
1

Argus: Enabling Cross-Camera Collaboration for
Video Analytics on Distributed Smart Cameras

Juheon Yi, Utku Günay Acer, Fahim Kawsar, and Chulhong Min

Abstract—Overlapping cameras offer exciting opportunities to view a scene from different angles, allowing for more advanced,
comprehensive and robust analysis. However, existing video analytics systems for multi-camera streams are mostly limited to (i)
per-camera processing and aggregation and (ii) workload-agnostic centralized processing architectures. In this paper, we present
Argus, a distributed video analytics system with cross-camera collaboration on smart cameras. We identify multi-camera, multi-target
tracking as the primary task of multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy
identification tasks by leveraging object-wise spatio-temporal association in the overlapping fields of view across multiple cameras. We
further develop a set of techniques to perform these operations across distributed cameras without cloud support at low latency by (i)
dynamically ordering the camera and object inspection sequence and (ii) flexibly distributing the workload across smart cameras,
taking into account network transmission and heterogeneous computational capacities. Evaluation of three real-world overlapping
camera datasets with two Nvidia Jetson devices shows that Argus reduces the number of object identifications and end-to-end latency
by up to 7.13× and 2.19× (4.86× and 1.60× compared to the state-of-the-art), while achieving comparable tracking quality.

Index Terms—Cross-camera collaboration, Smart cameras, Video analytics

✦

1 INTRODUCTION

It is increasingly common for physical locations to be
surrounded and monitored by multiple cameras with over-
lapping fields of view (hereinafter ’overlapping cameras’),
e.g., intersections, shopping malls, public transport, con-
struction sites and airports, as shown in Fig. 1. Such multiple
overlapping cameras offer exciting opportunities to observe
a scene from different angles, enabling enriched, compre-
hensive and robust analysis. For example, our analysis of
the CityFlowV2 dataset [4] (5 cameras deployed to monitor
vehicles on the road intersection) shows that each camera
separately detects only 3.7 vehicles per frame on average,
while five cameras detect a total of 12.0 vehicles altogether.
Since a target vehicle can be captured by multiple cameras
from different distances and angles, we can also observe
objects of interest with a holistic view. Such view diversity
can make the analytics more enriched and robust, e.g., a
vehicle’s license plate may be occluded in one camera’s view
due to its position or occlusion, but not in the other cameras.

Most visual analytics systems are deployed in cloud
environments. On the other hand, on-camera video analyt-
ics offer various attractive benefits such as immediate re-
sponse, increased reliability and privacy protection. We
envision that on-board AI accelerators [5], [6], [7] (e.g.,
Nvidia Jetson [8], [9], Google Coral TPU [10] and Analog
MAX78000 [11]) and embedded AI models [12], [13] will

• Juheon Yi is with Nokia Bell Labs (e-mail: juheon.yi@nokia-bell-labs.com).
• Utku Günay Acer is with Nokia Bell Labs (e-mail:

utku gunay.acer@nokia-bell-labs.com).
• Fahim Kawsar is with Nokia Bell Labs (e-mail: fahim.kawsar@nokia-bell-

labs.com).
• Chulhong Min, the corresponding author, is with Nokia Bell Labs (e-mail:

chulhong.min@nokia-bell-labs.com).

Fig. 1: Places with overlapping cameras: intersection, shop-
ping mall, transport, construction site.

accelerate this trend. However, the current practice of multi-
camera stream processing is limited to being deployed on
cameras without relying on cloud servers in two ways.
(i) Per-camera processing and aggregation. Previous work has
mostly focused on processing the video analytics pipeline
on each camera individually and aggregating the results
at the final stage [14], [15], [16], thereby suffering from
significant processing redundancy and latency. (ii) Workload-
agnostic centralized processing. Some systems have been pro-
posed to handle multi-video streams, but they mostly as-
sume that the videos are streamed to the central node, e.g.,
cloud servers, and focus on optimization and coordination
of the serving engine (e.g., GPU scheduling and batch
processing [17], [18], [19]).

In this paper, we present Argus, a distributed video
analytics system designed for cross-camera collaboration with
overlapping cameras. Here, the term ‘cross-camera collab-
oration’ not only encompasses the fusion of multi-view
images for video analytics, but also refers to the cooperative
utilization of distributed resources to ensure video analytics
with high accuracy and low latency on distributed smart
cameras, eliminating the need for a cloud server. To this end,
we identify that multi-camera, multi-target tracking serves as
a fundamental task for multi-camera video analytics. This
process involves determining the location and capturing
image crops of target objects (presented as query images)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

2

TABLE 1: Comparison of cross-camera collaboration approach in Argus with REV [1], Spatula [2], and CrossRoI [3].

REV [1] Spatula [2] CrossRoI [3] Argus (Ours)
Target environment Overlapping cameras Non-overlapping cameras Overlapping cameras Overlapping cameras
Optimization goal On-server computation

costs
Communication and on-
server computation costs

Communication and on-
server computation costs

End-to-end latency on cam-
eras

Collaboration gran-
ularity

Cells (group of cameras) Cameras Areas (RoIs) Objects

Applying associa-
tion

Dynamic (depending on
the target’s existence)

Dynamic (depending on
the target’s existence)

Static (once when the cam-
eras are deployed)

Dynamic (depending on
the target’s location)

Approach Incrementally search cells
that have lowest identifica-
tion confidence

Identify the subset of cam-
eras that capture target ob-
jects

Find the smallest RoI that
contains the target objects

Minimise the # of iden-
tification operations across
cameras

Video processing Centralized Centralized Centralized Distributed

on deployed cameras over time. We find that the computa-
tional bottleneck for camera collaboration arises due to the
frequent execution of identification model inference across
different cameras. To address this challenge, we develop a
fine-grained, object-wise spatio-temporal association tech-
nique. This novel approach strategically avoids redundant
identification tasks on both spatial (across multiple cameras)
and temporal (within each camera over time) axes. This not
only streamlines the process but also enhances the efficiency.

To enable effective multi-camera, multi-target tracking
across overlapping cameras, we develop an object-wise
association-aware identification technique. Specifically, Ar-
gus continuously tracks records of the association of objects
(their bounding boxes) with the same identity across both
multiple cameras (§4.1) and time (§4.2). Then, it identifies
the object by matching the location association instead of
running the identification model inference and matching the
appearance feature. The concept of spatio-temporal associa-
tion has been proposed in several previous works to reduce
the repetitive appearance or query irrelevant areas [2], [3],
[20]. However, they apply to association at a coarse-grained
level, e.g., groups of cameras [1], cameras [2], [20] or regions
of interest (RoIs) [3]. Thus, the expected gain is small for
our target environment, which is multi-camera, multi-target
tracking on overlapping cameras. For example, the resource
saving from camera-wise association and filtering [2], [20] is
expected to be marginal for densely deployed overlapping
cameras. RoI-wise association and filtering [3] also degrade
tracking accuracy, as the target object is not detected on a
subset of cameras (refer to Table 1 and §7 for more details).
In §2.2 and §6.2, we also provide an in-depth analysis
and a comparative study with these prior arts, respectively.
Furthermore, we carefully incorporate techniques to handle
corner cases in the association process (e.g., newly appear-
ing objects, occasional failure of the identification model and
its error propagation) and improve the robustness of the
spatio/temporal association process (§5.3).

Next, we develop a set of strategies that perform spatio-
temporal association over distributed smart cameras at
low latency. To maximize the benefits of association-aware
identification, it needs to process cameras one by one in
a sequential manner so that the number of identification
model inferences is minimized; identification model infer-
ence needs to be performed when the identity of the pivot
object is not yet known. This would lead to an increase in
end-to-end latency, even with the fewer number of identifi-
cation model inferences. Also, since cameras have different
workloads (i.e., the number of detected objects) and het-
erogeneous processing capabilities, careless scheduling and

distribution might not maximize the overall performance.
To this end, we develop a multi-camera dynamic inspector
(§5.1) that dynamically orders the camera and bounding
box inspection sequence to avoid identification tasks for
query-irrelevant objects. We also distribute identification
tasks across multiple cameras, taking into account network
transmission and heterogeneous computing capacities on
the fly, to minimize end-to-end latency (§5).

We prototype Argus on two Nvidia Jetson de-
vices (AGX [8] and NX [9]) and evaluate its perfor-
mance with three real-world overlapping camera datasets
(CityFlowV2 [4], CAMPUS [21], and MMPTRACK [22]).
The results show that Argus reduces the number of iden-
tification model executions and the end-to-end latency by
up to 7.13× and 2.19× compared to the conventional per-
camera processing pipeline (4.85× and 1.60× compared
to the state-of-the-art spatio-temporal association), while
achieving comparable tracking quality.

We summarize the contribution of this paper as follows.

• We present Argus, a novel system for robust and low-
latency multi-camera video analytics with cross-camera
collaboration on distributed smart cameras.

• To enable efficient cross-camera collaboration, we develop
a novel fine-grained object-wise spatio-temporal associa-
tion which exploits FoV overlaps across cameras to opti-
mise redundancy in multi-camera, multi-target tracking.

• We introduce a distributed scheduling technique that
dynamically schedules the inspection sequence and dis-
tributes the processing workload across multiple smart
cameras. This approach optimizes end-to-end latency and
ensures efficient utilization of resources on each camera.

• Extensive evaluations over three overlapping camera
datasets show that Argus significantly reduces the num-
ber of identification model executions and end-to-end
latency by up to 7.13× and 2.19× (4.86× and 1.60× com-
pared to the state-of-the-art [1], [2], [3]) while achieving
comparable tracking quality to baselines.

2 BACKGROUND AND MOTIVATION

2.1 Multi-Camera, Multi-Target Tracking

In this work, we focus on multi-camera, multi-
tracking using deep learning-based object detection and re-
identification models. These models robustly track objects

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 2: Typical pipeline (example with vehicle) for multi-
camera, multi-target tracking without cross-camera collab-
oration. Each camera runs the detection and identification
independently and aggregates the output at the final stage.

TABLE 2: Identification latency on Jetson devices.
Vehicle (ResNet-101) [26] Person (ResNet-50) [27]

Batch size 1 2 4 1 2 4
NX 0.119s 0.206s 0.399s 0.043s 0.045s 0.066s
AGX 0.065s 0.121s 0.217s 0.018s 0.020s 0.028s

across multiple views even in complex scenarios, by lever-
aging the discriminative power of deep neural networks.
They also handle occlusions, changes in appearance, and
other challenges that are difficult to address with geometry-
based methods. To this end, they often learn from large-
scale datasets, enabling them to generalize to a wide range
of scenarios and adapt to changes in the environment.

Operational flow. The key to enabling video analytics on
overlapping cameras is multi-camera, multi-target tracking:
detecting and tracking target objects (given as query images)
from video streams captured by multiple cameras. This
is typically achieved in three stages, as shown in Fig. 2.
(i) The object detection stage detects the bounding boxes of
objects in one frame on each camera using object detectors
(e.g., YOLO [23]) or background subtraction techniques [24],
[25]. (ii) The per-camera object identification stage extracts the
appearance features of the detected objects by running the
object identification (ID) model (e.g., [26]) and determines
whether it matches the query image based on feature sim-
ilarity (e.g., L2 distance, cosine similarity). (iii) The result
aggregation stage aggregates the identification results across
multiple cameras and generates tracklets [14] that can be
used for further processing for application logic, e.g., object
counting, license plate extraction and face recognition.

