
TinyMem: Boosting Multi-DNN Inference on Tiny AI Accelerators
with Weight Memory Virtualization

Changmin Jeon∗
Seoul National University
Seoul, Republic of Korea
wisechang1@snu.ac.kr

Taesik Gong∗
UNIST

Ulsan, Republic of Korea
taesik.gong@unist.ac.kr

Juheon Yi
Nokia Bell Labs

Cambridge, United Kingdom
juheon.yi@nokia-bell-labs.com

Fahim Kawsar
Nokia Bell Labs & University of

Glasgow
Cambridge, United Kingdom

fahim.kawsar@nokia-bell-labs.com

Chulhong Min
Nokia Bell Labs

Cambridge, United Kingdom
chulhong.min@nokia-bell-labs.com

Abstract

As wearable devices continue to integrate deeper into our everyday
lives, the importance of tiny AI accelerators in enabling efficient
multi-DNN inference becomes increasingly evident. However, we
identified a critical bottleneck in deploying multi-DNN models on
these accelerators: weight memory loading time. This challenge is
exacerbated by the unique characteristics of tiny AI accelerators, in-
cluding a 2-dimensional weight memory layout and heterogeneous
processors.

We propose TinyMem, a memory-efficient system designed to
optimize weight memory management and reduce latency in multi-
DNN inference to address these challenges. At the core of TinyMem
is the 2D Weight Memory Coordination, which strategically aligns
weights across accelerator cores, maximizing both weight reuse
and preloading to minimize end-to-end latency. TinyMem increases
total model throughput by 1.97-5.01× compared to state-of-the-
art tiny AI accelerator frameworks, significantly improving the
efficiency of multi-DNN inference in wearable devices.

CCS Concepts

• Computer systems organization → Embedded software;
• Computing methodologies→ Planning with abstraction and
generalization.

Keywords

Tiny AI Accelerator, Memory Management, Multi-DNN Inference

ACM Reference Format:

Changmin Jeon, Taesik Gong, Juheon Yi, Fahim Kawsar, and Chulhong Min.
2025. TinyMem: Boosting Multi-DNN Inference on Tiny AI Accelerators
with Weight Memory Virtualization. In The 26th International Workshop
on Mobile Computing Systems and Applications (HOTMOBILE ’25), February

∗This work was done while the authors were affiliated with Nokia Bell Labs.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
HOTMOBILE ’25, February 26–27, 2025, La Quinta, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1403-0/25/02
https://doi.org/10.1145/3708468.3711888

Figure 1: 2D weight memory layout in tiny AI accelerators.

Each layer occupies a rectangular region.

26–27, 2025, La Quinta, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3708468.3711888

1 Introduction

The advent of tiny AI accelerators (e.g., Analog MAX78000 [3],
Greenwaves GAP-9 [17]) has brought significant advancements
in enabling efficient deep neural network (DNN) execution on
resource-constrained microcontroller units (MCUs). They are de-
signed to offload computationally intensive tasks to dedicated hard-
ware, providing substantial acceleration for DNN inference while
maintaining low power consumption. Because of their small form
factor (e.g., MAX78000: 8mm×8mm), these tiny AI accelerators
are increasingly being integrated into wearable and IoT devices
to support various AI-driven applications [2, 13, 15]. We envision
that multi-DNN inference will be a key requirement to support con-
current app services (e.g., audio keyword spotting, PPG heart rate
detection, and IMU action recognition on a single earbud). For in-
stance, healthcare systems like the Galaxy Ring [14] simultaneously
monitor multiple vital signs, such as heart rate and blood oxygen
levels, by leveraging advanced DNN models, while sensor-based
IoT systems analyze contextual information and user behavior in
real-time to adapt dynamically to their environment [11].

