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Abstract
Tiny AI accelerators are seamlessly integrated into wearable devices
due to their small form factor, enabling human sensing applications
to run solely on wearables. However, despite this potential, the en-
ergy characterization of these tiny AI accelerators has been hardly
studied, which is a key enabler for realizing such applications in
our daily lives. In this paper, we present a comprehensive analysis
of the energy characterization of ultra-low power microcontrollers
using MAX78000 manufactured by Analog Device. We detailed the
hardware components and their supported power configurations.
We then conducted extensive benchmarks at micro and macro lev-
els. For micro-level benchmarks, we evaluated the power/energy
consumption under individual system configuration involved in
each operation–sensing, AI inference, computation, memory I/O,
and idle. For macro-level benchmarks, we analyzed the impact of
system-wide configurations on overall energy consumption of end-
to-end application pipelines. Our findings offer valuable insights
into energy optimization for wearable systems with on-device and
human-centered sensing technologies.

CCS Concepts
• Hardware→ Power and energy; • Computer systems orga-
nization → Embedded systems.
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1 INTRODUCTION
Tiny AI accelerators such as Analog MAX78000 [1], ARM Ethos-
U65 [2], and GreenWaves GAP9 [3], have significantly shrunk the
physical boundaries of artificial intelligence (AI), bringing AI ca-
pabilities closer to us than ever before. Designed to operate on mi-
crocontrollers (MCUs), these accelerators feature extremely small
form factor-𝑒.𝑔., MAX78000: 8mm×8mm-, thereby being seamlessly
integrated into wearable devices. This miniaturization enables AI
workloads to run directly on wearables [4], offering exciting oppor-
tunities such as reduced latency and enhanced privacy preservation
by processing data locally.

With integration into wearable technology, tiny AI accelera-
tors show great potential for advancing human-centered sensing
applications. By leveraging various on-body sensors, wearable de-
vices equipped with these AI accelerators can continuously process
rich user context in real-time and deliver situational services on
the fly without relying on smartphones. For example, an attention
alert application can monitor surrounding visual events through
smart glasses and provide haptic alerts on a ring. However, this in-
creased computational capability introduces significant challenges,
particularly regarding energy efficiency. Energy characterization
of mobile and embedded accelerators have been studied in previ-
ous works [5, 6]. While a few benchmark studies exist for tiny AI
accelerators integrated into MCUs [7], they primarily focus on en-
ergy benchmarking for different models and lack systematic studies
characterizing their energy consumption under different system
operational conditions.

We presented a comprehensive energy characterization of MCUs
equipped with tiny AI accelerators, aiming to facilitate the devel-
opment of energy-efficient human-centered sensing systems. In
this paper, our study focuses on the MAX78000 board, which inte-
grates an Arm Cortex-M4F core, a RISC-V core, and a convolutional
neural network (CNN) accelerator into a single package. To facili-
tate our analysis, we first detailed the hardware components and
their supported power configurations. We then conducted exten-
sive benchmarks and characterizations at both micro and macro
levels. At the micro level, we evaluated the impact of each hardware
component’s system configuration on the energy consumption of
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Table 1: System configuration variables involved in the experiment.

Core Configuration Control Frequency Management CNN Accelerator Quadrant Control

Processor Operation
Mode

System
Clock

System
Divider

CNN
Divider

Number of
Activated Nodes

CNN Node
Contiguity CNN Boost

Sensing ! ! ! !

Inference ! ! ! ! ! ! ! !

Computation ! ! ! !

Memory I/O ! ! ! ! ! ! ! !

Idle ! ! !

primitive software operations such as sensing, inference, and com-
putation. At the macro level, we analyzed end-to-end application
pipelines to assess the impact of system-wide configurations on
overall energy consumption. Our findings provide valuable insights
for optimizing energy usage in human-centered sensing and wear-
able devices equipped with tiny AI accelerators.

2 BACKGROUND
We first describe the experimental hardware platform, followed by a
description of the application pipeline, and outline the configurable
system parameters.

2.1 MAX78000 Description
Recently, many tiny AI accelerators have been introduced, such
as Analog MAX78000 [1], ARM Ethos-U65 [2], and GreenWaves
GAP9 [3]. However, most of them are not commercially available or
have limited control over their underlying operations. Therefore, we
selected AnalogMAX78000 as our experimental platform as it offers
comprehensive open-source tools and documentation, making it
ideal for exploring energy consumption characteristics.