Compute bottleneck: per-object identification. The main
compute bottleneck is the execution of identification tasks,
which need to be performed for all detected objects in
every frame across multiple cameras to determine identity
of objects, as shown in Fig. 2. Although we envision smart
cameras equipped with built-in AI accelerators, they are not
yet capable of processing a number of identification tasks in
real time. Table 2 shows the latency of two identification
models (ResNet-101-based vehicle identification [26] and
ResNet-50-based person identification [27]) with different
batch sizes over two Nvidia Jetson devices. It shows that
the number of identification model executions to run on

Fig. 3: CityFlowV2’s
camera topology.

Fig. 4: The same vehicle captured
from multiple views.

Fig. 5: Identification sav-
ing opportunity for differ-
ent overlapping ratios in in
CityFlowV2.

Fig. 6: Number of cam-
eras after filtering by Spat-
ula [2] in CityFlowV2 (5
cameras).

one camera is quite limited. For example, if 4 vehicles are
detected on every frame on average, even the powerful
Jetson AGX platform can only process about 4 frames per
second. The throughput would drop even further if object
detection is included (we show the detailed results in §6).

2.2 Exploring Optimisation Opportunities
Redundant identification of the same objects. To explore
the opportunities for optimizing the pipeline for multi-
camera, multi-target tracking, we investigate the pattern of
identification tasks with the CityFlowV2 dataset [4]; five
cameras are installed at an intersection as shown in Fig. 3.
Fig. 5 shows the redundancy probability, i.e., the probability
of objects appearing simultaneously in multiple cameras for
different overlap ratios; the overlap ratio is defined as the
ratio of the time the object appears simultaneously in both
cameras and the total time it is detected in any camera; for
a target appearing in n cameras, we calculate all pairwise
overlap ratios (nC2 camera pairs) and take the average. Each
point represents a different query. The results show that,
as the overlap ratio increases, the probability of an object’s
appearance in multiple cameras also becomes higher. This
means that a dense array of cameras with overlapping FoVs
will have more redundant identification tasks for the same
object across multiple cameras.

Spatio-temporal association. To avoid unnecessary and re-
dundant identification tasks, we adopt spatio-temporal asso-
ciation of objects, which have been proposed in the auto-
calibration techniques [28], [29] for multi-view tracking sys-
tems. Spatial-temporal association refers to the geographical
and temporal association of an object to different cameras.
More specifically, we associate the identity of an object
across multiple cameras by matching their correlated po-
sitions on the frame, rather than matching appearance fea-
tures extracted from the identification model, as shown in
Fig. 2. This intuition arises from the observation that, once

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

4

Fig. 7: Spatial association (green
lines).

Fig. 8: Temporal associa-
tion (yellow lines).

installed in a place, cameras’ FoVs are fixed over time. We
explain spatial association with an example. If the bounding
box of two objects (at different times) is located at the same
position in one camera’s FoV, the position of their bounding
boxes in other cameras will also remain the same.1 Fig. 7
shows the spatial association obtained from the CityFlowV2
dataset [4]. Each row shows a list of images captured by
three cameras (Camera 1, 2, 3) installed as in Fig. 3 at
the same time. Each column shows the images taken by
the same camera. The red and blue overlay boxes in each
row represent the bounding box of a red vehicle and a
blue vehicle, respectively. Although two vehicles crossed
the intersection at different times, when two vehicles are
located at a similar location on Camera 1, we can observe
that the corresponding bounding boxes remain in a similar
position on the other cameras. Similarly, as shown in Fig. 8,
we expect the temporal association of an object: an object in a
video stream remains in proximity within successive frames.

2.3 Limitations of Prior Works

Auto-calibration using spatio/temporal association. Auto-
calibration, also known as self-calibration, has been pro-
posed as a solution to enable multi-view tracking systems
from 1990s. This technique aims to automatically estimate
the camera parameters, such as intrinsic and extrinsic pa-
rameters for object tracking in multiple camera views,
without the need for manual intervention or specialized
calibration objects [28]. Auto-calibration methods leverage
the spatio-temporal correlation of objects in multiple views
as described in §2.2, taking advantage of the geometric
constraints imposed by the scene and the motion of objects
or the camera itself [30]. By harnessing these constraints,
auto-calibration techniques can iteratively refine the camera
parameters, leading to improved tracking accuracy and
robustness [31]. Several auto-calibration methods have been
proposed in the literature, including the self-calibration of
space and time technique [29], which exploits the correlation
between space and time in the image sequence to estimate
the camera parameters. Other approaches [32], [33] utilize

1. Of course, this argument is not always right in theory. Since a
camera projects 3D space onto the 2D plane, the same bounding box
of one camera at different times does not guarantee the same position
of an object. The simplest case would be when two objects of different
sizes are located in the same direction from the camera but a smaller
object is located closer to the camera. However, in practice, such cases
are very rare because the camera is often installed to look at a 2D plane
(e.g., street and floor) obliquely to cover a wide area and objects of
interest (e.g., vehicles and people) cannot be located at arbitrary 3D
positions, as shown in Fig. 7. Also, even when such a case happens (e.g.,
two objects at different positions are captured in the same bounding
box in Camera 1), the spatial association of two objects is not made
because the position and size of the bounding boxes in other cameras
(e.g., Camera 2 and 3) will be different.

(a) Camera #1 (RoI: 6 grids). (b) Camera #2 (RoI: 1 grid).
Fig. 9: Overlapping RoI example between 2 cameras. Cross-
RoI [3] favours Camera #2 which has the smaller RoI size.

the epipolar geometry and geometric constraints to estimate
the camera parameters. Additionally, the establishment of a
common coordinate frame across multiple views has been
proposed to improve tracking performance [34]. However,
these techniques face several limitations, especially when
compared to modern approaches that utilize deep learning-
based object detection and identification models. Auto-
calibration methods are typically based on geometric con-
straints, which can be sensitive to errors in feature detec-
tion and correspondence matching, leading to inaccurate
camera parameter estimation. Also, these methods rely on
the assumption of a static scene, which may not hold true
in dynamic environments where objects and people are
constantly moving and changing [29].

Camera-wise filtering in non-overlapping cameras. Spat-
ula [2] leverages cross-camera correlation to identify a sub-
set of cameras likely to contain the target objects and filter
out unnecessary cameras (that do not contain the target ob-
jects). While it shows a significant performance benefit in its
target environment (widely deployed non-overlapping cam-
eras), it fails to effectively reduce redundant identification
operations in overlapping cameras. To quantify its benefit, we
analyzed the CityFlowV2 dataset [4]. Fig. 6 shows the aver-
age number of cameras out of five cameras, used by Spatula;
the error bar indicates the minimum/maximum number of
cameras. The results show that the benefit of Spatula-based
camera-wise filtering quickly diminishes when more queries
are used, i.e., fewer cameras are filtered out. This is because
a higher number of objects are likely to be captured by a
higher number of cameras, simultaneously.

Camera-wise filtering in overlapping cameras. REV [1]
leverages spatial correlation across multiple overlapping
cameras to minimize the number of processed cameras in
identifying the target object. However, its goal is to confirm
the presence of the target object within a given timestamp. As
such, it cannot be applied for Argus, which not only aims to
confirm the presence of a target object but also extract the image
crops of the target from all cameras that capture it. Specifically,
REV employs an incremental approach, starting its search
from the camera that detects the most number of objects2

and stops the search once the target is identified. Thus, it
often misses the target image crops in remaining cameras,
which may have been captured in superior quality.

RoI-wise filtering in overlapping cameras. CrossRoI [3]
leverages spatio-temporal correlation to optimize the region
of interest (RoI) of multiple video streams from overlapping

2. The underlying rationale is that cameras with more bounding
boxes are more likely to capture the target object.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

5

cameras. When multiple objects are captured by a set of
cameras from different views, CrossRoI extracts the smallest
possible total RoI across all cameras in which all target
objects appear at least once, and then reduces processing
and transmission costs by filtering out unmasked RoI areas,
i.e., (a) redundant appearances and (b) areas that do not
contain the target objects; RoI is defined as a 6-by-4 grid.
While it effectively reduces the workload to be processed, it
is not suitable for multi-camera, multi-task tracking. Since it
aims to minimize the RoI size that covers the overlapping
FoVs, the smaller RoI that contains the object is preferred
(e.g., 1 grid in Camera 2 instead of 6 grids in Camera 1
in Fig. 9). This would lead to considerable degradation of
the accuracy. Furthermore, since it filters out redundant
appearance in the initial stage, analytics applications cannot
benefit from a holistic view, as shown in Fig. 4.

3 ARGUS DESIGN

3.1 Design Goals
Low-latency and high accuracy. We aim at achieving both
low latency and high accuracy in running multi-camera,
multi-target tracking across overlapping cameras, which is
the key requirement of various video analytics apps.

On-device processing on distributed smart cameras:
Streaming videos to a cloud server for processing incurs
significant networking and computing costs as well as pri-
vacy issues. We aim to run the video analytics pipeline
with cross-camera collaboration fully on distributed smart
cameras leveraging on-device resources.

Flexibility of tracking pipeline. We treat the AI models
as a black box, thereby supporting both open-source and
proprietary models and allowing analytics app developers
to select the models for the purpose flexibly.

3.2 Approach
Multi-camera object-wise spatio-temporal association.
Our preliminary study reveals that the computational bot-
tleneck for multi-camera, multi-target tracking in overlap-
ping cameras is the redundant identification of the same
object (§2.1). To achieve both resource-efficient and accurate
tracking, we devise a method for object-wise association-aware
identification. As shown in Fig. 7 and Fig. 8, Argus asso-
ciates the spatio-temporal correlation of objects’ positions
and identifies redundant identification tasks. It reduces on-
camera computational costs by filtering out redundant iden-
tification tasks for the same object across multiple cameras
(spatially) and over time (temporally).

On-camera distributed processing. To enable on-camera
processing, we further devise two optimization techniques.
First, we optimize on-camera workload by minimizing the
number of model executions (both object detection and
identification). By inspecting cameras and objects (bound-
ing boxes) in order of probability of containing the target
object, Argus avoids model executions that are irrelevant
to the target objects; note that the tracking operation is
finished when all target objects are found. Second, we
further optimize end-to-end latency with parallel execution
on distributed cameras. More specifically, Argus distributes

Fig. 10: Argus system architecture.

the identification workload across multiple cameras on the
fly and executes it in parallel.

3.3 System Architecture

Fig. 10 shows the system architecture of Argus. It takes the
query images as input from analytics apps and provides the
tracklets (list of cropped images and bounding boxes of the
detected objects) tracked from multiple cameras as output.
Given the targets to track, Argus first starts by running the
object detector to detect objects for identification on each
frame in parallel. Afterwards, the head camera runs the Dy-
namic Inspector (§5.1) to determine the processing order of
cameras and bounding boxes. Once the order is determined,
the member cameras run the Spatio-temporal Associator
(§4.1 and §4.2) opportunistically skips the inference by lever-
aging the spatio-temporal correlations across cameras. For
the remaining unassociated bounding boxes, Multi-Camera
Workload Distributor (§5) schedules the identification tasks
across cameras considering the network transmission la-
tency and heterogeneous compute capabilities.

3.4 Problem Formulation and Operational Flow

Formulation. We formalize our problem setting as follows:
• C : a set of cameras, where Ci is ith camera,
• Ft: a set of image frames at time t, where F i

t is an image
frame from Ci at time t.

• EQ: a set of id feature embedding of query images, where
Ej is the feature embedding of jth query

• bboxi
t,j : bounding boxes of the detected on Ci at time t.

Ci has ni
t objects detected at time t (j = 1, 2, ..., ni

t).
Formally, the goal of multi-camera spatio-temporal as-

sociation is to minimize the total number of identification
operations across all cameras,

min
∑
i

ni
IDs, (1)

where ni
IDs is number of identification operations on Ci.

