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Abstract—Advancement in hardware capability has opened up
the possibility of performing ML inference tasks at the edge using
a large volume of sensory data generated from IoT devices such
as cameras. As cameras become more pervasive, edge systems
need to process streams from multiple sources with overlapping
fields-of-view. In this position paper, we describe a collaborative
sensing mechanism at the edge for such cases. We introduce a
View Mapping Database (DB) that maps regions in a camera’s
field of view to regions in other cameras’ view. We analyze
characteristics of 5 video streams that capture an intersection
from multiple angles, prototype a View Mapping DB, and present
our preliminary results.

I. INTRODUCTION

The recent rapid advancement in hardware of edge accelera-
tors has led to the deployment of cloud scale machine learning
(ML) inferences to run locally, near sensory data sources such
as cameras and microphones, without the need for sending
large volumes of data to remote data centers. This leads to
improved efficiency, latency, and throughput.

Edge devices typically provide inference capabilities using
already trained models. A typical ML inference task involves
i) preparing the data acquired from a real-world sensor (e.g.,
pixels from an image sensor or waveforms from a microphone)
to a compatible input format, ii) executing the model within a
model-specific framework (e.g., TensorFlow or PyTorch) and
iii) serving the inferences through well-defined interfaces.

While there are significant efforts to execute ML models
in edge devices [1], [2], the usual approach to edge inference
involves a single data source and a model. On the other hand,
with sensors like cameras getting more and more pervasive,
there is a growing need for deploying collaborative sensing
mechanisms at the edge. Sensor fusion methods are developed
to combine data from multiple sensors [3], [4]. However, they
often lose the benefit of edge computing since they need to
bring sensor data from multiple observers to a central server
for model processing.

In this position paper, we describe a collaborative sensing
mechanism for edge settings. Our mechanism is based on
a modification of SensiX [5], namely SENSIX++, which
provides an end-to-end, multi-tenant platform to bring ML
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inference tasks on edge devices. We move some of the SensiX
functionality to a central computing location, but unlike sensor
fusion, it only processes locally executed model outputs from
edge devices instead of raw sensor streams. For classification
models, this sensor fusion is related to data aggregation
techniques [6]. Our focus in this paper instead, is on the
vision models and multi-camera video analytics that involve
object/event detection and tracking across multiple cameras.
While this is easier in cameras with non-overlapping fields of
view (FOV), detection of the same object/event in multiple
cameras needs to be taken into account for a more accurate
representation.

We consider the case where each camera is connected to an
edge-accelerator that is capable of running ML models based
on neural networks. The model output, rather than the sensory
data, is transferred to a local, edge-scale compute location,
referred to as edge cloud. Edge cloud hosts multiple services to
facilitate collaborative visual sensing in addition to interpreting
the model output from multiple observers.

To support efficient multi-camera video analytics, it is
important to distinguish identical elements, e.g., events and
objects, in all cameras with overlapping FOV so that an ML
task does not deal with redundant objects. A trivial approach
to do this involves identifying each object in all camera frames
by computing/retrieving the feature vectors of each object and
evaluating the similarity between them, which requires heavy
computation. Instead, we create a View Map that maps various
regions across different cameras. To do this, we calibrate the
cameras in an offline phase during which object identification
is used to find anchor objects to obtain such mappings. Once
the location of a target object is known in a camera view, in
the form of a bounding box retrieved from the locally running
detection model, we use a View Mapping DB to match it to
objects retrieved from other cameras in the online phase. This
view mapping is used in both spatial and temporal queries
instead of identifying each object in each camera frame,
thereby significantly reducing the compute and networking
overhead.

This paper presents our on-going work on bringing infer-
ences from multiple observers together to facilitate queries that
require addressing the separation of cameras both spatially
(location objects across different cameras) and temporally
(tracking one mobile object across time). To this end, we first
present the related work in Section II. We then describe our©2021 IPSJ
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proposed system design in Section III. An early evaluation of
some system components is given in Section IV. We conclude
the paper in Section V.

II. RELATED WORK

Existing work on Video Analytics (VA) at the edge takes the
advantage of computation power of edge or cloud to run real
time VA pipeline which consists of multiple ML operations.
However, the majority of VA systems are designed to perform
VA pipeline on video streams individually [7], [8]. While DNN
model compression & pruning [9], [10] and ML inference
offloading [11], [12] & VA task placement optimization [13],
[14] can be done per stream for optimization, still resource
consumption grows linearly as the number of video feeds
increases.

