execution
strategies for various purposes, their consideration of the
runtime accuracy has been limited. They mostly assumed
that the runtime accuracy is static while the associated
devices are available and made the decision based on the
average accuracy.

Our work contributes to this rich body of BSN research
by offering novel systematic aspects and addressing the
dynamic nature of runtime accuracy. First, SensiX automat-
ically generates sensing pipelines to make a given sensing
model work in new, unseen devices by presenting device-
to-device translation [29]. Second, by adopting the selection
mechanism [32], SensiX ensures best-effort inference of ML
models.

Support for ML model inference: A number of model
serving platforms have been proposed to facilitate the
model deployment into production and enhance the run-
time performance, but they mostly focus on the inference

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

latency. TensorFlow Serving is a serving system developed
by Google for TensorFlow models [54]. Crankshaw et al.
presented Clipper, an online prediction serving system that
deploys ML models in separate containers and reduces
prediction latency by employing caching and batching tech-
nique [55]. InferLine has been proposed to meet the tight
end-to-end latency requirements by optimally con�guring
ML prediction pipelines [56]. Unlike these work, SensiX
primarily targets the runtime accuracy as the main perfor-
mance metric of ML models and proposes novel, practical
system-driven solutions that address device and data vari-
abilities without model modi�cation.

Streaming architectures: From the point of view that
sensor devices act as a data source, streaming processing ar-
chitectures like Amazon Kinesis [57] and Apache Kafka [58]
can be seen similar to SensiX. Those systems are built as
cloud-side messaging queue systems to deal with a high
volume and number of streaming data durably, reliably,
and with scalability. In this regard, they mainly focus on
the data management layer, lacking the system aspects such
as heterogeneity management for sensing quality. SensiX
targets the execution pipeline layer to achieve accurate and
robust sensing on top of the data management layer.

8 CONCLUSION

We presented SensiX, a purpose-built runtime component
for the personal edge to offer best-effort inference in a
multi-device sensing environment. SensiX sits between the
sensor devices and the corresponding sensory models in
a personal edge device and comprises of two neural op-
erators. A device-to-device data translation operator and
a quality-aware device selection operator to cope with the
device and data variabilities while externalising the model
management and execution away from the applications. The
combination of these two operators enables SensiX to boost
the runtime accuracy of sensory models in a multi-device
sensory environment. We discussed different design cardi-
nals, operational principles and implementation details of
SensiX. We demonstrated the ef�cacy of SensiX through ex-
tensive testing with real-world motion and acoustic sensing
workloads, including three different public datasets and two
different models. Our evaluation highlighted the ability of
SensiX in boosting the overall runtime accuracy of different
sensing models in multi-device sensing applications by 7-
13% and up to 30% increase across different environment
dynamics. We showed that this gain comes at the minimal
expense of 3mW on the personal edge device, however with
a signi�cant reduction of development complexity and cost.

In the current version of SensiX, we assume that ap-
plication developers provide model binaries. However, we
envision that public repositories for pre-trained sensing
models such as [25], [26] can be easily used with SensiX,
thereby allowing developers to choose and execute pre-
trained models ef�ciently. We anticipate such ability of
SensiX will enable application developers to focus on the
application logic and model developers to focus on accurate
model design.

In our future avenue of work, we plan to deploy and
evaluate SensiX in a real-world personal edge environment
with multiple sensory devices. Besides, we want to explore

the applicability of SensiX with other modalities, and in
particular for vision-based applications. Finally, we aspire
to assess the ef�cacy of SensiX in reducing code complexity
by engaging developers in building multi-device sensing
systems.

REFERENCES

[1] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell, �Sensing
meets mobile social networks: The design, implementation and
evaluation of the cenceme application,� in Proceedings of the 6th
ACM Conference on Embedded Network Sensor Systems, ser. SenSys
’08. New York, NY, USA: ACM, 2008, pp. 337�350. [Online].
Available: http://doi.acm.org/10.1145/1460412.1460445

[2] Y. Li, A. Miller, A. Liu, K. Coburn, and L. J. Salazar, �Acoustic
measures for real-time voice coaching,� in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 2755�2763.