Operational flow. Fig. 11 shows the operational flow of
Argus’s spatio-temporal association-enabled multi-camera
multi-object tracking. For simplicity, we first explain the
procedure for a single query.
1) Object detection: For each frame t, all cameras run object

detection in parallel. We denote the output of the i-th

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 11: Operational flow of our multi-camera spatio-
temporal association. (*): operations are performed on a
subset of cameras and RoIs.

camera Ci as {bboxi
t,j}, where bboxi

t,j is the bounding
box coordinate for the j-th detected object with the same
class label (e.g., car, person) as the query.

2) Multi-camera dynamic inspection (§5.1). After detec-
tion, we decide the camera and bounding box inspection
order to maximize the efficiency and accuracy of spatio-
temporal association. Our key insight is that prioritizing
the inspection of the camera and bounding box that is
most likely to capture the target at a highest quality max-
imizes the ID inference skipping and assures the highest
association accuracy. Once the order is determined, we
repeat the below steps for each camera.

3) Spatial association (§4.1). For each camera, we first skip
ID inferences on bounding boxes that are spatially asso-
ciated with previous cameras’ tracking results in frame
t. This is done by leveraging a mapping table, where
each entry in a mapping table is a list of bounding
boxes across cameras that were identified as the same
object at the same timestamp. Fig. 12 shows an example.
Assume we detected two bounding boxes in Cameras
1,2 at frame t: bbox1

t and bbox2
t , and there is a mapping

entry created from the past frame t′: {bbox1
t′ , bbox

2
t′}. If

the bounding box area overlaps for both pairs (bbox1
t′ ,

bbox1
t) and (bbox2

t′ , bbox
2
t) are over a threshold, we can

determine that bbox1
t and bbox2

t correspond to the same
object. Thus, it suffices to only run the ID inference on
bbox1

t , and reuse the result for bbox2
t and skip inference.

4) Temporal association (§4.2). We further skip ID infer-
ences on bounding boxes that are temporally associated
with the same camera’s tracking results in frame t − 1.
This is done by leveraging the temporal locality of ob-
jects; we match bounding boxes in frame t with the ones
in frame t−1, and reuse the ID results if a match is found.

5) ID feature extraction with distributed processing (§5.2).
Based on the bounding box inspection order, we execute
the identification model and obtain the ID features for
each cropped image, {Ei

t,j}, where Ei
t,j is the ID ap-

pearance feature from the cropped image from bounding
box bboxi

t,j . The identification inference workload is run
in parallel over distributed cameras considering their
processing powers and network bandwidths.

Fig. 12: Example operation of spatial association.

6) Identity matching. We determine existence of query by
computing the similarities of the extracted ID features
and the query image’s ID feature, EQ. The identity
matching results (bounding box coordinates and match-
ing identity) are sent to the next camera so as to be
utilized for spatial association (step 3).

7) Aggregation. Steps 3–7 repeats until all cameras are
processed. When all cameras finish processing, the head
camera aggregates the results, updates the mapping table
and synchronises it with the member camera, and start
from step 1 again for the next frame.
When multiple queries are given, the outputs from object

detection (step 1) and ID feature extractions (step 6) are
shared. Specific implementation details (e.g., bounding box
and identity matching) are detailed in §4.3.

4 SPATIO-TEMPORAL ASSOCIATION

In this section, we describe the key ideas of our object-
level spatio-temporal association (§4.1 and §4.2), and how
the specific association techniques are implemented (§4.3).

4.1 Spatial Association
We first explain how we define a object-wise spatial asso-
ciation across multiple cameras. Once an object with the
same identity is captured by multiple cameras, we create
a mapping entry that contains a timestamp and a list of
the corresponding bounding boxes on each camera in C .
We use bounding boxes as location identifiers for fine-
grained matching of the spatial association. Formally, we
define a mapping entry as entryj = {entry bboxi

j}, where
entry bboxi

j is a pair of coordinates referring to the south-
western and northeastern corner of the box in Ci at the jth
mapping entry. entry bboxi

j is set to N/A if the object is not
found in the corresponding camera, Ci.
Utilizing the spatial association. In subsequent time in-
tervals, we apply the identification model to the detected
objects in a single camera (refer to §5.1 for determining
the order of camera inspection). Upon identifying an object,
we search for a mapping entry matching a bounding box
of the identified object in the same camera. If such an
entry is found, we examine the detected bounding boxes
on the remaining cameras whose entry value is not N/A. If a
bounding box in the remaining camera matches the located
entry, we associate (i.e., reuse) the identification result from

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

7

the first camera, avoiding the need to rerun the identifi-
cation model. Note that searching for a matching entry in
the mapping table involves calculating the bounding box
overlap, which is an extremely lightweight operation (e.g.,
takes <1 ms for 1,000 matches) as detailed in §4.3.
Management of the spatial association. We use bounding
boxes as location identifiers for fine-grained matching of the
spatial association. To facilitate quick access, we maintain
the entries as a hash table. Also, if the number of entries
exceeds a threshold (e.g., 100), Argus filters out duplicate or
closely located entries by running non-maximum suppres-
sion on the bounding boxes of the entries. Specifically, when
two entries have bounding boxes from the same cameras
with significant overlap, we retain only the entry that has
(i) a higher number of non-N/A values and (ii) a higher
average identity matching score; implementation details are
provided in §4.3. These mapping entries can be obtained
during the offline phase with pre-recorded video clips or
updated during the online phase with runtime results.

4.2 Temporal Association

We leverage temporal association to further reduce the num-
ber of identification operations. It is inspired by the observa-
tion proposed in simple online tracking methods [35], [36],
that the location of an object does not change significantly
within a short period of time. That is, the bounding box of
an object in a video stream would remain in proximity to
the bounding box with the same identity in the previous
frame. For example, even in the vehicle tracking scenario in
CityFlowV2 [4], the distance of a vehicle moving at a speed
of 60 km/h in successive frames of a video stream at 10 Hz
is about 1.7 metres, which is relatively small compared to
the size of the area that a security camera usually covers.

When ID feature extraction is performed, Argus caches
the ID features with their bounding box. Then, when the ID
feature is needed for a new bounding box in a later frame,
Argus finds the matching bounding box in the cache; we ex-
plain the implementation details of bounding box matching
in §4.3. When the matching bounding box is found, Argus
reuses its ID feature and updates the bounding box in the
cache. We set the expiry time to one frame, i.e., the cache
expires in the next frame unless it is updated.

4.3 Implementation of Association Techniques

RoI extraction. There are several options for the RoI ex-
traction stage that can be adopted in Argus (e.g., back-
ground subtraction [24], [25] or object detection mod-
els [23]). Although the background subtraction method is
more lightweight, we use the object detection method be-
cause the object detection method can effectively reduce
the number of ROIs to be examined by matching the cor-
responding labels with the object class of the query (e.g.,
vehicles or people). In this paper, we use the YOLOv5n
model, the lightest model in the YOLOv5 family [23] as
it provides reasonable detection accuracy even for small
cropped images in 1080p streams of our datasets. Note
that app developers can flexibly use different RoI detection
methods depending on the processing capacity of smart
cameras and the service requirements.

Fig. 13: Handling newly appearing objects on frame edges.

Identity matching. For identification, it is common to train
the object type-specific identification models (e.g., vehicle
and person) and establish correspondences by measuring
the similarity between the feature vectors of the (cropped)
images (e.g., Euclidean distance or cosine similarity). We
use the dataset-specific identification models and similarity
functions to ensure the accuracy of tracking (details in §6.1).

Bounding box matching. The key to leveraging the spa-
tio/temporal association is to match the bounding box of
a detected object with the other bounding boxes in the
mapping entry and in the previous frame. We use the
intersection-over-union (IoU) to measure the overlap be-
tween two bounding boxes and detect a match if the IoU
value exceeds 0.5 (widely used threshold for object track-
ing [37]). Note that IoU calculation overhead is negligible
(e.g., takes <1 ms for 1,000 matchings on Jetson AGX board).

5 SYSTEM OPTIMIZATION FOR ON-CAMERA DIS-
TRIBUTED PROCESSING

In this section, we describe system optimization tech-
niques to improve the resource efficiency (namely Multi-
Camera Dynamic Inspection (§5.1) and Multi-Camera Par-
allel Processing (§5.2)) and robustness (§5.3) of our spatio-
temporal association over distributed cameras.

5.1 Multi-Camera Dynamic Inspection

5.1.1 Inter-Camera Dynamic Inspection
After all cameras run object detection in parallel, we first
decide the camera processing order, which heavily affects
the identification efficiency (i.e., the total number of re-
quired identifications). Specifically, we find that searching
the cameras which most likely contain the target object
first improves the search efficiency. This is because we can
leverage the bounding box location of the identified target
object to aggressively skip identification on non-matching
bounding boxes in the remaining cameras. For example,
consider a case with three cameras (Cameras 1, 2, and 3). At
a given timestamp, assume that all cameras detect the same
number of vehicles, e.g., four, and a target object is captured
by Cameras 1 and 2. If Camera 1 is inspected first, we can
find the query object within four identification and skip the
identification operations for Cameras 2 and 3. However, if
the inspection starts with Camera 3, we need to perform
further inspections with Camera 1 and 2 just in case the
target object is located out of Camera 3’s FoV. Hence, eight
identifications are required.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

8

In addition to identification efficiency, the inspection
order of the cameras also affects the identification accuracy
because our approach relies on identification-based target
matching from the first camera. Specifically, inspecting the
camera where the target identification accuracy is expected
to be the highest leads to the highest association accuracy in
the remaining cameras. While the identification accuracy is
affected by multiple attributes of the captured object (e.g.,
the detected object’s size, pose, blur), we currently use the
bounding box size as the primary indicator, as it affects
the identification accuracy significantly [38]. We plan to
extend the analysis to other attributes in our future work.
For example, in the case of Fig. 7, we consider Camera 2
as the first camera to be inspected as the size of the box of
the detected target object is the largest, i.e., has the highest
probability that it is correctly identified.

Realizing our insights, however, is non-trivial, as we
do not know whether the target exists or not in a camera
(and its size if it exists) prior to ID inference. We leverage
the temporal correlation of videos to estimate the target’s
existence and size. Specifically, we calculate each camera’s
priority at frame t from the identification results at frame
t− 1 as follows (higher value indicates higher priority),

α×
N i

t−1

NQ
+ (1− α)×

Ni
t−1∑
j

size(bboxi
t−1,j)

H ·W
, (2)

where N i
t−1 is the number of target objects found in Ci at

time t− 1, and NQ is the number of queries; the higher the
ratio is at frame t−1, the higher the chances that Ci contains
the most number of targets at time t. size() is a function
that returns the size (number of pixels) of the bounding
box bboxi

t−1,j , H and W are the input height and width
size of the ID model, respectively; similarly, higher ratio
indicates that Ci captures the targets at the largest size. α is
a variable that determines the weight of resource efficiency
and identification accuracy (set as 0.5 in our evaluation).

5.1.2 Intra-Camera Bounding Box Dynamic Inspection

After spatio-temporal association, we determine in which
order we run the ID inference on the non-associated bound-
ing boxes. Specifically, inspecting the detected bounding
boxes close to the expected location of the target object is
more beneficial, as we can skip the identification on the
remaining boxes as soon as the target object is identified.
Thus, we order the sequence of boxes to be examined by
leveraging temporal association, i.e., sorting

∑
j

min dist(bboxi
t,j , B

i
t−1) (3)

for each bounding box bboxi
t,j in Ci at time t in ascending

order, where Bi
t−1 is a set of bounding boxes of the target

objects detected in Ci at time t−1 and min dist(bbox,B) is
a function that returns the minimum distance from bbox to
any bounding box in B. Note that this only affects the order
of the boxes to be examined, but not the tracking result.