Despite these benefits, tiny AI accelerators still face limitations
in efficiently supporting multi-DNN inference. The key challenge
is the unique hardware characteristics of tiny AI accelerators. For
acceleration, these accelerators often have dedicated memory and
accelerator cores for model inference. Each core is equipped with its
own dedicated weight memory space to ensure efficient parallel pro-
cessing and avoid memory contention. However, as these are mostly
designed for optimizing a single model, on-accelerator memory is
typically too small to hold multiple models simultaneously (e.g., 442
KB of weight RAM on the accelerator in MAX78000). Furthermore,

1

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3708468.3711888
https://doi.org/10.1145/3708468.3711888
https://doi.org/10.1145/3708468.3711888
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708468.3711888&domain=pdf&date_stamp=2025-02-26


HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA Jeon et al.

weights for each layer must maintain the same offset across all
cores, simplifying hardware design but imposing additional con-
straints on memory allocation. This constraint forces models to be
loaded and unloaded repeatedly when running multiple DNNs. This
repeated loading and unloading operation is costly due to high data
transfer overhead between the CPU’s RAM and the accelerator’s
weight memory, which significantly impacts end-to-end latency for
multi-DNN inference.

By investigating the operational characteristics of tiny AI accel-
erators, we found unexplored opportunities to boost multi-DNN
inference throughput by reducing the loading operations for model
weights: weight preservation and weight preloading. (a)Weight

preservation: Tiny AI accelerators often have multiple accelerator
cores to parallelize processing. To accelerate execution, memory on
these accelerators has a 2-dimensional layout (Figure 1) that assigns
dedicated weight memory to each accelerator core to minimize
memory management overhead (details in §2.3), thereby allowing
parallel access to memory in addition to parallel processing. While
this architecture is effective for accelerating a single DNN inference,
it also leaves a lot of unused space. In multi-DNN inference, this un-
used space allows other models to preserve their weights even when
not being processed, thereby avoiding the need to reload preserved
parts when switching between models. (b) Weight preloading:
Since AI accelerators have dedicated processors, the CPU becomes
idle while model inference is running on the accelerator cores. In
multi-DNN inference scenarios, the CPU can use this idle time
to preload the next model’s weights. However, due to interdepen-
dencies between models, it is almost infeasible for developers to
manually handle these operations and achieve optimal performance
without system-level optimization.

To address these challenges, we propose TinyMem, a system
designed to boost multi-DNN inference on tiny AI accelerators.
TinyMem virtualizes the weight memory within the accelerator,
optimizing the management of model weights to reduce latency.
When models are added to TinyMem, it dynamically analyzes the
layout of their weight memory and holistically orchestrates weight
preservation and preloading operations to minimize weight load-
ing cost. To further enhance performance, TinyMem incorporates
weight packing, which effectively packs model weights in a 2-
D layout. To make holistic decisions, TinyMem employs a joint
optimizer that considers the combined effects of these techniques.

We evaluated the effectiveness of TinyMem using the Analog
MAX78000 with five models. Our experimental results show that
TinyMem increases total model throughput by 1.97-5.01× compared
to state-of-the-art tinyAI accelerator frameworks.

2 Background and Motivation

2.1 TinyML and AI Accelerators

TinyML is a field focused on deploying AI models on resource-
limited MCUs to achieve power efficiency, low latency, and privacy.
Memory is the primary bottleneck, and much of the research cen-
ters on reducing model size through pruning, quantization, and
neural architecture search [10]. Specialized tiny AI accelerators,
such as AnalogMAX78000 [3], Greenwaves GAP-9 [17], and Google
Coral Micro, have been developed to improve efficiency by offload-
ing computation to dedicated hardware. For instance, MAX78000

ConvNet KwsNet SimpleNet
-10

SimpleNet
-100

TinySSD
0

20

40

La
te

nc
y 

(m
s)

Load Weight
Load Input

Inference
Process Output

Figure 2: DNN inference latency breakdown. The weight load-

ing time dominates the inference latency.

features a neural network accelerator with 64 parallel cores and
dedicated memory for weights and inputs. A recent benchmark [5]
showed that MAX78000 reduces inference latency for face detection
and keyword spotting by 54.3× and 61.5× compared to the STM32F7
with Cortex-M7 at 216 MHz [16]. This paper focuses on Analog
MAX78000 [3], one of the most widely used tiny AI accelerators in
research [5, 6, 12].