[3] F. Kawsar, C. Min, A. Mathur, and A. Montanari, �Earables
for personal-scale behavior analytics,� IEEE Pervasive Computing,
vol. 17, no. 3, pp. 83�89, Jul 2018.

[4] Y. Shen, M. Voisin, A. Aliamiri, A. Avati, A. Hannun, and A. Ng,
�Ambulatory atrial �brillation monitoring using wearable photo-
plethysmography with deep learning,� in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 1909�1916.

[5] A. Ferlini, A. Montanari, C. Min, H. Li, U. Sassi, and F. Kawsar,
�In-ear ppg for vital signs,� IEEE Pervasive Computing, 2021.

[6] B. Safaei, A. M. H. Monazzah, M. B. Bafroei, and A. Ejlali, �Relia-
bility side-effects in internet of things application layer protocols,�
in 2017 2nd International Conference on System Reliability and Safety
(ICSRS), Dec 2017, pp. 207�212.

[7] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B.
Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen, �Smart devices are
different: Assessing and mitigatingmobile sensing heterogeneities
for activity recognition,� in Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’15. New
York, NY, USA: ACM, 2015, pp. 127�140. [Online]. Available:
http://doi.acm.org/10.1145/2809695.2809718

[8] C. Min, A. Mathur, A. Montanari, and F. Kawsar, �An early
characterisation of wearing variability on motion signals for
wearables,� in Proceedings of the 23rd International Symposium
on Wearable Computers, ser. ISWC ’19. New York, NY,
USA: ACM, 2019, pp. 166�168. [Online]. Available: http:
//doi.acm.org/10.1145/3341163.3347716

[9] T. T. Um, F. M. J. P�ster, D. Pichler, S. Endo, M. Lang, S. Hirche,
U. Fietzek, and D. Kuli ·c, �Data augmentation of wearable sensor
data for parkinson’s disease monitoring using convolutional
neural networks,� in Proceedings of the 19th ACM International
Conference on Multimodal Interaction, ser. ICMI ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 216�220.
[Online]. Available: https://doi.org/10.1145/3136755.3136817

[10] S. J. Pan and Q. Yang, �A survey on transfer learning,� IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, pp.
1345�1359, 2009.

[11] L. Peng, L. Chen, Z. Ye, and Y. Zhang, �Aroma: A deep
multi-task learning based simple and complex human activity
recognition method using wearable sensors,� Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., vol. 2, no. 2, pp. 74:1�74:16, Jul.
2018. [Online]. Available: http://doi.acm.org/10.1145/3214277

[12] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, �Deepsense:
A uni�ed deep learning framework for time-series mobile sensing
data processing,� in Proceedings of the 26th International Conference
on World Wide Web, ser. WWW ’17. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2017, pp. 351�360. [Online]. Available:
https://doi.org/10.1145/3038912.3052577

[13] Y. Vaizman, N. Weibel, and G. Lanckriet, �Context recognition
in-the-wild: Uni�ed model for multi-modal sensors and multi-
label classi�cation,� Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 1, no. 4, pp. 168:1�168:22, Jan. 2018. [Online].
Available: http://doi.acm.org/10.1145/3161192

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, �Maui: Making smartphones last longer
with code of�oad,� in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 49�62. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814441

[15] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan, �Towards wearable cognitive assistance,�
in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14. New
York, NY, USA: ACM, 2014, pp. 68�81. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594383

[16] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, �Deepx: A software accelerator for low-
power deep learning inference on mobile devices,� in Proceedings
of the 15th International Conference on Information Processing in Sensor
Networks, ser. IPSN ’16. IEEE Press, 2016.

[17] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, �On-demand
deep model compression for mobile devices: A usage-driven
model selection framework,� in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 389�400. [Online]. Available:
https://doi.org/10.1145/3210240.3210337

[18] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and J. Song,
�Orchestrator: An active resource orchestration framework for
mobile context monitoring in sensor-rich mobile environments,�
in 2010 IEEE International Conference on Pervasive Computing and
Communications (PerCom), March 2010, pp. 135�144.