To resolve such issue, recent VA systems incorporate learn-
ing spatial and temporal relationships between the video
feeds. Especially, these systems [15], [16] learns the spatial
and temporal relationship between the video feeds obtained
from geo-distributed locations where cameras’ FOV does not
overlap. The intuition here is that objects seen at a camera’s
(namely, camera A) FOV are likely going to be seen in other
cameras’ (namely, camera B or C) FOV after some time (e.g.,
5 seconds between cameras A and B, 10 seconds between
cameras A and C). Such spatial and temporal relationship
between the cameras is leveraged to reduce the number of
video frames to be analyzed, which leads to efficient resource
usage.

In other systems [17]–[19], authors analyze video streams
from geo-distributed cameras where the FOV overlaps. As
multiple cameras are viewing the same area concurrently, ana-
lyzing all the frames results in poor utilization of resources. In
[17], [19], authors propose a collaborative camera VA system
which decides among all cameras, which camera’s video frame
should be transmitted: solely based on the maximum number
of objects in each FOV [17], or based on the similarity of
the object seen from two FOVs using reference points [19].
In CrossROI [18], the system learns the spatial relationship
between regions of each camera’s FOV and adjusts region-of-
interest (ROI) masks of the FOV during runtime so to provide
timely yet accurate VA while reducing network load. While a
View Map DB in our system also learns spatial relationships
between regions of different cameras, we use this information
to identify common objects completely relying on the model
output rather than sending some or all of the frames to a cloud
server.

III. SYSTEM DESCRIPTION

SENSIX++ brings ML inference tasks to the edge devices.
SENSIX++ decomposes ML tasks into a number of compo-
nents. A data coordinator component manages the sensors
and collects raw data taking model requirements such as
sampling rate, image resolution, etc. A featurisation container
is dedicated to a number of pre-processing functions to prepare
sensor input for model execution. These functions include
model adaptation [20], translation [5], etc. This data is fed into

a number of model containers, each equipped with necessary
tools to execute a neural network with a CPU, GPU or another
processing platform such as TPU.

SENSIX++ allows the execution of functions that process
the outcome from model containers. These functions may
serve several purposes including generating higher order of
analytics and annotations for the sensor data using predictions
from one or more models or other functions. SENSIX++
dedicates a container in order to facilitate the execution of such
post-processing functions applying microservice principles,
i.e., a certain function is executed when a particular request
arrives. Developers can provide such functions during the
deployment phase using two files. A codelet file provides a
number of executable functions that use the outcome from
one or more other functions and/or models. For each of these
functions, a function file lists models and/or other functions,
whose outputs are necessary for execution, as well as the type
of its outcome. Using this file, we follow an event-triggered
approach where execution of a function is prompted by the
completion of these entities in the function file.

This architecture allows a multi-tenant model serving. The
output from a single model execution can be used by multiple
applications. For example, the output of an object detection
model can be concurrently used by two applications that
count the number of cars and identify the location of people,
respectively. Critically, this output can be used to assist other
tasks including collaborative sensing, without the need to
instantiate a separate, dedicated object detection model. While
SENSIX++ makes it easier to deploy our collaborative sensing
solution, it is not strongly decoupled, and can be served with
other model serving mechanisms as well.

Our collaborative sensing system differs from SensiX [5] in
that while all SensiX components are deployed in single edge
devices, we move the post processing functions to a nearby,
edge cloud. Moreover, we limit the scope of our work to
vision models. The cameras are connected to devices powerful
enough to run one or more models on the frames captured by
the camera and pre-processing functions. On the other hand,
post-processing functions can now collect model output from
multiple observers to make an inference.

The architecture of the proposed collaborative system is
described in Figure 1. In our case, Data Coordinator, Fea-
turisation Coordinator, and Model Containers are located in
the edge devices, whereas the query server and function
coordinator are hosted in the Edge Cloud1. In addition, the
Edge Cloud features other components that allow collaborative
visual sensing including a ReID server to distinguish distinct
objects in frames from different cameras and View Mapping
DB that allows us to map object locations across various
cameras.

In the rest of this section, we first explain how we achieve
collaborative sensing through post-processing functions and
describe these two components.

1Various other SensiX components are beyond the scope of this work, hence
not explained in this paper.
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Fig. 1: Collaborative ML System Architecture

Fig. 2: A code snippet for functions in the codelet

A. Function Execution

An important aspect of SENSIX++ is that it allows devel-
opers to introduce custom functions that interpret the output
from one or more models. These functions are introduced in
codelet files during deployment. A codelet snippet is shown
in Figure 2.

To serve query requests from users and applications, SensiX
includes a microservice with a number of API endpoints. The
APIs can be summarized as below:
·/models: Get the list of models

·/functions: Get the information about available post-
processing functions
·/inference/:function_id: Get the outcome of a post-
processing function

While functions can combine output from multiple models,
all the models are hosted on the same device and the archi-
tecture assumes the device contains a single sensor for each
sensing modality, i.e., a single camera, microphone, etc. On the
other hand, we are interested in using the output of the same
model running on different observers in addition to inferences
using a single device. In order to facilitate this, the result of the
model API provides the list of devices that each model runs.
Similarly, the information returned by the functions API
indicates if the function can only use the model output from
a single observer or if it can combine results from multiple
observers.