5.2 Multi-Camera Distributed Processing

The key challenge of running spatio/temporal association
on distributed cameras is the long execution time. The end-
to-end execution time may increase if the target objects are
not found in the previously inspected cameras due to the
sequential execution of the inspection operations. We apply
the following techniques that exploit the resources of the
distributed cameras to prevent this.
1) Given an image, we perform spatial association-

irrelevant tasks on the cameras in parallel, i.e., object
detection and ID feature extraction of newly appeared
objects at the edges of the frame.

2) If the number of objects in a frame exceeds the pre-
defined batch size (e.g., 4), we distribute the identifica-
tion tasks to nearby cameras and execute them in parallel.
Such distribution has a beneficial effect on the end-to-end
execution time because 1) current AI accelerators do not
support parallel execution of AI models [5]3 and 2) the
network latency is relatively much shorter since we need
to send only the cropped image (e.g., 85×141), not the
full-frame image (e.g., 1080p).
Formally, we define this problem as follows. Given the

inspection order determined in §5.1, suppose that we are
currently processing Camera i, where a total of N bounding
boxes need ID inference after spatio-temporal association.
We distribute the ID tasks across K cameras to minimize
the total execution time as:

min
n1,n2,...,nK

max
j

(
TD(Ci, Cj , nj) +BP (Cj , nj)

)
,

where
∑
i

nj = N.
(4)

where nj is the number of bounding boxes to distribute to
Camera j (Cj) to extract the ID features, TD(Ci, Cj , nj)
is a function that returns the network transmission delay
to distribute nj cropped images from Ci to Cj (note that
TD(Ci, Ci, ni) is zero as no transmission is required), and
BP (Cj , nj) is the batched processing latency the identifica-
tion model on Cj . TD(Ci, Cj , nj) and BP (Cj , nj) vary for
each Cj depending on its processing capability and network
bandwidth; we predict TD(Ci, Cj , nj) and BP (Cj , nj) as
follows. First, transmission delay for the workload distribu-
tion TD(Ci, Cj , nj) is calculated as

TD(Ci, Cj , nj) = H ·W · nj/BW j
i , (5)

where H,W is the height and width of the image crop
(resized to the input size of the identification model) and
BW j

i is the network bandwidth between Ci and Cj (BW i
i

is set as ∞). For each network transmission event between
Ci and Cj , we estimate BW j

i by the transmitted data
size divided by the transmission latency (similar to [39]),
and update it with Exponential Weighted Moving Aver-
age (EWMA) filtering for future prediction. In our current

3. Please note that, while Nvidia offers multi-process service (MPS)
and multi-instance GPU (MIG) software packages to facilitate model
co-running on their GPUS on cloud servers, they are not supported in
the Jetson family devices [8], [9] designed for edge AI. The other AI
accelerators such as Google Coral TPU and Intel NCS 2 also do not
support parallel execution on the accelerator chip.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

9

implementation, the cameras are connected with a Gigabit
wired connection similar to [40], and the distribution latency
is negligible compared to the identification model inference
latency (e.g., ≈0.3 ms to transmit a 128×128 cropped image
over 1 Gbps connection, whereas single identification takes
>100 ms as shown in Table 2).

Next, identification latency with batched processing
BP (Ci, ni) is calculated as

BP (Ci, ni) = ⌈ni/ni
batch⌉ × T (Ci, ni

batch), (6)

where ni
batch is the batch size on Ci, and T (Ci, ni

batch) is the
identification model latency on Ci with batch size ni

batch.
ni
batch is determined at the offline stage by running the

identification model on each Ci with different batch sizes
and determining the one that maximizes the throughput. At
runtime, we update T (Ci, ni

batch) upon each inference using
the EWMA to account for dynamic resource fluctuation
(e.g., due to thermal throttling) similar to [41].

5.3 Improving Robustness

Handling newly appearing objects. One practical issue that
needs to be considered when applying spatial association
is how to deal with objects that appear in the FoV for the
first time. Fig. 13 shows an example. At time t (first row),
a target vehicle is found only in Cameras 1 and 3, so the
mapping entry is made as {bbox1

t,j , N/A, bbox3
t,j′}. At time

t + 1 (second row), the target starts to appear in Camera 2.
However, if the target is found in Camera 1 and its mapping
entry matches the one at time t, the target in Camera 2 will
not be inspected. To avoid such a case, we skip mapping-
based identity matching for objects that appear in the frame
for the first time (i.e., we perform an identification task for
a vehicle in the blue box in Camera 2 of the second row
in Fig. 13) and match its identity based on identification
feature matching. Note that we apply for the mapping-
based identity matching for other cameras (e.g., Camera 3).

To effectively identify objects when they first appear,
we devise a simple and effective heuristic method. Inspired
by the observation that an object appears in the camera’s
frame by moving from out-of-FoV to FoV, we consider the
bounding boxes that are newly located at the edge of the
frame as potential candidates, and perform the ID feature
extraction regardless of the matching mapping entry if no
corresponding identification cache is found.

Handling occlusion. Depending on a camera’s FoV, a target
object might be obscured by another moving object. For
instance, in a camera with a FoV perpendicular to the road,
a vehicle in the front lane could occlude a vehicle in the
rear lane. Under such circumstances, the detection model
might fail to identify the target object. To handle errors
resulting from sudden, short-term occlusions, we develop
an interpolation technique that leverages the detection re-
sults from the preceding frame in the same camera and/or
time-synchronised frames from other cameras. Specifically,
during a sudden, short-term occlusion, the target object
might be visible up to a certain point in the frame, then
abruptly disappear mid-frame. If the object remains visible
in other cameras, we can estimate the existence of the oc-
cluded object by comparing the current mapping entry with

Fig. 14: Snapshots of CAMPUS-Garden1 [21] dataset.

past mapping entries. For example, if an object suddenly
disappears in Camera 1, Argus searches for a prior mapping
entry containing the object located in the previous frame of
Camera 1 and extracts the position of the object in other
cameras. If corresponding bounding boxes are found in all
other cameras, Argus performs object detection and identi-
fication on the other cameras. Where occlusion persists for
an extended period, we employ periodic cache refreshing
(details provided subsequently). It is important to note that
such occlusions are rare in practical settings, as objects move
at varying speeds and cameras are often installed to monitor
the target scene from a high vantage point (e.g., mounted on
a traffic light as shown in Fig. 13).

Periodic cache refreshing. To avoid error propagation in
our association-based identification (due to occlusion as
well as the failure of identification model inference), we
limit the maximum number of consecutive skips and per-
form identification task regardless of a matching mapping
entry at the predefined interval (e.g., every 2s). This variable
controls the trade-off between efficiency and accuracy.

Time synchronisation. For spatial association, it is impor-
tant for all video streams to be time synchronised. Argus
periodically synchronises the camera clock times using the
network time protocol (NTP) and aligns frames based on
their timestamps, i.e., two frames are considered time-
synchronised if the difference is below the threshold (in
the current implementation we set it to 3 ms).4 Leveraging
the synchronized clocks, we match frames across different
cameras with the smallest timestamp difference to handle
cases where the cameras have different frame rates.

6 EVALUATION

6.1 Experimental Setup
Datasets. We use three real-world overlapping camera
datasets for the evaluation: CityFlowV2 [4], CAMPUS [21],
and MMMPTRACK [22]. When spatial association is used,
we use the pre-generated mapping entries learned with 10%
of the data in the dataset. Unless stated otherwise, we report
performance on CityFlowV2.
• CityFlowV2 [4] consists of video streams from five het-

erogeneous overlapping cameras at a road intersection.
The cameras are located to cover the intersection from
different sides of the road (Fig. 3). 4 videos are recorded
at 1080p@10fps and 1 video is recorded at 720p@10fps
with a fisheye lens. Each video stream is ≈3 minutes long
and the ground truth data contains 95 unique vehicles.

• CAMPUS [21] consists of overlapping video streams
recorded in four different scenes. We use the Garden1
scene, which consists of 4× 1080@30fps videos capturing

4. While we currently assume wired gigabit connection across cam-
eras, recent solutions (e.g., libsoftwaresync [42]) enable sub-ms-level
precise clock synchronisation even over wireless networks (§8.1).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

10

(a) Resource cost. (b) Tracking quality.

Fig. 15: Overall performance on CityFlowV2.

(a) Resource cost. (b) Tracking quality.

Fig. 16: Overall performance on CAMPUS.

a garden and its perimeter (Fig. 14). We resized the images
to 720p as they show comparable object detection perfor-
mance to the original 1080p at a lower cost. Each video is
≈100s and the ground truth contains 16 unique individ-
uals. Since the dataset provides inaccurate ground truth
labels and bounding boxes, we manually regenerated the
ground truth for three targets (id 0, 2, 9).

• MMPTRACK [22] is composed of overlapping video
streams recorded from 5 different scenes: cafe shop, in-
dustry safety, office, lobby, and retail. In total, there are 23
scene samples (3-8 samples per scene), and each sample
is composed of 4-6 overlapping video streams capturing
6-8 people. Each video stream is 360p@15fps and ≈400
seconds (in total 133k frames = 8,800 seconds). We use
this dataset to evaluate the robustness of Argus in §6.7.

Queries. For queries, we randomly chose ten vehicles for
CityFlowV2, three people for CAMPUS, and two people
for MMPTRACK. In the in-depth analysis, we also examine
performance with different numbers of queries.

Object detection and identification models. For object
detection, we use YOLO-v5 [23]. For vehicle identification
in CityFlowV2, we use the ResNet-101-based model [26]
trained on the CityFlowV2-ReID dataset [4]. For person
identification in CAMPUS and MMPTRACK, we trained
the ResNet-50-based model using the dataset. Note that
the performance of the re-id model is not the focus of this
work and different models can be used. All models are
implemented in PyTorch 1.7.1.

Metrics. To measure system resource costs, we evaluate
the end-to-end latency and the number of identification
model inferences. To measure tracking quality, we use two
metrics that are widely used in multi-object tracking [43]:
Multiple Object Tracking Precision (MOTP) and Multiple
Object Tracking Accuracy (MOTA).
• End-to-end latency is the total latency for generating

multi-camera, multi-target tracking results. Note that the
latency includes all the operations required for the sys-
tem, i.e., image acquisition, model inference, uploading
the cropped images to other cameras, and cross-camera
communication time.

• Number of IDs is the total number of identification model
inferences required across all cameras for each timestamp.

• MOTP quantifies how precisely the tracker estimates
object positions. It is defined as

∑
t,i dt,i∑

t ct
, where ct is the

number of matches in frame t and dt.i is the overlap of
the bounding box (IoU) of target i with the ground truth.
For each frame, we compute the MOTP for each camera
separately and report its average.

• MOTA measures the overall accuracy of both the detector
and the tracker. We define it as 1 −

∑
t(FNt+FPt+MMt)∑

t Tt
,

where t is the frame index and Tt is the number of
target objects in frame t. FN, FP, and MM represent false-
negative, false-positive and miss-match errors, respec-
tively. Similarly, we calculate the average MOTA across
multiple cameras and report their average.

Baselines. We evaluate Argus against the following state-of-
the-art methods. The baselines perform all model operations
on the camera where the corresponding frame is captured.
• Conv-Track is the conventional pipeline of multi-camera,

multi-target tracking (e.g., [14]), which identifies the query
object on each camera separately and aggregates the iden-
tification results across multiple cameras (Fig. 2).

• Spatula-Track adopts the camera-wise filtering approach
proposed in Spatula [2] for object tracking. For each times-
tamp, it first filters out the cameras that do not contain the
target objects and then performs the Conv-Track pipeline
for the selected cameras. We use ground truth labels for
correlation learning and camera filtering, assuming the
ideal operation of Spatula [2].