2.2 Limitations in Multi-DNN Inference

While tiny AI accelerators enable extremely efficient DNN exe-
cution, their support for multi-DNN inference is still limited due to
memory constraints. A few recent studies [4, 8, 9] designed solu-
tions for mobile devices and MCUs, focusing on reducing weight
loading overhead, but lack generality as they require model re-
training to share weight data values across multiple models. In
addition, they do not account for the unique characteristics of tiny
AI accelerators. To better understand this performance bottleneck,
we conducted an exploratory study. Figure 2 illustrates the end-to-
end latency breakdown for various models on MAX78000. "Load
weight" and "Load input" refer to loading model weights and input
data from SRAM to the AI accelerator’s memory. The results show
the significant acceleration of MAX78000 for a single DNN infer-
ence due to fast processing on input data loading, inference, and
output processing. Note that model weights need to be loaded only
once during the initial run.

However, the results also highlight inefficiencies in multi-DNN
execution on AI accelerators. Due to limited on-accelerator mem-
ory, only one model can be supported at a time, requiring frequent
loading and unloading of model weights. For instance, MAX78000’s
442 KB of weight RAM is significantly smaller than the 141 GB
on a Cloud GPU (NVIDIA H100) or the 8 GB on a Mobile GPU
(iPhone 15). When an application needs to continually run both
SimpleNet-100 and TinySSD sequentially, which cannot be loaded
simultaneously on MAX78000, their weights must be loaded and
unloaded repeatedly. As shown in Figure 2, the significant accelera-
tion of inference makes the memory operations for model weights
a critical bottleneck. For example, while separate inferences of
SimpleNet-100 and TinySSD achieve throughputs of 186 and 40 in-
ferences per second, respectively, running them sequentially in an
alternating manner reduces throughput to 13, which is significantly
lower than the average throughput.

2.3 Weight Memory of Tiny AI Accelerators

To explore optimization opportunities for multi-DNN inference on
tiny AI accelerators, we investigate the characteristics of weight

2



TinyMem: Boosting Multi-DNN Inference on Tiny AI Accelerators

with Weight Memory Virtualization HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA

Preserved Weights
(Only used by SimpleNet-100)

Preloaded Weights
(Not used by a previous model, FaceDet)

Weights to load
after previous inference

SimpleNet-100 TinySSD FaceDet
Layout for (a, b, c)

Layout for (d)

Weight Loading Latency of SimpleNet-100 (TinySSD → FaceDet → SimpleNet-100)

(a) Conventional approach. (b) Weight preservation. (c) Weight preloading. (d) Weight packing.

Figure 3: Design insights for TinyMem.

memory on tiny AI accelerators. One distinct feature of memory in
tiny AI accelerators is the 2-dimensional layout that assigns dedi-
cated memory to each accelerator core, unlike the 1-dimensional
space commonly found in CPUs and GPUs. Each core is equipped
with its own dedicated weight memory space to avoid memory
contention and ensure efficient parallel processing. Furthermore,
for each layer, weights must maintain the same offset across all
cores, which simplifies the memory controller design and allows
synchronized operations across the cores.

For powerful parallel processors, weights are typically loaded
into a 1-dimensional space first and then managed by internal mem-
ory controllers that distribute them to the processor’s dedicated
memory. However, tiny AI accelerators require a more direct and
efficient approach, loading weights directly into a 2-dimensional
space to minimize overhead. Figure 1 depicts this 2-dimensional lay-
out. For each layer, the corresponding weight memory is allocated
in a 2D format, where one axis represents the parallel accelerator
cores required for processing the weights, and the other represents
the address space. This 2D memory layout brings several perfor-
mance benefits. It reduces the number of registers required for
configuring AI accelerators, simplifies the internal circuit design,
and results in a more efficient hardware architecture. Weights can
also be loaded in parallel by allocating dedicated memory to each
core before executing each layer, which is beneficial for channel or
weight-wise parallelism during inference.

However, despite these benefits, it reveals that tiny AI accelera-
tors do not yet optimize their memory usage, even though memory
is a key constraint of these devices. Since weight memory is as-
signed as a rectangular region and sequentially layer by layer, there
is still a lot of unused space. In the next section, we propose a novel
method to accelerate multi-DNN inference by leveraging these
memory characteristics of tiny AI accelerators.