The MAX78000 is an MCU equipped with a CNN accelerator
designed for ultra low-power neural networks. It has two processors,
an ARM Cortex-M4F and RISC-V, both capable of serving as the
main processor, with 512 kB flash and 128 kB SRAM. The CNN
accelerator features 4 nodes per group and 4 groups per quadrant,
totaling 64 nodes, where each node handles convolution tasks with
shared memory for input and activation. This CNN accelerator
has dedicated memory: 512 kB input memory, 442 kB of weight
memory and 2 kB of bias memory. Figure 1 provides an overview
of MAX78000.

2.2 Application Pipeline
The application pipeline on wearables has several operations, es-
pecially including sensing and inference, designed to understand
human contexts. This pipeline is often executed continuously, with
intervals to deliver situational services. To analyze the energy char-
acterization of the MAX78000, we considered a set of common
operations for human sensing.

Sensing refers to the process of collecting data from sensors.
For instance, this could involve capturing images using a camera
or recording sound using a microphone.

Inference is a operation which involves executing the CNN
model on the CNN accelerator for tasks like image classification or
object detection.

Computation (COMP) refers to operations handled specifically
by the processor, such as processing raw data from sensors, per-
forming calculations like Softmax, and some on-processor memory
operations.

Figure 1: Overview of MAX78000.

Memory I/O (MIO) involves operations between the processor
and the CNN accelerator, such as loading model parameters from
SRAM to the CNN accelerator or transferring inference results back
to SRAM after inference.

Idle refers to waiting periods where the MCU is not actively
executing tasks, often entering a low-power state while awaiting
the next operation or input.

2.3 Configuration Description
The MAX78000 offers several configurable system parameters that
affect energy performance during application execution. We espe-
cially focus on three control categories: core configuration control,
frequency control, and CNN accelerator quadrant control. Each
category is further divided into several subcategories, resulting in
a total of eight system configuration variables, as shown in Table 1.
The table also indicates which controls are available during each
operation of the application pipeline.

Processor.Many MCU devices feature one or more processing
units. For instance, MAX78000 is equipped with ARM Cortex-M4F
and RISC-V, both of which can operate as main processing unit.
However, the architectural differences of the two may result in
varying power consumption even under the same workload. Hence,
we explored their power and energy consumption differences by
selecting a processor type for each operation of the pipeline.

Operation Mode. The MAX78000, like other modern MCUs
used in low-power devices (𝑒.𝑔., wearable, IoT, and embedded sys-
tems), features several operational modes designed to optimize
power consumption. For example, in ACTIVE mode, all system
components are fully operational, while SLEEP mode places the
ARM or RISC-V in a retention state to reduce power consumption.
However, since modes like Low-Power (LPM) and Ultra-Low-Power
(UPM)modes affect other configurations such asmemory and clocks
(see Table 2), we focus on ACTIVE and SLEEP modes only (except
’idle’ operation) to accurately capture their impact.
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Table 2: MAX78000 operation modes.

Processor Mode ARM RISC-V Oscillators Memory CNN Quadrants CNN RAM Peripherals

ACTIVE On On All Available Available Active,
Configurable

Active,
Configurable Available

SLEEP Retention On/Retention All Available Available Active,
Configurable

Active,
Configurable Available

LPM Retention On/Retention ISO, IBRO
ERTCO, INRO

0,1: Retention
2,3: Available

Active,
Configurable

Active,
Configurable Available

UPM Retention Retention IBRO, ERTCO
INRO Retention Optionally off Selectable

Retention Retention

Clock and Dividers. The operating frequency (𝑂𝑃𝐸_𝐹𝑟𝑒𝑞) of
processors is a critical factor affecting the energy performance of
MCUs and is determined by two key parameters: system clock
(𝑆𝑌𝑆_𝐶𝐿𝐾 ) and the clock divider (𝑆𝑌𝑆_𝐷𝐼𝑉 ). The relationship be-
tween the parameters is as follows:

𝑂𝑃𝐸_𝐹𝑟𝑒𝑞 =
𝑆𝑌𝑆_𝐶𝐿𝐾
2𝑆𝑌𝑆_𝐷𝐼𝑉

The system clock provides timing signals to the processor, CNN
accelerator, peripherals, and other system components, ensuring
operations at a correct speed and timing.WhileMAX78000 supports
multiple clock sources as system clocks, we experimentedwithmost
commonly used Internal Primary Oscillator (IPO, 100 MHz) and
Internal Secondary Oscillator (ISO, 60 MHz) for all operations, as
shown Table. 1.