[19] A. Bakar, T. Rahman, A. Montanari, J. Lei, R. Sha�k, and F. Kawsar,
�Logic-based intelligence for batteryless sensors,� in Proceedings
of the 23rd Annual International Workshop on Mobile Computing
Systems and Applications, ser. HotMobile ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 22�28.

[20] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, �Leo:
Scheduling sensor inference algorithms across heterogeneous
mobile processors and network resources,� in Proceedings of the
22nd Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 320�333. [Online]. Available:
https://doi.org/10.1145/2973750.2973777

[21] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman,
and A. Krishnamurthy, �Mcdnn: An approximation-based
execution framework for deep stream processing under resource
constraints,� in Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 123�136. [Online]. Available: https://doi.org/
10.1145/2906388.2906396

[22] A. Montanari, M. Sharma, D. Jenkus, M. Alloulah, L. Qendro, and
F. Kawsar, �ePerceptive: energy reactive embedded intelligence
for batteryless sensors,� in Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, 2020, pp. 382�394.

[23] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. F¤orster,
G. Tr¤oster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al.,
�Collecting complex activity datasets in highly rich networked
sensor environments,� in 2010 Seventh International Conference on
Networked Sensing Systems (INSS), June 2010, pp. 233�240.

[24] M. Kreil, B. Sick, and P. Lukowicz, �Dealing with human variabil-
ity in motion based, wearable activity recognition,� in 2014 IEEE
International Conference on Pervasive Computing and Communication
Workshops (PERCOM WORKSHOPS), March 2014, pp. 36�40.

[25] �Tensor�ow models & dataset,� https://www.tensor�ow.org/
resources/models-datasets, accessed: Feb 9, 2020.

[26] �Pytorch hub,� https://pytorch.org/hub/, accessed: July 1, 2020.
[27] A. Das, N. Borisov, and M. Caesar, �Do you hear what i

hear?: Fingerprinting smart devices through embedded acoustic
components,� in Proceedings of the 2014 ACM SIGSAC, ser. CCS
’14. New York, NY, USA: ACM, 2014, pp. 441�452. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660325

[28] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi3,
�Accelprint: Imperfections of accelerometers make smartphones
trackable,� in Proceedings of the Network and Distributed System
Security Symposium 2014, 2014.

[29] A. Mathur, A. Isopoussu, F. Kawsar, N. Berthouze, and N. D.
Lane, �Mic2mic: Using cycle-consistent generative adversarial
networks to overcome microphone variability in speech systems,�

in Proceedings of the 18th International Conference on Information
Processing in Sensor Networks, ser. IPSN ’19. New York,
NY, USA: ACM, 2019, pp. 169�180. [Online]. Available:
http://doi.acm.org/10.1145/3302506.3310398

[30] A. Mathur, T. Zhang, S. Bhattacharya, P. Veli �ckovi ·c, L. Joffe, N. D.
Lane, F. Kawsar, and P. Li·o, �Using deep data augmentation
training to address software and hardware heterogeneities in
wearable and smartphone sensing devices,� in Proceedings of the
17th ACM/IEEE International Conference on Information Processing in
Sensor Networks. IEEE Press, 2018, pp. 200�211.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, �Unpaired image-to-
image translation using cycle-consistent adversarial networks,� in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2223�2232.

[32] C. Min, A. Montanari, A. Mathur, and F. Kawsar, �A closer
look at quality-aware runtime assessment of sensing models in
multi-device environments,� in Proceedings of the 17th Conference
on Embedded Networked Sensor Systems, ser. SenSys ’19. New
York, NY, USA: ACM, 2019, pp. 271�284. [Online]. Available:
http://doi.acm.org/10.1145/3356250.3360043

[33] T. Scheffer, C. Decomain, and S. Wrobel, �Active hidden markov
models for information extraction,� in Advances in Intelligent Data
Analysis, F. Hoffmann, D. J. Hand, N. Adams, D. Fisher, and
G. Guimaraes, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2001, pp. 309�318.