3 TinyMem

3.1 Insights for Efficient Multi-DNN

As discussed in §2.2, the key bottleneck of multi-DNN inference on
tiny AI accelerators is the weight loading operation when switch-
ing between models (see Figure 3a). To reduce this overhead, we
design TinyMem based on insights from tiny AI accelerator char-
acteristics, specifically the 2D weight memory layout and the idle
CPU cores during model inference. Unlike existing weight sharing
techniques [4, 8, 9], which focus on sharing weight values across

models, TinyMem addresses memory allocation and placement,
making it orthogonal and compatible with these approaches.
Weight preservation (Figure 3b). The 2D weight memory lay-
out leaves unused memory space, especially for layers with fewer
channels (i.e., a small number of corresponding accelerator cores).
Instead of unloading all weights when switching models, we skip
the unloading step to preserve the memory and only reload weights
that were overwritten by othermodels. This approach is particularly
effective when the same model is executed repeatedly, reducing
the need to reload weights or when models store their weights
in distinct memory regions. These scenarios minimize the likeli-
hood of overwriting preserved weights, ensuring that the preserved
weights can be reused without reloading.
Weight preloading (Figure 3c). Since model inference runs on
dedicated processors in the AI accelerator, we can preload the next
model’s weights using the idle CPU into memory regions not used
by the current model. This parallelization of weight loading and
inference reduces end-to-end latency, thereby improving the total
throughput of model inferences. This approach is effective when
multiple models are executed alternately in a non-repetitive manner,
particularly with three or more models.
Weight packing (Figure 3d). The typical method of placing model
weights into the weight memory on tiny AI accelerators is to ar-
range the weights horizontally layer by layer from the left and
vertically accelerator core by core from the top [1], as shown in Fig-
ure 1. However, when multiple models run, this approach reduces
the opportunities for weight preservation and preloading as these
models are placed starting from the top-left corner and will largely
overlap. By dynamically adjusting the placement of weights, weight
packing prevents memory fragmentation, making it particularly
advantageous for models with layers of different-sized weights.
It also enhances the performance of preservation and preloading
techniques, especially when the models do not fully occupy the
weight memory.

3.2 Operational Flow

Due to the lack of memory management support in tiny AI accel-
erators, model developers need to manually manage the weight
memory on these accelerators. As shown in Figure 4a, when load-
ing model weights, they need to specify the accelerator cores and
destination address of the weight memory for each layer based
on the 2D layout of the weight memory (Figure 1). This manual

3



HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA Jeon et al.

(a) Today’s practice. (b) TinyMem.

Figure 4: Weight loading interfaces. TinyMem automatically

schedules the weightmemory layout with given checkpoints.

Figure 5: TinyMem operational flow.

management is not only cumbersome but also nearly impossible to
optimize for runtime performance because of the interdependencies
between concurrently running models.

Figure 5 shows the operational flow of TinyMem. For runtime
memory orchestration, it provides developers with abstractions
for underlying weight memory operations: load_weight() and
unload_weight(), as shown in Figure 4b. Layout of added models’
weights is optimally adjusted in the Memory orchestration compo-
nent of TinyMem. To this end, it generates layout candidates for
each model by changing the position of each layer’s weight. Then,
it selects the optimal set of layouts, which minimizes the end-to-
end latency to run all running models, thereby maximizing the
total inference throughput. The decision also includes the order of
model inferences as the order affects the end-to-end latency due to
its impact on preloading operation. For selection, TinyMem adopts
the Latency profiler that estimates the latency of weight loading
and model inference at runtime. Once run() is called, the Inference
engine executes multi-DNN inference based on the orchestration
decision, i.e., preserving weights as needed and preloading the next
model’s unpreserved weights during inference.

3.3 Holistic Memory Coordination

We explain how we make decisions for holistic memory coordi-
nation using the aforementioned insights: weight preservation,
preloading, and packing. Although we explain these insights to-
gether for clarity, note that preservation and preloading are the
runtime operations required during multi-DNN inference. The coor-
dination decisions required for these operations are (a) each model’s
weight memory layout and (b) the switching order of models. Pack-
ing is a strategy for generating the weight memory layout, which
enhances the effectiveness of weight preservation.