In addition, inference API includes an optional query
parameter, device_id. If this parameter is not present, the
function execution uses the data from all available observers.
If there is a single device_id in the user request, the
function execution is carried out exactly like that in SensiX.
If the request includes multiple device ids, then the function
execution combines the output only from those that are present
in the query.

In order to facilitate function executions that use the model
output from multiple observers, we introduce helper functions
that the developers can use in their codelets that leverage a
View Mapping DB. We now explain how this View Mapping
DB is generated and queried. We will then describe how the
View Mapping DB results can be used to answer queries that
require collaboration across observers spatially and tempo-
rally.

B. View Mapping DB (Offline phase)

In many situations, multiple cameras are geo-distributed
around a key area such as intersections of roads, malls,
and airports to monitor the proximity from different view
points. That is, there exist multiple observers viewing from
different angles of a specific area. If video streams were to
be analyzed individually without shared knowledge of the
scene between the cameras to locate a suspicious target (e.g.,
the blue vehicle in Figure 3), video analytic services would
have to run redundant object detection and re-identification
on video frames where the target is already seen from other
angles. To minimize redundant computation while providing
a multi camera video analytic service, we create a spatial
relationship between camera views and store this information
in View Mapping DB.
View Mapping DB Population: A View Mapping DB
matches a specific area of one camera’s field-of-view (FOV)
with other area on camera’s FOV. To generate spatial rela-
tionship between the FOVs, it requires at least one unique
object to be seen by one or more cameras. We leverage the
ReID techniques to verify if there is a unique object seen at
multiple camera FOV. This ReID service runs on a dedicated
container in Edge Cloud and responds to ReID queries.
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Fig. 3: Objects re-identified across multiple cameras are indexed with the same ID over other camera FOVs. For instance, blue
pickup truck is labeled as ID 34 on 4 different camera FOVs.

During the offline phase, we collect video streams from
multiple cameras and run an object detection model (e.g.,
Yolov3 [21]) on the video frame, which outputs the class, con-
fidence score, and bounding box coordinate of each detected
object seen. Each object detected on synchronized frames2

are labeled with a unique id. For comparing the similarity of
objects from multiple FOVs, features of detected objects are
extracted using a feature extraction models (e.g., pixel color
feature - RGB and HSI [22] or handcrafted feature - SIFT
[23], SURF [24] or DNN features - OSNet [25]). These feature
vectors from one camera are cross-compared with all object
feature vectors in its neighboring cameras by using similarity
metrics such as cosine similarity. If the similarity is over a
threshold, it is s regarded as the same object across different
camera FOV. Objects in the same camera cannot be regarded
as the same object, since the same object cannot be present
multiple times in the same FOV.

In case an object is verified as the same object, we can
easily map a specific area of a camera with another. However,
it would be impractical to match bounding box coordinates
of both camera FOVs because the slightest difference in the
coordinates would be recognized as different locations and,
as a result, create an excessive number of entries which
potentially is the same location in FOV. Therefore, we leverage
the tiling technique which slices a camera’s FOV into 10x8
tiles similarly done in [18]. The bounding box of the unique
object is translated into minimum sets of tiles which cover the
bounding box of the object. We leverage the AI City Challenge
dataset [26] to showcase the View Map in Figure 3.

The View Mapping DB is a key-value data store. Each value
stored in the data store refers to a collection of tiles across
different cameras, as shown in Figure 4. In this example, if
there is an object located on tiles 22, 23, 33, and 34 on camera
1, it is also located on tiles 26, 27, 37, and 38 on camera 5.
The keys in the DB correspond to each of the entries in the
listing, i.e., 1-[22, 23, 33, 34].

Once the spatial relationship is generated between cameras,
it can be leveraged during runtime to search and match the
region of interest on a camera to another. Similar to the ReID
service, View Mapping DB also runs on a dedicated container
and allows queries from other system components through API
calls.

C. Identifying objects (online phase)
During the online phase, codelet functions introduced by

the developers can utilize the View Mapping DB. A query to

2synchronized frames refer to video frames captured from multiple cameras
at the same time

Fig. 4: An example value entry in View Mapping DB

the DB includes results from object/event detectors running on
edge devices. Edge devices produce a list of objects, each of
which consists of an object type and a bounding box. A query
to the DB may include all or some of the objects reported by
the edge devices, i.e., it is possible to filter objects using the
object type. For each object, the database first extracts the tiles
corresponding to the bounding box in a camera view and uses
them to identify the common objects in different camera fields
of view. For each object that the View Mapping DB returns,
the information includes the bounding box in each camera. To
give more freedom to the developers, the View Map service
also provides an API that accepts a set of tiles and a camera
id to return a list of tiles from the other cameras.