• CrossRoI-Track adopts the RoI-wise filtering approach
proposed in CrossRoI [3] for tracking. Offline, it learns
the minimum-sized RoI that contains all objects at least
once over deployed cameras. At runtime, it performs the
Conv-Track pipeline only for the masked RoI areas. We
use the ground truth labels for the optimal training of the
RoI mask, assuming the ideal operation of CrossRoI [3].

Hardware. We use two platforms for smart cameras: Nvidia
Jetson AGX and NX. Jetson AGX hosts an 8-core Nvidia
Carmel Arm, a 512-core Nvidia VoltaTM GPU with 64
Tensor Cores and 32 GB of memory. Jetson NX hosts a 6-core
Nvidia Carmel Arm, a Volta GPU with 384 NVIDIA CUDA
cores and 48 Tensors, and 8 GB of memory. We used Jetson
AGX for the CityFlowV2 dataset and the MMMPTRACK
dataset, and Jetson NX for the CAMPUS dataset. We con-
nected the Jetson devices with a Gigabit wired connection,
which is commonly used for existing CCTV networks.

6.2 Overall Performance

Fig. 15 and Fig. 16 show overall performance on
CityFlowV2 and CAMPUS respectively. In Fig. 15a and
Fig. 16a, the bar chart represents the average end-to-end
latency (Detect: object detection latency, ID: identification
latency) and the line chart shows the average number of IDs.
In Fig. 15b and Fig. 16b, the bar and line charts represent the
average MOTA and MOTP respectively.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

11

6.2.1 Resource Efficiency

Overall, Argus achieves significant resource savings by
adopting the spatio-temporal association and workload dis-
tribution, while not compromising the tracking quality. We
first examine the resource saving of Argus. In CityFlowV2
with five cameras are involved, Fig. 15a shows that the
average number of IDs decreases from 42.6 (Conv-Track
) to 21.1 (Spatula-Track), 30.1 (CrossRoI-Track) and 11.6
(Argus). The end-to-end latency also decreases from 740
ms to 650 ms, 660 ms and 410 ms, respectively; Argus
is 1.8×, 1.59× and 1.61× faster than Conv-Track, Spatula-
Track and CrossRoI-Track, respectively, which are the state-
of-the-art multi-camera tracking solutions. We find several
interesting observations. First, the latency does not decrease
proportionally to the number of IDs because all baselines
need to commonly perform object detection in every frame.
However, even when object detection is taken into account,
Argus significantly decreases the end-to-end latency by
49% by reducing the number of IDs by 73%, compared to
Conv-Track. Second, both Spatula-Track and CrossRoI-track
significantly reduce the number of IDs by selectively using
cameras and RoI areas, respectively. However, the reduction
in end-to-end latency is not significant (about 10%). This is
because the latency is tied to the longest execution time of all
cameras due to the lack of distributed processing capability.

Fig. 16a compares the resource costs for the CAM-
PUS dataset. The results show a similar pattern to the
CityFlowV2 dataset, but the saving ratio of Argus is much
higher. Argus reduces the average number of IDs by 7.13×
(35.8 to 5.0) compared to Conv-Track and Spatula-Track and
4.86× (24.4 to 5.0) compared to CrossRoI-Track. The end-
to-end latency also decreases by 1.72× (from 310 ms to
180 ms) and 1.43× (from 258 ms to 180 ms), respectively.
The larger saving is mainly because the moving speed of
the target objects (here, people in the CAMPUS dataset)
is relatively slow, compared to vehicles in the CityFlowV2
dataset. Therefore, there are fewer newly appearing objects
(at the edge) and most of the identification tasks can be done
by spatial and temporal association matching. Interestingly,
Spatula-Track shows the same performance as Conv-Track,
which is different from the CityFlowV2 case. This is because
all target people are captured by all four cameras all the
time and thus cameras are not filtered out. CrossRoI-Track
reduces both latency and the number of IDs compared to
Conv-Track, but its efficiency is still lower than Argus; for
CrossRoI-Track, the number of IDs and latency are 24.9 and
419 ms, respectively.

6.2.2 Tracking Quality

We next investigate how spatial and temporal association
affects tracking quality. Fig. 15b and Fig. 16b show the
MOTP and MOTA on CityFlowV2 and CAMPUS, respec-
tively. Overall, Argus achieves comparable tracking qual-
ity, even with significant resource savings. Interestingly,
in CityFlowV2, Argus increases both MOTA and MOTP
compared to Conv-Track; MOTA increases from 0.88 to 0.91
and MOTP increases from 0.60 to 0.67. This is because
several small cropped vehicles are identified by associating
with their position from other cameras, which failed to be
identified by matching their appearance features from the

(a) Resource cost. (b) Tracking quality.

Fig. 17: Performance breakdown on CityFlowV2.

identification model in the baselines. In CAMPUS, Argus
shows almost the same tracking quality as Conv-Track,
but MOTA drops slightly from 0.85 (Conv-Track) to 0.82.
There were some cases where a target person was suddenly
occluded by another person in some cameras. However,
Argus identifies the occluded person in the next frame using
the robustness techniques (§5.3) to minimize the error.

We investigate the benefit of cross-camera collaboration
in more detail. In CAMPUS, Spatula also increases the
tracking accuracy (MOTA) compared to Conv-Track by fil-
tering out query-irrelevant cameras, thereby avoiding false-
positive identifications. However, in CAMPUS, its quality
is identical to Conv-Track as no cameras are filtered out.
Unlike Spatula-Track, CrossRoI degrades the tracking qual-
ity on both MOTA and MOTP; for example, in CAMPUS,
CrossRoI shows 0.55 of MOTA, while other baselines includ-
ing Argus show 0.85 of MOTA. This is because, for object
detection and identification, CrossRoI uses the smallest RoI
across all cameras in which the target objects appear at least
once. Therefore, these tasks sometimes fail due to the small
size of the objects in the generated RoI areas.

6.3 Performance Breakdown
Next, we conduct performance breakdown of Argus to
analyze the benefits of Spatio-Temporal association and
on-camera distributed processing. For this, we developed
two variants of Argus, namely Argus-Spatial and Argus-Spa-
Temp. They utilize spatial and spatio-temporal association
for identification optimization on Conv-Track, respectively.
They also utilize dynamic inspection of cameras and bound-
ing boxes (§5.1). Argus-Spatial, Argus-Spa-Temp, and Argus
sequentially demonstrate the effects of spatial association,
temporal association, and multi-camera parallel processing,
in comparison with the preceding variant.

Fig. 17a shows the resource cost in CityFlowV2. The
spatial association reduces the number of IDs from 40.5
(Conv-Track) to 16.5 (Argus-Spatial, denoted as Spatial) and
the temporal association further decreases to 11.6 (Argus-
Spa-Temp, denoted as Spa-Temp). These results show that
our spatial and temporal association techniques make a
significant contribution to overall resource savings. Interest-
ingly, despite the reduction in the number of IDs by Spatial,
the latency increases from 854 ms (Conv-Track) to 992 ms
(Argus-Spatial) due to the sequential operations on the
cameras. However, we observe that the temporal association
and workload distribution successfully reduce the latency in
turn, to 624 ms and 317 ms, respectively. Fig. 17b shows the
tracking quality of CityFlowV2. It confirms again that both
spatial and temporal associations do not compromise the
tracking quality. We observe similar trends for CAMPUS.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

12

(a) MOTP. (b) MOTA.

Fig. 18: Impact of the number of queries.

(a) Number of IDs. (b) End-to-end latency.

Fig. 19: Impact of the number of queries.

6.4 Impact of Number of Queries
We investigate the impact of the number of queries on
system performance. For CityFlowV2, we vary the num-
ber of queries from 5 to 95 with an interval of 5. For
each number of queries, we randomly select three sets
of queries (except the entire set) and report their average
performance. Fig. 18a and Fig. 18b show MOTP and MOTA
for CityFlowV2, respectively; we observe a similar trend
in CAMPUS. For Conv-Track, both the MOTP and MOTA
are not significantly affected by the number of queries.
This is because Conv-Track runs the identification model
on all the detected objects across all cameras regardless of
the number of queries; the identification matching accuracy
with the query images does not vary with the number of
queries as they are randomly selected and averaged. Argus
also shows comparable accuracy with Conv-Track (with
significantly reduced number of ID operations as shown in
Fig. 19, showing that it effectively reduces the identification
workload without accuracy drop. Even with a large number
of matching attempts with other cameras and queries, Argus
identifies the objects accurately.

Fig. 19 shows how the number of IDs and the end-to-end
latency change depending on the number of queries. The
number of IDs and the latency in Conv-Track do not change
because all objects in the frame must be examined regardless
of the number of queries. In contrast to Conv-Track, Fig. 19a
shows that the number of IDs in Argus increases with the
number of queries. This is because, at each time, if all
target objects are not found on the previously inspected
cameras, Argus has to perform the identification opera-
tion for all detected objects (which are not filtered out of
the spatio/temporal association). This probability increases
when the number of queries is large, thereby increasing the
number of IDs. However, it saturates when the number of
queries is around 50 and, more importantly, it is still much
lower than Conv-Track.

Fig. 19 also shows an interesting result. While the num-

(a) CityFlowV2. (b) CAMPUS.

Fig. 20: Impact of number of cameras on number of IDs.

(a) CityFlowV2. (b) CAMPUS.

Fig. 21: Impact of the number of cameras on latency;
purple line is the execution time of the object detection.

ber of IDs of Argus increases by 29% from 10.6 to 13.7
when the number of queries is 5 and 95, respectively, in
Fig. 19a, the increase in latency is much lower in Fig. 19b,
i.e., by 8% from 399 ms to 433 ms. If we exclude the latency
for object detection for the analysis, the execution time for
identification increases by only 10%, from 315 ms to 349 ms.
This result shows the benefit of the Argus’s distribution of
the identification operations to other cameras.

6.5 Impact of Number of Cameras

We examine the impact of the number of cameras on re-
source saving. We consider all possible combinations and
report their average performance; for example, in the case
of three cameras in the CityFlowV2, we report the average
result for all 10 (=5C3) combinations. In this subsection, we
do not report the tracking quality results because it is not
fair to compare tracking quality for different number and
topology of cameras.

Fig. 20 shows the total number of IDs for Conv-Track
and Argus. As expected, the number of IDs required for
both Conv-Track and Argus increases when more cameras
are used. As shown in Fig. 20a, in Conv-Track the number
of IDs increases from 8.2 (1 camera) to 42.5 (5 cameras) in
CityFlowV2, i.e., by 418%. Similarly, in Argus, it increases
from 2.2 to 11.6, i.e., by 423%. Fig. 20b also shows that in
CAMPUS, the total number of IDs increases by 316%, from
8.6 (1 camera) to 35.8 (4 cameras) in Conv-Track, while in
Argus, it increases from 1.6 to 5.0, i.e., by 213%. However,
interestingly, Argus shows a much lower standard deviation
across different combinations. This is because the number of
IDs in Conv-Track is proportional to the number of objects
in a frame. In contrast, the number of IDs in Argus is

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

13

(a) CityFlowV2. (b) CAMPUS.

Fig. 22: Impact of inspection order.

determined by the spatial association of the target objects,
and is therefore more dependent on the number of queries.