[34] C. E. Shannon, �A mathematical theory of communication,�
Bell System Technical Journal, vol. 27, no. 3, pp. 379�423, 1948.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/j.1538-7305.1948.tb01338.x

[35] C. K¤orner and S. Wrobel, �Multi-class ensemble-based active
learning,� in European conference on machine learning. Springer,
2006, pp. 687�694.

[36] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,
�Wishbone: Pro�le-based partitioning for sensornet applications,�
in Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 395�408. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1558977.1559004

[37] T. Sztyler and H. Stuckenschmidt, �On-body localization of wear-
able devices: An investigation of position-aware activity recogni-
tion,� in 2016 IEEE International Conference on Pervasive Computing
and Communications (PerCom), March 2016, pp. 1�9.

[38] P. Warden, �Speech commands: A dataset for limited-vocabulary
speech recognition,� 2018.

[39] V. Van Asch, �Macro-and micro-averaged evaluation measures,�
Belgium: CLiPS, 2013.

[40] Y. Chang, A. Mathur, A. Isopoussu, J. Song, and F. Kawsar, �A
systematic study of unsupervised domain adaptation for robust
human-activity recognition,� Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 4, no. 1, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3380985

[41] C. Chen, Y. Miao, C. X. Lu, L. Xie, P. Blunsom, A. Markham,
and N. Trigoni, �Motiontransformer: Transferring neural inertial
tracking between domains,� in Proceedings of the AAAI Conference
on Arti�cial Intelligence, vol. 33, 2019, pp. 8009�8016.

[42] B. W. Matthews, �Comparison of the predicted and observed
secondary structure of t4 phage lysozyme,� Biochimica et Biophysica
Acta (BBA)-Protein Structure, vol. 405, no. 2, pp. 442�451, 1975.

[43] S. Boughorbel, F. Jarray, and M. El-Anbari, �Optimal classi�er for
imbalanced data using matthews correlation coef�cient metric,�
PloS one, vol. 12, no. 6, p. e0177678, 2017.

[44] F. J. Ord·o �nez and D. Roggen, �Deep convolutional and lstm
recurrent neural networks for multimodal wearable activity
recognition,� Sensors, vol. 16, no. 1, 2016. [Online]. Available:
https://www.mdpi.com/1424-8220/16/1/115

[45] S. Yao, Y. Zhao, S. Hu, and T. Abdelzaher, �Qualitydeepsense:
Quality-aware deep learning framework for internet of things
applications with sensor-temporal attention,� in Proceedings of the
2Nd International Workshop on Embedded and Mobile Deep Learning,
ser. EMDL’18. New York, NY, USA: ACM, 2018, pp. 42�47.
[Online]. Available: http://doi.acm.org/10.1145/3212725.3212729

[46] A. Pathak, Y. C. Hu, and M. Zhang, �Where is the energy
spent inside my app?: Fine grained energy accounting on
smartphones with eprof,� in Proceedings of the 7th ACM
European Conference on Computer Systems, ser. EuroSys ’12. New
York, NY, USA: ACM, 2012, pp. 29�42. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168841

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3173914, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[47] A. G ¤unther and C. Hoene, �Measuring round trip times to deter-
mine the distance between wlan nodes,� in International conference
on research in networking. Springer, 2005, pp. 768�779.

[48] M. Antonini, T. H. Vu, C. Min, A. Montanari, A. Mathur,
and F. Kawsar, �Resource characterisation of personal-scale
sensing models on edge accelerators,� in Proceedings of the First
International Workshop on Challenges in Arti�cial Intelligence and
Machine Learning for Internet of Things, ser. AIChallengeIoT’19.
New York, NY, USA: ACM, 2019, pp. 49�55. [Online]. Available:
http://doi.acm.org/10.1145/3363347.3363363

[49] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese,
�Defog: Fog computing benchmarks,� in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, ser. SEC ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 47�58.
[Online]. Available: https://doi.org/10.1145/3318216.3363299

[50] A. Montanari, A. Mashhadi, A. Mathur, and F. Kawsar, �Under-
standing the privacy design space for personal connected objects,�
in Proceedings of the 30th International BCS Human Computer Inter-
action Conference 30, 2016, pp. 1�13.