However, making an optimal coordination decision is not trivial
because the decision to maximize the benefit from preservation
sometimes contradicts the decision for preloading. To maximize the

Figure 6: Operational flow for memory coordination. This

scenario assumes model C follows model A.

Algorithm 1 Holistic Memory Coordination
Inputs: 𝑆 = {𝑠𝑖,𝑗 }: Weight size of layer 𝑗 of model 𝑖 , 𝐿inf = {𝑙inf,𝑖 }:

Inference latency of model 𝑖 , 𝑘 : Weight loading time constant per byte,
𝐷 : Model dependency constraints

Output: 𝐿 = { (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 ) }: Layouts,𝑂 : Inference order
1: L𝑖 ← 4 flipped layouts of packed layout of model 𝑖
2: L←∏

𝑖 L𝑖 ⊲ Generate all layout combinations across models
3: Oall ← All permutations of the models
4: Oval ← filter_valid(Oall, 𝐷 ) ⊲ Filter orders based on dependencies
5: T← {} ⊲ Map to store throughputs
6: for all 𝐿 ∈ L do ⊲ Iterate layouts
7: for all𝑂 ∈ Oval do ⊲ Iterate valid orders
8: 𝐿𝑎𝑡 ← 0 ⊲ Initialize latency
9: for all 𝑖 ∈ 𝑂 do ⊲ Iterate models
10: 𝑙preload ← 𝑘 × Preload Bytes(𝑆, 𝐿,𝑂, 𝑖 )
11: 𝑙postload ← 𝑘 × Postload Bytes(𝑆, 𝐿,𝑂, 𝑖 )
12: 𝐿𝑎𝑡 ← 𝐿𝑎𝑡 + (𝑙preload − 𝑙inf,𝑖−1 )+ + 𝑙postload + 𝑙inf,𝑖
13: T[𝐿,𝑂 ] ← 1/𝐿𝑎𝑡 ⊲ Compute throughput
14: return argmax

𝐿,𝑂

T[𝐿,𝑂 ]

benefit of weight preservation, model weights should be placed in a
way of minimizing the overlap across all running models’ weights.
In contrast, for preloading, the main factor that affects its benefit
is the overlap between two consecutive models. While one model
runs, TinyMem preloads the next model’s unpreserved weights, but
these are constrained to memory regions not occupied by the cur-
rent or preserved by the next model. Layer-wise preloading is also
viable, as it only requires considering two consecutive layers, but
it increases scheduling complexity and overhead due to frequent
interruptions. Thus, when models compete for limited weight mem-
ory, minimizing overlap across all running models for preservation
may not be ideal for preloading a specific pair of models.

To address this, we jointly optimize the weight memory layout
and model switching order, selecting the best combination based
on the expected throughput. Algorithm 1 outlines the process.
Candidate generation. Due to the excessive number of possible
layout configurations, even for a single model–where each layer’s
weight can be arbitrarily placed within the entire weight memory
space– considering all possible combinations incurs a significant
system cost. To effectively reduce the search scope, we devise a
simple but effective method. The key idea is to make each model’s
weight memory as compact as possible, with the rationale that

4



TinyMem: Boosting Multi-DNN Inference on Tiny AI Accelerators

with Weight Memory Virtualization HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA

2 Models
Large

2 Models
Medium

2 Models
Small

0

100

200

Th
ro

ug
hp

ut
(in

fe
re

nc
e/

s)

3 Models
Large

3 Models
Medium

3 Models
Small

0

20

40

60

80
SeqLoad Preservation Preservation & Packing TinyMem

Figure 7: Multi-DNN inference throughput comparison.