We further investigate the impact of the number of
cameras on end-to-end latency. Fig. 21a and 21b show the
latency in the CityFlowV2 and CAMPUS datasets, respec-
tively. While Conv-Track performs the identification oper-
ations on each camera individually, the latency increases
as the number of cameras increases. This is because Conv-
Track’s latency is tied to the maximum latency across all
cameras. Argus also increases latency for both CityFlowV2
and CAMPUS when more cameras are involved, as the
waiting time for the entry matching of previously inspected
cameras also increases. Nevertheless, the latency of Argus
in both Fig 21a and Fig. 21b is still much lower than
that of Conv-Track. We observe an interesting case in the
CityFlowV2 dataset. The latency of Argus decreases from
587 ms to 400 ms when the number of cameras increases
from 4 to 5, even though the number of IDs increases
from 8.6 to 11.6. We conjecture that more cameras provide
more opportunities for the parallel processing of IDs across
cameras, and the benefit becomes apparent when all five
cameras are involved.

6.6 Impact of Inspection Order
We investigate the impact of the inspection order on system
performance. For the study, we developed three variants of
Argus, namely Static, Reverse, and Crowded-first. All of them
are built upon the original Argus system. The Static and
Reverse variants inspect the cameras and bounding boxes in
a predefined static order and in the reverse order of Argus,
respectively; Reverse is used to establish the performance
lower bound and validate our design choice. The Crowded-
first variant, inspired by REV [1], inspects the cameras
in a descending order based on the number of bounding
boxes. The underlying rationale is that cameras with more
bounding boxes are more likely to capture objects of interest.
For the bounding box inspection order, we employed the
same order as used in Static.

Fig. 22a and Fig. 22b show the latency and the total
number of IDs in CityFlowV2 and CAMPUS, respectively.
We omit the result of MOTP and MOTA as the differences
were marginal. The results validate our design choice. In
both datasets, Argus shows shorter latency and fewer iden-
tification operations. As expected, Static and Crowded-first
show better performance than Reverse, though their effect
is still lower than Argus. This is primarily due to a lack
of considerations for the relevance of target objects in a
scene. This advantage is more evident in CAMPUS. The

TABLE 3: Performance of Argus in the real-world case study.

Resource Efficiency Tracking Quality
Latency Number of IDs MOTP MOTA

Parking lot 0.21s 3.2 0.71 0.95

number of IDs of Reverse is 11.6, while Argus’s number
is 5.0. Similarly, the latency decreases from 245 ms to 186
ms. This is mainly because the target people mostly remain
in one of the cameras during the video stream. Therefore,
Argus is capable of reducing the number of IDs by initiating
the inspection with potential target objects.

6.7 Robustness on Large Scale Benchmark

We perform large-scale evaluation on the MMPTRACK
dataset to validate the robustness of Argus. Fig. 23 compares
the resource cost and tracking quality results of Conv-
Track and Argus; we omit the results of Spatula-Track and
CrossRoI-Track as we observe the similar performance trend
in the previous experiments in Fig. 15 and Fig. 16. First,
Fig. 23a shows that Argus achieves 2.19× latency gain,
which mainly comes from reducing the number of IDs from
28.47 (4-8 objects×4-6 cameras) to 5.79. Next, Fig. 23b shows
the tracking quality of Conv-Track and Argus. The base
accuracy of Conv-Track varies across scenes depending on
ground truth labeling granularity and detector performance
(e.g., retail scenes contain a lot of occlusions resulting in
detection failure, whereas the ground truth label is provided
for all objects regardless of occlusion). Argus consistently
shows marginal accuracy drop compared to Conv-Track,
showing the robustness of our spatio-temporal association.

6.8 Real-world Case Study & System Overhead

To investigate the performance of Argus in practical deploy-
ment scenario, we installed four cameras and four Jetson
AGX boards within a parking lot of the institute under the
consent, employing them to record videos at a resolution
of 1080p with a frame rate of 10 frames per second. The
parking lot selected for this study spans an approximate
area of 50 metres by 25 metres. To ensure a comprehensive
coverage, the cameras were positioned at the corners of the
parking lot at a height of 3 metres; the corresponding AGX
board is connected to the camera via the Ethernet cable and
put on the ground. Fig. 24 shows the snapshots of four
cameras. Each video stream has an approximate duration
of an hour and contains 60 vehicles in total.

Table 3 shows the Argus’s overall performance in the
real-world case study. When contrasting the results obtained
from CityFlowV2, it is interesting to note that the parking
lot exhibited marginally superior performance in the aspects
both of resource efficiency and tracking quality; we did not
compare with the CAMPUS dataset due to the discrepancy
in target objects and their respective characteristics. For in-
stance, the average number of identification tasks within the
parking lot is 3.2, while the CityFlowV2 dataset showed a
higher figure of 10.7. This difference is interesting, especially
given that the average number of vehicles captured per
video frame in the parking lot exceeded the count of vehicles
in the CityFlowV2 dataset. We conjecture this is primarily

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

14

(a) Resource cost. (b) Tracking quality.

Fig. 23: Overall performance on MMPTRACK.

Fig. 24: Snapshots of real-world case study.

TABLE 4: Component-wise microbenchmark.

Device Detection (YOLOv5n [23]) Identification (batch size 4)
1920× 1080 1280× 720 ResNet 101 [26] ResNet 50 [27]

NX 0.359s 0.073s 0.399s 0.063s
AGX 0.084s 0.038s 0.217s 0.027s

due to the largely stationary nature of vehicles in the park-
ing lot, allowing the benefit of our spatio-temporal associa-
tion to be maximized. Similarly, the tracking quality in the
parking lot is higher than that in the CityFlowV2 dataset.
The MOTP values in the parking lot and the CityFlowV2
dataset were 0.71 and 0.63, respectively. We attribute this to
the relatively shorter distance between the camera and the
vehicles in the parking lot, enabling the capture of vehicles
at a larger scale.

We also delve deeper into the system overhead of Argus
with this deployment setup. Aside from object detection
and identification, the principal operations of the Argus en-
compass two elements: (1) mapping-entry matching and (2)
workload distribution decision-making. However, accord-
ing to our measurements derived from the real-world case
study, the overhead associated with both these operations
is negligible, quantified as less than a few milliseconds.
This minimal overhead can be attributed to our efficient
management of mapping entries via a hash table for the
first operation. Additionally, for the second operation, the
system only needs to consider a relatively small number
of cases—typically fewer than five identification opera-
tions—when making distribution decisions. This stream-
lined approach contributes to the overall efficiency and
effectiveness of the Argus system.

6.9 Microbenchmark

We perform a micro-benchmark to better understand
the resource characteristics of model inference on smart
cameras. Table 4 shows the inference latencies on Jetson
NX and AGX. While the processing capability of smart
cameras is still limited compared to the cloud environment,
performance can be optimized by applying the right config-
urations depending on the requirement, e.g., 720p images

with people tracking on Jetson NX. We also showed that
Argus can further optimize the latency (and corresponding
throughput) by leveraging the spatio-temporal association.

7 RELATED WORK

7.1 Cross-Camera Collaboration

7.1.1 Multi-view Tracking using Camera Geometry

Camera geometry, also referred to as the geometry of
multiple views, has been studied for multiple decades to
enable accurate tracking of objects from different camera
views. It deals with the mathematical relationships between
3D world points and their 2D projections onto the image
plane [28]. By understanding these relationships, the 3D
structure of a scene, object, or person has been able to be
recovered from multiple 2D views, which enables the track-
ing of objects even when they move out of one camera’s FoV
and into another [44]. Camera geometry has been applied in
various fields, such as robotics, computer vision, and motion
capture, where the use of multiple synchronized cameras
with overlapping FoVs can improve the tracking accuracy
and robustness of the system [45].

The foundation of multi-view tracking is the estimation
of the fundamental matrix, which encodes the geometric
relationship between the views of two cameras [28]. This
matrix can be used to compute the epipolar geometry, which
describes the relationship between corresponding points in
the two images and can be utili‘ed to find the corresponding
point in the other view when a point is detected in one
view [44]. By using the fundamental matrix, triangulation
techniques can be employed to estimate the 3D position of
the tracked object in the scene [28]. Also, bundle adjustment,
a non-linear optimisation technique, has been used to refine
camera parameters and 3D structure of the scene, leading to
a more accurate estimation of the object’s position [46].

Despite the advantages of camera geometry in enabling
tracking from multi-camera views, there are several lim-
itations in its deployment. One major challenge is the
sensitivity to camera calibration errors, which can lead to
inaccurate 3D reconstruction and subsequently impact the
tracking performance [28]. The calibration process requires
the precise estimation of intrinsic camera parameters, such
as focal length and lens distortion, and extrinsic parameters,
like camera pose and orientation, which can be difficult to
obtain in practical applications [44].

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

15

7.1.2 Systems for Cross-Camera Collaboration

Enriched video analytics. One direction for cross-camera
collaboration is to provide enriched and combined video
analytics from different angles and areas of multiple cam-
eras [47], [48], [49]. Caesar [47] detects cross-camera complex
activities by designing an abstraction for these activities
and combining DNN-based activity detection from non-
overlapping cameras. Li et al. [48] performs active object
tracking by exploiting the intrinsic relationship between
camera positions. Visage [49] enables 3D image analytics
from multiple video streams from drones. Our work can
serve as an underlying on-camera framework for these
works, providing multi-camera, multi-task tracking as a
primitive task on distributed smart cameras.

Resource efficiency. Another direction for cross-camera col-
laboration is to reduce the computational and communica-
tion costs of multiple video streams by exploiting their spa-
tial and temporal correlation [2], [3], [20], [50]. Spatula [2],
[20] aims at a cross-camera collaboration system that targets
wide-area camera networks with non-overlapping cameras
and limits the amount of video data and corresponding
communication to be analysed by identifying only those
cameras and frames that are likely to contain the target ob-
jects. REV [1] also aims at reducing the number of cameras
processed by incrementally searching the cameras within
the overlapping group and opportunistically skipping pro-
cessing the rest as soon as the target has been detected.
CrossRoI [3] and Polly [51] leverages spatial correlation to
extract the minimum-sized RoI from overlapping cameras
and reduces processing and transmission costs by filtering
out unmasked RoIs. All such works share the same high-
level goal as Argus in that they leverage spatio-temporal
correlation from multiple cameras, but Argus differs in
several aspects, as shown in Table 1.

Distributed processing. There have been several attempts
to distribute video analytics workloads from large-scale
video data to distributed cameras [40], [52]. VideoEdge [52]
optimises the trade-off between resources and accuracy by
partitioning the analytics pipeline into hierarchical clusters
(cameras, private clusters, public clouds). Distream [40]
adaptively balances workloads across smart cameras. Al-
though this work provided a foundation for the devel-
opment of distributed video analytics systems, it mainly
focused on the video analytics pipeline with one camera
as a main workload. In this work, we identify that multi-
camera, multi-target tracking is a primary underlying task
for overlapping camera environments, and propose an on-
camera distributed processing strategy tailed to it.

7.2 Resource-Efficient Video Analytics Systems
On-device processing. Many video analytics systems have
been proposed to efficiently process a large volume of video
data on low-end cameras, e.g., by adopting on-camera frame
filtering [53], [54], [55], pipeline adaptation [38], [56], edge-
cloud collaborative inference [39], [57], [58], [59], [60] RoI ex-
traction [61], [62], [63], [64], [65]. On-camera frame filtering
techniques filter out the computationally intensive execu-
tion of vision models in the early stages, e.g., by dynamically
adapting filtering decisions [54] and leveraging cheap CNN

classifiers [53]. EagleEye [38] selectively uses different face
detection and recognition models depending on the quality
of face images. MARLIN [56] selectively performs AI model
inference for energy-efficient object tracking.