The clock divider serves as a mechanism to scale down the base
system clock frequency by dividing it with a specific divider value,
thereby controlling the operating speed of various components
within the system. In MAX78000, the entire system frequency is
controlled via the system divider while CNN accelerator frequency
can be further controlled by CNN divider. For these experiments, we
configured 1, 2, and 4 (out of 8 choices) for both, as higher divider
results in long latency, which is suitable for real-world scenarios.

Number of Activated Nodes. TheMAX78000 features a unique
configuration that allows developers to select the number of active
nodes in the CNN accelerator, which impacts energy performance.
Developers can customize the number of active nodes through
register settings based on the application’s needs. In our experi-
ments, we configured the accelerator to operate with the minimum
required number of CNN nodes and with all 64 nodes active.

CNN Node Contiguity. The unique architecture of the CNN ac-
celerator, where nodes are bound by groups and quadrants, presents
a valuable opportunity for investigating energy performance. Since
data is shared within each group, discontinuous node activation
may lead to additional transactions between memory spaces within
the CNN accelerator, potentially impacting energy efficiency. As-
suming 𝑓 represents activation, and 0 represents deactivation of
a group, for our experiment, we considered continued (𝑒.𝑔., 𝑓 𝑓 00)
and discontinued (𝑒.𝑔., 𝑓 0𝑓 0) node activation.

CNN Boost. The MAX78000 features an external CNN boost
circuit designed to provide additional power to the CNN accelerator.
While the internal Single-Input Multiple-Output (SIMO) power
supply is sufficient under moderate workloads, it may experience
voltage drops (brown-out) during transient over-current conditions
when peak computing power is required. The CNN boost circuit
supplements the SIMO power supply, ensuring stable operation

of the CNN accelerator by preventing power-related failures. We
conducted experiments to compare the power/energy consumption
with/without CNN boost.

3 ENERGY CHARACTERIZATION
We conductedmicro andmacro levels’ experiments. Themicro-level
experiments provide a detailed investigation of the energy charac-
terization in each operation, helping us identify the optimal system
configuration for each operation. The macro-level experiments are
used to validate the combined effect of the system configurations
on the overall power/energy consumption of the entire pipeline.

In the micro-level experiments, we evaluated individual system
configuration involved in each operation, measuring power/energy
consumption. We considered two scenario for each operation: sens-
ing, inference, COMP, and MIO. Based on the results of the micro-
level experiments, we selected the system configuration variables
that had the most significant impact on power/energy, then used
them for the macro-level experiments. We added a Best system
configuration that shows the lowest energy consumption for each
application, and compared it with the default configuration.

We measured the average power usage (𝑃) using Monsoon
High Voltage Power Monitor [8] with 50 𝐻𝑧 sampling rate and 3.0
𝑉 of the input voltage (𝑈 ). For the energy consumption (𝐸), we
first measured the average power 𝑃 , then measured the latency 𝑡
by the internal clock on the MAX78000, and finally calculated the
energy consumption by 𝐸 = 𝑃 × 𝑡 . To obtain stable values, we only
utilized the values recorded after running for 1𝑚𝑖𝑛. All results are
reported as the average of ten experiments.
3.1 Micro Benchmark
For micro benchmark, as Table. 1 shows, each operation is evaluated
with consideration of core configuration control, frequency man-
agement, and CNN accelerator quadrant control, either partially
or entirely. When experimenting with a particular system configu-
ration variable, all other system configuration variables remain at
the default settings. The default configuration is: processor = ARM,
operation mode = ACTIVE, system clock = IPO, system divider =
1, CNN divider = 1, number of activated nodes = part, CNN node
contiguity = No, CNN Boost = No, and using default busy-waiting
idle implementation.

Sensing. We considered two scenarios: capturing images with a
camera and recording audio with a microphone, both using the in-
tegrated sensors. Sensing operation primarily involves core config-
uration control and frequency management. The results are shown
in Fig. 2. For energy consumption, which depends on power and la-
tency, using (a) ARM as the main processor, (b) SLEEP mode, (c)ISO
clock, and (d) a system divider of 2 reduces energy cost. Compared
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Figure 2: Micro-level evaluation: sensing operation. Bold
fonts are more energy-efficient configurations.

to RISC-V as the main processor, ACTIVE mode, IPO clock, and
a system divider of 1, these configurations reduced energy by an
average of 1.24𝑋 , 1.62𝑋 , 1.43𝑋 , and 1.33𝑋 , respectively.