Figure 8: MAX78000

Feather board.

this will minimize the chance of overlap with other models. We
begin by packing each model independently using the MaxRect
algorithm [7], which arranges model weights to minimize the size
of the rectangular region containing the model weights. For each
model, we generate four layout candidates by shifting and flipping
the weight layout into four corners of the entire weight memory.
These layouts are then combined across models to generate all pos-
sible layout combinations, resulting in 4𝑛 candidates for 𝑛 models.
Separately, we generate all possible execution orders for the models
and filter them based on the given dependencies. For example, if
model A must be executed before model B, only the orders satis-
fying this condition are retained. Finally, the final candidate set is
formed by testing all combinations of layout candidates and valid
execution orders.
Throughput evaluation. To evaluate the throughput of each can-
didate, we first estimate an end-to-end latency to run all running
models. The latency of a model is determined by the sum of weight
loading time and inference time, and the end-to-end latency is com-
puted as the sum of all model’s latency (line: 11). The weight loading
time of a model consists of two parts: (a) preloading weights during
the previous model’s inference and (b) post-loading the rest weights
(unpreserved and unpreloaded) after the inference. Since today’s
tiny AI accelerators do not support the parallel execution of multi-
ple models due to limited memory and fixed operation pipelines,
we estimate the model throughput by taking the reciprocal of the
end-to-end latency.
Latency estimation:. (a) We model weight loading latency by
quantifying the time taken for memory copy operations between
RAM and on-accelerator memory. Since the latency shows a linear
relationship to the weight memory size (p-value< 1 × 10−15), we
model the weight loading time as 𝑘 ×𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑖𝑧𝑒 , where 𝑘 is a
time coefficient obtained offline. The proportionality constant 𝑘
varies by device type. For instance, on MAX78000, 𝑘 is measured
as 68.455 ns/byte. (b) The model inference latency is estimated
using an offline profiling approach. We construct a latency table in
advance by profiling each model’s inference latency, which is then
used at runtime for latency prediction. The Tiny AI Accelerator’s
deterministic nature, stemming from fixed hardware execution
paths, ensures minimal inference time variance, making the offline
profiling-based approach effective.

4 Evaluation

4.1 Evaluation Setup

Hardware.We prototyped TinyMem on MAX78000 Feather board,
a development platform for MAX78000 [3]. It has 512 KB of data

Table 1: List of models used in our evaluation.

Model Name

Weight Size Weight. Inf. Input

Layout (MB) Latency Latency Type

SimpleNet-100 4.0 24.0 ms 4.58 ms Image
SimpleNet-10 3.5 20.8 ms 4.57 ms Image
SimplerNet-100 4.5 11.5 ms 2.59 ms Image
KwsNet 2.6 12.1 ms 1.44 ms Audio
ConvNet 0.6 4.9 ms 1.41 ms Image

Table 2: Model combinations used in the experiments.

Workload Small Medium Large

2 Models

KwsNet SimpleNet-10 SimpleNet-100
ConvNet ConvNet KwsNet

3 Models

SimplerNet-100 SimpleNet-10 SimpleNet-100
KwsNet KwsNet KwsNet
ConvNet ConvNet ConvNet

memory, 442 KB of weight memory, and 2 KB of bias memory on
the CNN accelerator.
DNNs. We use five models for evaluation as summarized in Ta-
ble 1. As MAX78000 supports only int8 quantized models, we
quantized pre-trained PyTorch model weights using Analog ai8x-
synthesizer [1].
Workloads.We use six types of workloads generated by combining
different numbers and sizes of models. Table 2 shows the model
combinations used in the experiments. Large, Medium, and Small
represent the memory characteristics of each combination based
on the total size of models.
Baselines. SeqLoad is a baseline which sequentially loads and
unloads all model weights. Preservation and Preservation &
Packing sequentially apply our weight memory preservation and
packing techniques without preloading.
Metric. We use throughput, the total number of inferences per
second across all models, assuming they run in equal frequency.

4.2 Performance Analysis

Figure 7 and Table 3 show that TinyMem consistently outperforms
baselines for both 2 Model and 3 Model Workloads as well as for
different model complexities. We analyze the results in detail.
Overall performance. Overall, TinyMem achieves 2.12-5.01× and
1.97-2.62× higher throughput than SeqLoad for 2 Models and 3
Models Workload, respectively. TinyMem significantly reduces the
bottleneck of multi-DNN inference, particularly in weight loading

5



HOTMOBILE ’25, February 26–27, 2025, LaQuinta, CA, USA Jeon et al.