Computation offloading. Several attempts have been made
to dynamically adjust video bitrate to optimise the net-
work bandwidth consumption to enable low-latency of-
floading [64], [66], [67], optimise the video streaming proto-
col [65], and design DNN-aware video compression meth-
ods [68], [69]. The other direction for efficient processing is
DNN inference scheduling from multiple video streams on
the GPU cluster [17], [18], [70], DNN merging for memory
optimisation [71], privacy-aware video analytics [72], [73],
and resource-efficient continual learning [74], [75]. While
these works manage to achieve remarkable performance
improvement, their attempts usually focus on a single cam-
era (or its server). In contrast to these works, we target an
environment where multiple cameras are installed in close
proximity, and focus on optimising cross-camera operations
by leveraging the spatio/temporal association of objects.

8 DISCUSSION

8.1 Practicality

Assumption on on-device processing power. We assume
smart cameras with on-device processing power equivalent
to Jetson NX–AGX (Table 4) for real-time latency (e.g., 100-
200 ms), albeit the performance gain is consistent even
for cameras with weaker processing power. We believe
that this assumption is practical, considering the recent
trend in the increased popularity of on-camera AI process-
ing [40], [76], [77], [78] over cloud-based solutions due to
reduced operational costs (e.g., 100K inferences of ResNet-
18 costs 0.82 USD on Amazon EC2; six-month deployment
of over 1,000 cameras [77] producing 3M hours of 30fps
videos incur 3.83M USD, let alone the network streaming
and storage costs) and enhanced privacy. This is further
enabled by two recent technology trends. First, low-cost,
low-power and programmable on-board AI accelerators are
becoming available [5], such as Nvidia Jetson, Google TPU
and Analog MAX78000. Second, lightweight and accurate
embedded-ML models are emerging [12], [13]. With such
trends, commercial smart cameras support high-throughput
AI inference; for example, Google Nestcam IQ is embedded
with Qualcomm QCS605 SoC with Qualcomm Hexagon 685
DSP, which supports MobileNet-v2 inference at only 5-6 ms
latency [79]. Thus, Argus’s distributed and parallel process-
ing can be practically deployed in real-world scenarios.

Maintaining precise clock synchronisation. We currently
assume gigabit wired connection across cameras (§6.1),
which is already commonly used for existing CCTV net-
works (e.g., at an intersection [4] and a campus [21]).
However, recent solutions also support robust and accu-
rate clock synchronisation of distributed cameras even over
wireless networks (e.g., libsoftwaresync [42] supports <1 ms
synchronisation for multi-camera motion capture). Argus
can utilize such solutions in various real-world deployment
scenarios for precise clock synchronisation.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

16

8.2 Generality
Impact of latency gain on app performance. Argus’s end-
to-end latency gain (≈1.6× over state-of-the-art baselines)
offer significant impact in the application perspective. For
example, consider a scenario where a police officer is track-
ing a crime suspect in an urban city, and his AR glasses
receive the tracking results from nearby CCTVs and display
the bounding box on screen. To ensure that the displayed
bounding box does not become stale and outdated from
the moving suspect’s current position (also referred to as
the streaming accuracy [80]), the tracking latency should be
kept below 200 ms [80], [81]. Argus reduces the latency from
258 ms (CrossROI [3]) to 180 ms for CAMPUS dataset (urban
city scene), thus satisfying the latency requirement.

Generality to other multi-camera tasks. Various multi-
camera downstream tasks and apps (e.g., action recogni-
tion and surveillance [47], [82], depth estimation and 3D
reconstruction [83], [84]) generally operate by (i) associating
the same objects across multiple cameras, and (ii) fusing
the extracted information (e.g., image crops or features)
of the same object across from multiple viewpoints to
achieve higher analysis accuracy (e.g., action recognition)
or higher-level representations (3D meshes). Thus, multi-
camera, multi-object tracking serves as a foundational task
for various multi-camera systems; Argus can be generally
applied to their object tracking stages to improve latency.
For example, 3D motion capture and point cloud reconstruc-
tion of a multi-person scene from multi-view RGBD cam-
eras [83], [84] first requires tracking each person’s trajectory
in each camera and mapping the ones with the same iden-
tity. Similarly, multi-camera surveillance pipeline composed
of person detection, identification, and action recognition
can benefit from Argus to skip redundant inferences.

8.3 Limitations and Future Works

Improving fault tolerance. Argus currently assumes a star
topology for cross-camera collaboration, where the most
powerful camera becomes the head in a group to schedule
camera processing order (§5.1), aggregate tracking results,
and deliver them to the user. While the coordination over-
head is marginal, such architecture is vulnerable to single
point of failure when the head camera failure occurs (e.g.,
due to network disconnection or battery outage). We plan
to incorporate diverse fault tolerance mechanisms (e.g.,
primary-backup [85] or state machine replication [86]) for
practical service deployment. Similarly, we plan to improve
robustness of our distributed parallel inference technique
(§5.2) under sudden network bandwidth drops (e.g., upon
encountering unexpected delay in receiving results of the
ID inference scheduled to other cameras according to Equa-
tion (4), run the missing ID inference in local).

Improving mapping entry representation. For spatio-
temporal association, our mapping entry table uses an axis-
aligned bounding box representation, which is a common
output of conventional object detectors (e.g., YOLOv5).
However, we observed occasional failure cases: when the
object is not axis-aligned in the frame, the object detector
returns an axis-aligned bounding box with large shape
mismatch (e.g., overly large one that covers all the object, or

overly small one that only covers part of it). We plan to im-
prove our association mechanism by incorporating more en-
hanced representations (e.g., oriented bounding boxes [87]
or segmentation masks [88]) and matching algorithms.

Extension to camera quality assessment and adaptation.
Camera configurations (e.g., resolution, frame rate, cam-
era location and height, pan-tilt-zoom (PTZ), AI model)
also affect the performance of Argus. While we veri-
fied the effectiveness of Argus across three real-world
datasets (§6.1) with various configurations including cam-
era types (normal/fisheye lens), capturing heights (street
lamp/handheld/ceiling), resolutions (360p/720p/1080p),
and frame rates (10/15/30 fps), we can leverage existing
systems for adaptive camera quality assessment and config-
uration (e.g., camera placement simulator [89], runtime PTZ
adapter [90], AI inference accuracy profiler [18]) to further
improve performance.

9 CONCLUSION

We presented Argus, a first-kind-of distributed system for
robust and low-latency video analytics with cross-camera
collaboration on multiple cameras. We developed a novel
object-wise spatio-temporal association that optimises the
multi-camera, multi-target tracking by intelligently filtering
out unnecessary, redundant identification operations. We
also developed a distributed scheduling technique that dy-
namically orders the sequence of camera and bounding box
inspection and distributes the identification workload across
multiple cameras. Evaluation on three real-world overlap-
ping camera datasets shows that Argus reduces the number
of identification model executions and end-to-end latency
by up to 7.13× and 2.19× (4.86× and 1.60× compared to
the state-of-the-art baselines).

REFERENCES

[1] T. Xu, K. Shen, Y. Fu, H. Shi, and F. X. Lin, “Rev: A video engine
for object re-identification at the city scale,” in IEEE/ACM SEC,
2022.

[2] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video an-
alytics on large camera networks,” in 2020 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 2020, pp. 110–124.

[3] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi:
Cross-camera region of interest optimization for efficient real time
video analytics at scale,” arXiv preprint arXiv:2105.06524, 2021.

[4] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang,
X. Yang, Y. Yao, L. Zheng, P. Chakraborty, C. E. Lopez et al., “The
5th ai city challenge,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 4263–4273.

[5] M. Antonini, T. H. Vu, C. Min, A. Montanari, A. Mathur, and
F. Kawsar, “Resource characterisation of personal-scale sensing
models on edge accelerators,” in Proceedings of the First Interna-
tional Workshop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things, 2019, pp. 49–55.

[6] A. Moss, H. Lee, L. Xun, C. Min, F. Kawsar, and A. Montanari,
“Ultra-low power dnn accelerators for iot: Resource characteriza-
tion of the max78000,” in Proceedings of the 20th ACM Conference on
Embedded Networked Sensor Systems, 2022, pp. 934–940.

[7] T. Gong, S. Y. Jang, U. G. Acer, F. Kawsar, and C. Min, “Collabora-
tive inference via dynamic composition of tiny ai accelerators on
mcus,” arXiv preprint arXiv:2401.08637, 2023.

[8] “Nvidia jetson agx,” https://www.nvidia.com/en-
gb/autonomous-machines/embedded-systems/jetson-agx-
xavier/, accessed: 24 Jan. 2024.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

17

[9] “Nvidia jetson nx,” https://www.nvidia.com/en-
gb/autonomous-machines/embedded-systems/jetson-xavier-
nx/, accessed: 24 Jan. 2024.

[10] “Google coral,” https://coral.ai/, accessed: 24 Jan. 2024.
[11] “Analog max78000,” https://www.analog.com/en/products/max78000.html,

accessed: 24 Jan. 2024.
[12] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and

E. Choi, “Morphnet: Fast & simple resource-constrained structure
learning of deep networks,” in IEEEE CVPR, 2018.

[13] P. Guo, B. Hu, and W. Hu, “Mistify: Automating dnn model
porting for on-device inference at the edge,” in USENIX NSDI,
2021.

[14] C. Liu, Y. Zhang, H. Luo, J. Tang, W. Chen, X. Xu, F. Wang, H. Li,
and Y.-D. Shen, “City-scale multi-camera vehicle tracking guided
by crossroad zones,” in IEEE/CVF CVPR, 2021.

[15] K. Shim, S. Yoon, K. Ko, and C. Kim, “Multi-target multi-camera
vehicle tracking for city-scale traffic management,” in IEEE/CVF
CVPR, 2021.

[16] Y.-L. Li, Z.-Y. Chin, M.-C. Chang, and C.-K. Chiang, “Multi-camera
tracking by candidate intersection ratio tracklet matching,” in
IEEE/CVF CVPR, 2021.

[17] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Kr-
ishnamurthy, and R. Sundaram, “Nexus: a gpu cluster engine for
accelerating dnn-based video analysis,” in ACM SOSP, 2019.

[18] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in USENIX NSDI, 2017.

[19] C. Min, A. Mathur, U. G. Acer, A. Montanari, and
F. Kawsar, “Sensix++: Bringing mlops and multi-tenant
model serving to sensory edge devices,” ACM Trans. Embed.
Comput. Syst., vol. 22, no. 6, nov 2023. [Online]. Available:
https://doi.org/10.1145/3617507

[20] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez,
“Scaling video analytics systems to large camera deployments,” in
Proceedings of the 20th International Workshop on Mobile Computing
Systems and Applications, 2019, pp. 9–14.

[21] Y. Xu, X. Liu, Y. Liu, and S.-C. Zhu, “Multi-view people tracking
via hierarchical trajectory composition,” in IEEE CVPR, 2016.

[22] X. Han, Q. You, C. Wang, Z. Zhang, P. Chu, H. Hu, J. Wang, and
Z. Liu, “Mmptrack: Large-scale densely annotated multi-camera
multiple people tracking benchmark,” in IEEE/CVF WACV, 2023.

[23] “Yolo-v5,” ”https://pytorch.org/hub/ultralytics yolov5/”, 24
Jan. 2024.

[24] N. Friedman and S. Russell, “Image segmentation in video se-
quences: A probabilistic approach,” arXiv preprint arXiv:1302.1539,
2013.

[25] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density es-
timation per image pixel for the task of background subtraction,”
Pattern recognition letters, vol. 27, no. 7, pp. 773–780, 2006.

[26] H. Luo, W. Chen, X. Xu, J. Gu, Y. Zhang, C. Liu, Y. Jiang, S. He,
F. Wang, and H. Li, “An empirical study of vehicle re-identification
on the ai city challenge,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 4095–4102.

[27] Z. Zheng, X. Yang, Z. Yu, L. Zheng, Y. Yang, and J. Kautz,
“Joint discriminative and generative learning for person re-
identification,” in IEEE/CVF CVPR, 2019.