[51] W. Luo, Z. Yan, Q. Song, and R. Tan, �Phyaug: Physics-directed
data augmentation for deep sensing model transfer in cyber-
physical systems,� in Proceedings of the 20th International Conference
on Information Processing in Sensor Networks (co-located with CPS-IoT
Week 2021), 2021, pp. 31�46.

[52] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen,
L. Benini, and G. Tr ¤oster, �Activity recognition from on-body
sensors: Accuracy-power trade-off by dynamic sensor selection,�
in Wireless Sensor Networks, R. Verdone, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 17�33.

[53] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles, �Pbn:
Towards practical activity recognition using smartphone-based
body sensor networks,� in Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’11. New
York, NY, USA: ACM, 2011, pp. 246�259. [Online]. Available:
http://doi.acm.org/10.1145/2070942.2070968

[54] �Tensor�ow serving,� https://www.tensor�ow.org/tfx/guide/
serving, accessed: Feb 9, 2021.

[55] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, �Clipper: A low-latency online prediction serving
system,� in 14th fUSENIXg Symposium on Networked Systems De-
sign and Implementation (fNSDIg17), 2017, pp. 613�627.

[56] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonza-
lez, and A. Tumanov, �Inferline: latency-aware provisioning and
scaling for prediction serving pipelines,� in Proceedings of the 11th
ACM Symposium on Cloud Computing, 2020, pp. 477�491.

[57] �Amazon kinesis,� https://aws.amazon.com/kinesis/, accessed:
July 1, 2020.

[58] �Apache kafka,� https://kafka.apache.org/, accessed: July 1,
2020.

Chulhong Min is a Research Scientist at Nokia Bell Labs, Cambridge,
UK. He received the Ph.D. degree in Computer Science from KAIST in
2016 and joined Nokia Bell Labs in 2017. He is an Associated Editor
of ACM Proceedings on Interactive, Mobile, Wearable and Ubiquitous
Technologies. His research interests include mobile and wearable sys-
tems and services, machine learning, the Internet of Things, and human
behavior modeling.

Akhil Mathur is a Principal Research Scientist at Nokia Bell Labs, Cam-
bridge, UK. He holds a Ph.D. in Computer Science from the University
College London and a Masters in Computer Science from the University
of Toronto. Akhil serves on the editorial board of ACM Proceedings
on Interactive, Mobile, Wearable and Ubiquitous Technologies, and has
served as a committee member for leading mobile and sensor systems
venues. His research has been covered by several media organizations,
including the New Yorker, Financial Times, Livemint, and Canadian
Broadcasting Corporation.

Alessandro Montanari is a Senior Research Scientist at Nokia Bell
Labs, Cambridge, UK. Alessandro holds a PhD in Computer Science
from the University of Cambridge (UK) and a Masters cum laude in Com-
puter Engineering from the University of Bologna (Italy). He serves as a
committee member for leading mobile and sensor systems conferences
and journals. His current research focuses on embedded systems,
earables for vital signs sensing and ultra-low power applied machine
learning.

Fahim Kawsar is the Founding Director of Pervasive Systems research
at Nokia Bell Labs, Cambridge, UK and holds a Design United Pro-
fessorship at TU Delft, Netherlands. He spends most of his time at
Cambridge building sensory systems with novel computational forms
to explain human behaviour with other people, places, and things. He
is intrigued by the power of design and frequently visits TU Delft to
teach and debate the in�uence of sensory systems in rede�ning data-
driven design, and vice versa. Fahim is a frequent keynote speaker,
(co-)authored 150+ publications, �led 40+ patents, is an AEIC of IEEE
Pervasive Computing, sits at the editorial board of ACM IMWUT , serves
(or served) as a committee member of leading mobile and ubiquitous
computing conferences and had multiple million-scale projects commis-
sioned.

Authorized licensed use limited to: Nokia. Downloaded on September 16,2022 at 11:43:18 UTC from IEEE Xplore. Restrictions apply.