Table 3: Throughput on MAX78002 for 3 Model Workload

(SimpleNet-100, SimplerNet-100, SimpleNet-10).

SeqLoad Preservation

Preservation

TinyMem

& Preloading

8.04 12.77 13.92 12.81

time. TinyMem consistently outperforms the baseline, showing that
reducing weight loading time is key to improving throughput.
Performance breakdown. All our techniques—weight preser-
vation, packing, and preloading—contribute to throughput gain,
achieving average improvements of 1.95×, 1.67×, and 1.24×, respec-
tively, for 2-model and 3-model cases. Note that in the 2 Model case,
there is no available memory space for preloading between infer-
ences, resulting in identical performance for the Preservation &
Packing and TinyMem configurations. This is because, in the 2-
model case, memory is either (1) shared by both models, leaving no
unused space for preloading, or (2) used exclusively by one model,
in which case the space can be preserved rather than requiring
runtime preloading. Weight preservation has the most significant
impact, as it directly addresses the core bottleneck of weight reload-
ing by keepingweights inmemorywhen switching betweenmodels.
This is particularly effective in smaller workloads or when memory
usage is well below capacity, avoiding costly reloading.

Once weight preservation has reduced the weight loading time,
preloading becomes more effective. In Figure 2, the inference la-
tency is much shorter than the weight loading time, which typically
limits the potential gains from preloading, as pipelining is most
effective when task lengths are balanced. Without preservation,
preloading alone would have a limited effect since the system is
dominated by the long weight loading time. However, after preser-
vation reduces this bottleneck, preloading can better parallelize
inference and weight loading, improving overall throughput. As
workloads increase, either due to more models or larger model
sizes, the effectiveness of preservation diminishes as memory be-
comes constrained, making preloading and packing increasingly
important to sustain high throughput.
Impact of workload. TinyMem achieves higher throughput across
diverse workloads, both in terms of the number of models and
complexities. We observe higher gain for smaller models (e.g., up
to 5.09× throughput for the 2-model small). This is because smaller
models leave more memory space for weight preservation, reducing
the need for reloading.

TinyMem still outperforms SeqLoad for larger models, while
the throughput gain is slightly lower (up to 2.62×). As model size
increases, weight preservation becomes more challenging due to
limited memory, making preloading more critical. In Large work-
loads, preservation becomes difficult, and the benefits of preloading
become more pronounced. This demonstrates the importance of
balancing preservation and preloading as model complexity grows.
Similar trends hold as the number of models increases.
Impact of device. To demonstrate the generalizability of TinyMem
across devices with different weight memory sizes, we conducted
experiments on MAX78002, which has 5.3× larger weight memory
than MAX78000. Table 3 shows that TinyMem achieves up to 1.73×
higher throughput compared to SeqLoad. This gain is primarily

from weight preservation, which increases throughput to 12.77
inferences per second (a 1.59× improvement). Preloading further
enhances performance, raising throughput to 13.92 inferences per
second (an additional 1.09× gain), while weight packing results
in a slight decrease in performance. This outcome arises because
the larger weight memory of MAX78002 allows models designed
for MAX78000 to occupy a much smaller portion of the available
memory. As a result, weight preservation plays a stronger role,
similar to small model cases, while the benefits of preloading and
packing are diminished since memory constraints are less of a
concern. We expect larger gains when larger models are used.

5 Conclusion

In this paper, we introduced TinyMem, a memory-efficient system
that optimizes weight memory management for multi-DNN infer-
ence on tiny AI accelerators. With weight preservation, preloading,
and packing, TinyMem reduces weight loading time and end-to-end
latency, boosting throughput by up to 5.01× over existing frame-
works. These results show TinyMem’s potential to improve multi-
DNN inference efficiency in resource-constrained environments
like wearable devices. Future work will focus on extending these
techniques to more complex models and hardware platforms.