[28] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[29] G. P. Stein, “Tracking from multiple view points: Self-calibration
of space and time,” in IEEE CVPR, 1999.

[30] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-held camera,”
International Journal of Computer Vision, vol. 59, pp. 207–232, 2004.

[31] P. Sturm and B. Triggs, “A factorization based algorithm for multi-
image projective structure and motion,” in ECCV. Springer, 1996.

[32] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between
cameras,” in IEEE CVPR, 2004.

[33] J. Black, T. Ellis, and P. Rosin, “Multi view image surveillance
and tracking,” in Workshop on Motion and Video Computing, 2002.
Proceedings. IEEE, 2002, pp. 169–174.

[34] L. Lee, R. Romano, and G. Stein, “Monitoring activities from mul-
tiple video streams: Establishing a common coordinate frame,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 22,
no. 8, pp. 758–767, 2000.

[35] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on
image processing (ICIP). IEEE, 2016, pp. 3464–3468.

[36] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[37] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,”
International journal of computer vision, vol. 88, no. 2, pp. 303–338,
2010.

[38] J. Yi, S. Choi, and Y. Lee, “Eagleeye: Wearable camera-based
person identification in crowded urban spaces,” in ACM MobiCom,
2020.

[39] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “Spinn: synergistic progressive inference of neural networks
over device and cloud,” in ACM MobiCom, 2020.

[40] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelli-
gence,” in ACM SenSys, 2020.

[41] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun,
“Band: coordinated multi-dnn inference on heterogeneous mobile
processors,” in ACM MobiSys, 2022.

[42] S. Ansari, N. Wadhwa, R. Garg, and J. Chen, “Wireless software
synchronization of multiple distributed cameras,” ICCP, 2019.

[43] K. Bernardin, A. Elbs, and R. Stiefelhagen, “Multiple object track-
ing performance metrics and evaluation in a smart room environ-
ment,” in Sixth IEEE International Workshop on Visual Surveillance,
in conjunction with ECCV, vol. 90, no. 91. Citeseer, 2006.

[44] R. Szeliski, Computer vision: algorithms and applications. Springer
Nature, 2022.

[45] K. Kanatani, Geometric computation for machine vision. Oxford
University Press, Inc., 1993.

[46] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in Vision Algorithms:
Theory and Practice: International Workshop on Vision Algorithms
Corfu, Greece, September 21–22, 1999 Proceedings. Springer, 2000,
pp. 298–372.

[47] X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govin-
dan, “Caesar: cross-camera complex activity recognition,” in ACM
SenSys, 2019.

[48] J. Li, J. Xu, F. Zhong, X. Kong, Y. Qiao, and Y. Wang, “Pose-
assisted multi-camera collaboration for active object tracking,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 01, 2020, pp. 759–766.

[49] S. Jha, Y. Li, S. Noghabi, V. Ranganathan, P. Kumar, A. Nelson,
M. Toelle, S. Sinha, R. Chandra, and A. Badam, “Visage: Enabling
timely analytics for drone imagery,” in ACM Mobicom, 2021.

[50] S. Y. Jang, U. G. Acer, C. Min, and F. Kawsar, “Deploying collabo-
rative machine learning systems in edge with multiple cameras,”
in 2021 Thirteenth International Conference on Mobile Computing and
Ubiquitous Network (ICMU). IEEE, 2021, pp. 1–6.

[51] J. Li, L. Liu, H. Xu, S. Wu, and C. J. Xue, “Cross-camera inference
on the constrained edge,” in Proc. IEEE INFOCOM, 2023.

[52] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in IEEE/ACM SEC, 2018.

[53] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman,
P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus:
Querying large video datasets with low latency and low cost,”
in USENIX OSDI, 2018.

[54] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-
time video analytics,” in ACM SIGCOMM, 2020.

[55] M. Xu, T. Xu, Y. Liu, and F. X. Lin, “Video analytics with zero-
streaming cameras,” in USENIX ATC, 2021.

[56] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K.
Roy-Chowdhury, “Frugal following: Power thrifty object detection
and tracking for mobile augmented reality,” in ACM SenSys, 2019.

[57] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
edge-cloud video analytics for robotics applications,” IEEE Trans-
actions on Cloud Computing, 2022.

[58] M. Almeida, S. Laskaridis, S. I. Venieris, I. Leontiadis, and N. D.
Lane, “Dyno: Dynamic onloading of deep neural networks from
cloud to device,” ACM Transactions on Embedded Computing Sys-
tems, vol. 21, no. 6, pp. 1–24, 2022.

[59] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

18

[60] J. Yi, S. Kim, J. Kim, and S. Choi, “Supremo: Cloud-assisted low-
latency super-resolution in mobile devices,” IEEE Transactions on
Mobile Computing, 2020.

[61] W. Zhang, Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaud-
huri, and Y. Zhang, “Elf: accelerate high-resolution mobile deep
vision with content-aware parallel offloading,” in ACM MobiCom,
2021.

[62] S. Jiang, Z. Lin, Y. Li, Y. Shu, and Y. Liu, “Flexible high-resolution
object detection on edge devices with tunable latency,” in ACM
MobiCom, 2021.

[63] K. Yang, J. Yi, K. Lee, and Y. Lee, “Flexpatch: Fast and accurate ob-
ject detection for on-device high-resolution live video analytics,”
in IEEE INFOCOM, 2022.

[64] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in ACM MobiCom, 2019.

[65] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoff-
mann, and J. Jiang, “Server-driven video streaming for deep
learning inference,” in ACM SIGCOMM, 2020.

[66] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in ACM
SIGCOMM, 2018.

[67] R. Lu, C. Hu, D. Wang, and J. Zhang, “Gemini: a real-time
video analytics system with dual computing resource control,” in
IEEE/ACM SEC, 2022.

[68] X. Xie and K.-H. Kim, “Source compression with bounded dnn
perception loss for iot edge computer vision,” in ACM MobiCom,
2019.

[69] K. Du, Q. Zhang, A. Arapin, H. Wang, Z. Xia, and J. Jiang, “Ac-
cmpeg: Optimizing video encoding for accurate video analytics,”
Proceedings of Machine Learning and Systems, 2022.

[70] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in ACM
SIGCOMM, 2018.

[71] A. Padmanabhan, N. Agarwal, A. Iyer, G. Ananthanarayanan,
Y. Shu, N. Karianakis, G. H. Xu, and R. Netravali, “Gemel: Model
merging for memory-efficient, real-time video analytics at the
edge,” in USENIX NSDI, April 2023.

[72] F. Cangialosi, N. Agarwal, V. Arun, S. Narayana, A. Sarwate,
and R. Netravali, “Privid: Practical,{Privacy-Preserving} video
analytics queries,” in USENIX NSDI, 2022.

[73] R. Lu, S. Shi, D. Wang, C. Hu, and B. Zhang, “Preva: Protecting
inference privacy through policy-based video-frame transforma-
tion,” in IEEE/ACM SEC, 2022.

[74] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu,
N. Karianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous
learning of video analytics models on edge compute servers,” in
USENIX NSDI, 2022.

[75] K. Mehrdad, G. Ananthanarayanan, K. Hsieh, J. J. , R. N. , Y. Shu,
M. Alizadeh, and V. Bahl, “Recl: Responsive resource-efficient
continuous learning for video analytics,” in USENIX NSDI, 2023.

[76] M. Xu, Y. Liu, and X. Liu, “A case for camera-as-a-service,” IEEE
Pervasive Computing, vol. 20, no. 2, pp. 9–17, 2021.

[77] M. Xu, T. Xu, Y. Liu, and F. X. Lin, “Video analytics with zero-
streaming cameras,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21), 2021, pp. 459–472.

[78] J. Yi, C. Min, and F. Kawsar, “Vision paper: Towards software-
defined video analytics with cross-camera collaboration,” in
Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems, ser. SenSys ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 474–477. [Online]. Available:
https://doi.org/10.1145/3485730.3493453

[79] “Deep learning on mobile devices: An in-depth overview,”
https://data.vision.ee.ethz.ch/cvl/aim21/slides/Andrey-
Ignatov-AIMTalk-10-16-2021.pdf, accessed: 24 Jan. 2024.

[80] M. Li, Y.-X. Wang, and D. Ramanan, “Towards streaming percep-
tion,” in ECCV. Springer, 2020.

[81] D. Xu, A. Zhou, G. Wang, H. Zhang, X. Li, J. Pei, and H. Ma,
“Tutti: coupling 5g ran and mobile edge computing for latency-
critical video analytics,” in ACM MobiCom, 2022.

[82] W. Li, Y. Wong, A.-A. Liu, Y. Li, Y.-T. Su, and M. Kankanhalli,
“Multi-camera action dataset for cross-camera action recognition
benchmarking,” in IEEE WACV, 2017.

[83] K. Lee, J. Yi, and Y. Lee, “Farfetchfusion: Towards fully mobile live
3d telepresence platform,” in ACM MobiCom, 2023.

[84] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade,
S. Nobuhara, and Y. Sheikh, “Panoptic studio: A massively multi-
view system for social motion capture,” in IEEE ICCV, 2015.

[85] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual
machine replication,” in in USENIX NSDI, 2008.

[86] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 USENIX annual technical conference
(USENIX ATC 14), 2014, pp. 305–319.

[87] J. Yi, P. Wu, B. Liu, Q. Huang, H. Qu, and D. Metaxas, “Oriented
object detection in aerial images with box boundary-aware vec-
tors,” in IEEE/CVF WACV, 2021.

[88] “Instance segmentation and tracking using ultralytics yolov8,”
https://docs.ultralytics.com/guides/instance-segmentation-and-
tracking/, accessed: 24 Jan. 2024.

[89] “VideoCAD,” https://www.cctvcad.com/videocad help/. Ac-
cessed: 28th Jun. 2024.

[90] M. Wong, M. Ramanujam, G. Balakrishnan, and R. Netravali,
“MadEye: Boosting live video analytics accuracy with adaptive
camera configurations,” in USENIX NSDI, 2024.

Juheon Yi is a research scientist at Nokia Bell
Labs, Cambridge, UK. He received his Ph.D.
from the Department of Computer Science,
Seoul National University (SNU), Korea in 2024.
His research interests include edge AI and video
analytics systems. He won the Best PhD Disser-
tation Award at SNU and is also a recipient of the
Microsoft PhD Fellowship and Best Paper Award
at the Students in MobiSys 2021 Workshop.

Utku Günay Acer is a principal research scien-
tist with Nokia Bell Labs in Antwerp, Belgium.
He received his PhD degree from the Electrical,
Computer and Systems Engineering department
of Rensselaer Polytechnic Institute, Troy, NY. His
research interests lie broadly in pervasive sys-
tems and edge computing. His current work fo-
cuses on collaborative and distributed sensing
with on-device ML inference for next-generation
mobile, wearable, and embedded devices.

Fahim Kawsar currently leads Pervasive Sys-
tems Research with Nokia Bell Labs, Cam-
bridge. He holds a mobile systems professor-
ship in computing science from the University of
Glasgow. He studies the forms and intelligence
of emerging mobile, IoT, wearable devices.

Chulhong Min is a Principal Research Scientist
leading the Device Systems team at Nokia Bell
Labs in Cambridge, UK. His current research ex-
plores next-generation sensory systems to real-
ize multi-modal, multi-device, and multi-sensory
functionalities for collaborative and interactive
services. Broadly, his research interests include
mobile systems, edge computing, on-device AI,
and IoT. Chulhong received his PhD in Computer
Science from KAIST in 2016.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3459409

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nokia. Downloaded on September 23,2024 at 08:23:11 UTC from IEEE Xplore. Restrictions apply.