IV. PRELIMINARY RESULTS

For our preliminary evaluation of the system, we evaluate
the performance of the View mapping DB and discuss in-
teresting findings. A summary of the preliminary results and
observations is as follows:

• We observe that approximately over 50% of the objects
detected in the dataset are seen from more than one cam-
era FOV, which allows potential reduction of computation
usage to detect vehicles on other camera FOV.

• View Mapping DB outputs with only spatial knowledge
can be less accurate due to the different angle of the
vehicles seen from one FOV to another.

Note that a more comprehensive performance evaluation is left
for future work.

A. Dataset

The AI City Challenge sector 1 dataset (AIC) [26] consists
of 5 video streams, each recorded for 180 seconds (or 1800
frames) from different angles of an intersection. Each camera
records at 1920 × 1080 (except camera 5, which records at
1280 × 960) and at 10 frames per second. Dataset provides
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(a) Camera 1

(b) Camera 2

(c) Camera 3

(d) Camera 4

(e) Camera 5

Fig. 5: Percentage of object’s tiles seen from another camera’s
FOV over time. Green plots refer to object’s tileset seen from
at least two cameras, while blue plots refer to object’s tileset
uniquely seen from its own FOV.

information about only detected vehicles and contains approx-
imately 100 unique vehicles which travel across at least two
camera FOVs.

B. Evaluation1: View Mapping DB statistics

Using the AIC dataset, we first analyze the spatial rela-
tionship among cameras. Figure 5 shows the percentage of
objects (tileset) in a camera, which overlaps with other camera
views. The green bars indicate that some objects are seen from
more than one camera FOV concurrently, while the blue bar
indicates that objects are uniquely seen from its own camera.

Regardless of the traffic patterns of the vehicles, cameras 1,
2, 3, and 4 have approximately 50% of the objects seen from
multiple view points. However, in most cases, camera 5 tends
to have an overlap between any other camera FOVs. Results
demonstrate that there are regions for each camera’s FOV
(except 5) where objects are seen uniquely and thus View
Mapping DB can provide insight in locating objects across
camera FOVs.

C. Evaluation2: Queried result

For our second evaluation, we analyze the queried results
of the View Mapping DB. The View Mapping DB contains
approximately 7321 entries and each entry contains at least
two or more distinct appearances across camera FOVs. We
query the View Mapping DB with camera = 1, tile set =
[22, 23, 24, 32, 33, 34] (which references the green tiles on
camera 1) to show the approximate location of vehicles across
multiple camera FOVs. Figure 6a shows the result of the same
query for a blue pickup truck and Figure 6b for a white
minivan. While the result of the query shows that blue tiles
capture both vehicles for camera 3 and 5, it is not accurate
enough in camera 4. Notice that the size of the blue tiles in
cameras 3, 4, and 5 are actually larger than the actual vehicle
tiles in Figure 3 (with ID 34). This is because, even if both
vehicles’ query tile sets are equal, the posture of the vehicles
and the distance from camera 1’s FOV is slightly different.

While our current View Mapping DB is able to provide
an approximate location of the vehicle across multiple camera
views, only leveraging spatial knowledge can be less accurate.
Therefore, we see some room for potential improvement by
query optimization techniques to filter out tiles which cannot
be candidate tiles. One approach is to slice the FOV of cameras
to be more fine grain so that the query tiles do exhibit the
blue pickup to be different from the white minivan. However,
this approach can result in a smaller set of possible candidate
tiles if the video feeds analyzed during the offline phase
do not contain sufficient matches. Another addition to the
View Mapping DB is applying temporal correlation between
the cameras. That is, the View Mapping DB filters out less
probable candidate tiles by view the tiles over a period of time.
Naturally, vehicles cannot turn an angle from one direction
to another between frames. Our future work involves both
approaches to optimize View Mapping DB.

V. DISCUSSION AND OUTLOOK

In this position paper, we present a work-in-progress collab-
orative sensing mechanism with multiple cameras at the edge.
To achieve this, we deploy a View Map service that identifies
common objects in different camera fields of view without
extracting the object features at the run time. We provide an
early evaluation of this service.

We are currently working on strategies to use View Map-
ping service output to facilitate temporal queries, e.g. object
tracking across cameras in time. We plan to present a real life
deployment of this system and its end-to-end evaluation in our
future work.
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(a) Queried location of blue pickup across multiple camera FOVs

(b) Queried location of white minivan across multiple camera FOVs

Fig. 6: This figure shows the result of a query to View Mapping DB. Green tiles on camera 1 refers to the queried tiles with
tile set [22, 23, 24, 32, 33, 34]. Resulting tiles across cameras are shown in blue for camera 3,4,5.
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