References

[1] Inc. Analog Devices. 2024. ai8x-synthesis: Quantization and Synthesis for
ADI’s MAX78000 and MAX78002 Edge AI Devices. https://github.com/
analogdevicesinc/ai8x-synthesis. Accessed: 2024-10-11.

[2] Ananta Narayanan Balaji and Li-Shiuan Peh. 2023. AI-On-Skin: Towards En-
abling Fast and Scalable On-body AI Inference for Wearable On-Skin Interfaces.
Proceedings of CHI 7, EICS (2023), 1–34.

[3] Analog Devices. 2024. MAX78000. https://www.analog.com/en/products/
max78000.html. Accessed: 2024-10-10.

[4] Biyi Fang, Xiao Zeng, andMi Zhang. 2018. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proceedings of ACM
MobiCom. 115–127.

[5] Taesik Gong, Si Young Jang, Utku Günay Acer, Fahim Kawsar, and Chulhong Min.
2023. Collaborative inference via dynamic composition of tiny ai accelerators on
mcus. arXiv preprint arXiv:2401.08637 (2023).

[6] Taesik Gong, Fahim Kawsar, and Chulhong Min. 2024. DEX: Data Channel
Extension for Efficient CNN Inference on Tiny AI Accelerators. In NeurIPS ’24.

[7] Jukka Jylänki. 2010. A thousand ways to pack the bin-a practical approach
to two-dimensional rectangle bin packing. retrived from http://clb. demon.
fi/files/RectangleBinPack. pdf (2010).

[8] Seulki Lee and Shahriar Nirjon. 2020. Fast and scalable in-memory deep multitask
learning via neural weight virtualization. In Proceedings of ACM MobiSys. 175–
190.

[9] Seulki Lee and Shahriar Nirjon. 2022. Weight separation for memory-efficient
and accurate deep multitask learning. In IEEE PerCom. IEEE.

[10] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. Mcunet:
Tiny deep learning on iot devices. NeurIPS 33 (2020).

[11] Yi Lu, Lejia Zhou, Aili Zhang, Siyu Zha, Xiaojie Zhuo, and Sen Ge. 2024. Applica-
tion of Deep Learning and Intelligent Sensing Analysis in Smart Home. Sensors
24, 3 (2024), 953.

[12] Arthur Moss, Hyunjong Lee, Lei Xun, Chulhong Min, Fahim Kawsar, and Alessan-
dro Montanari. 2022. Ultra-low power DNN accelerators for IoT: Resource char-
acterization of the MAX78000. In AIChallengeIoT in conjunction with ACM SenSys.
934–940.

[13] OmniBuds [n. d.]. OmniBuds. https://omnibuds.tech/. Accessed: 15 Mar. 2024.
[14] Samsung Electronics. 2025. Galaxy Ring. https://www.samsung.com/us/rings/

galaxy-ring/. Accessed: 2025-01-14.
[15] Shift Moonwalkers [n. d.]. Shift Moonwalkers. https://shiftrobotics.io/. Accessed:

15 Mar. 2024.
[16] STMicroelectronics. 2024. STM32F7 Series. https://www.st.com/en/

microcontrollers-microprocessors/stm32f7-series.html. Accessed: 2024-10-12.
[17] GreenWaves Technologies. 2024. GAP9 processor for hearables and smart sensors.

https://greenwaves-technologies.com/gap9_processor/. Accessed: 2024-10-10.

6

https://github.com/analogdevicesinc/ai8x-synthesis
https://github.com/analogdevicesinc/ai8x-synthesis
https://www.analog.com/en/products/max78000.html
https://www.analog.com/en/products/max78000.html
https://omnibuds.tech/
https://www.samsung.com/us/rings/galaxy-ring/
https://www.samsung.com/us/rings/galaxy-ring/
https://shiftrobotics.io/
https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
https://greenwaves-technologies.com/gap9_processor/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 TinyML and AI Accelerators
	2.2 Limitations in Multi-DNN Inference
	2.3 Weight Memory of Tiny AI Accelerators

	3 TinyMem
	3.1 Insights for Efficient Multi-DNN
	3.2 Operational Flow
	3.3 Holistic Memory Coordination

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Performance Analysis

	5 Conclusion
	References