Inference. We considered two models: a 4-layer simple CNN
network and a more complex 18-layer Unet network [9] (which
includes both encoder and decoder structures). We repeated the
simple CNN model inference 1,000 times and the Unet model 100
times. We experimented with control configurations as mentioned
in Table 1 for the inference operation. As shown in Figure 3, the
results show that the processor type has a minimal impact on
power/energy, with only difference under 0.1% on average between
ARM and RISC-V. Interestingly, setting the main processor to SLEEP
mode during inference operation is more efficient than ACTIVE
mode, reducing the power/energy by 7.29% on average. This is be-
cause faster system clocks, system dividers, and CNN dividers result
in higher power, but much lower latency, thereby resulting in lower
energy consumption. For CNN accelerator quadrant control, acti-
vating minimum required number of nodes reduced power/energy
consumption by 1.68𝑋 . However, node contiguity and CNN boost
only have minimal reductions. These reductions may stem from the
higher data transfer efficiency of continuously activated nodes, as
well as the more stable voltage provided by the CNN Boost, which
reduces performance fluctuations caused by voltage variations and
shortens processing time.

Computation. We considered two cases: Fibonacci calculation
and Softmax calculation with 100 network nodes. We calculated
the 34𝑡ℎ Fibonacci number, and repeated the Softmax calculation
50,000 times. The COMP operation primarily involves core configu-
ration control and frequency management, with the results shown
in the Table 3. The results for processor, system clock, and system

Figure 3: Micro-level evaluation: inference operation.

divider are similar to those in the inference operation. However, for
operation mode, since the COMP operation involves tasks running
on the main processor, it cannot be put into SLEEP mode. There-
fore, we tested the impact of the secondary processor’s mode on
power/energy consumption while the main processor is execut-
ing tasks. As Table 3 shows, when ARM is the main processor, if
RISC-V is activated alongside ARM, there is marginal difference in
power/energy consumption, with only 4.31% increase. However,
when RISC-V is the main processor, the differences in power/energy
consumption between ACTIVE and SLEEP is muchmore significant,
increased by 32.56%. These findings suggest that when executing
tasks requiring only one processor, it is best to activate only the
main processor (ARM has higher power but lower energy consump-
tion, while RISC-V shows the opposite). For tasks involve both
processors, whether through cooperation or parallel computing,
choosing ARM as the main processor and RISC-V as the secondary
processor is more energy-efficient.
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Table 3: Micro-level power (𝑚𝑊 ) and energy (𝑚𝐽 ) evaluation:
computation operation.

Fibonacci Softmax
Power Energy Power Energy

Processor ARM 13.96 37.76 14.29 30.83
RISC-V 8.65 56.06 9.53 64.28

Operation Mode
(Main: ARM)

SLEEP 13.96 37.76 14.29 30.83
ACTIVE 14.72 39.82 14.80 31.93

Processor Mode
(Main: RISC-V)

SLEEP 8.65 56.06 9.53 64.28
ACTIVE 12.89 83.54 14.06 94.85

System Clock IPO 13.96 37.76 14.29 30.83
ISO 9.02 40.66 9.09 32.82

System Divider
1 13.96 37.76 14.29 30.83
2 8.83 47.77 8.91 38.45
4 6.38 68.78 6.42 55.40

Table 4: Micro-level power (𝑚𝑊 ) and energy (𝑚𝐽 ) evaluation:
memory I/O operation.

CNN Unet
Power Energy Power Energy

Processor ARM 26.14 64.13 26.10 70.46
RISC-V 23.12 90.55 23.69 105.81

Processor Mode
(Main: ARM)

SLEEP 26.14 64.13 26.10 70.46
ACTIVE 26.68 65.40 27.05 73.03

Processor Mode
(Main: RISC-V)

SLEEP 23.12 90.55 23.69 105.81
ACTIVE 27.90 109.27 27.59 123.23

System Clock IPO 26.14 64.13 26.10 70.46
ISO 17.28 70.90 18.11 81.84

System Divider
1 26.14 64.13 26.10 70.46
2 16.21 79.42 17.04 92.04
4 12.01 86.79 11.77 127.14

CNN Divider
1 26.14 64.13 26.10 70.46
2 19.33 64.39 20.37 74.67
4 15.25 78.27 15.02 84.79

Number of
Activated Nodes

Part 26.14 64.13 26.10 70.46
All 26.14 64.13 26.10 70.46

Node Contiguity YES 26.14 64.13 26.10 70.46
NO 26.14 64.13 26.10 70.49

CNN Boost YES 26.14 64.13 26.10 70.46
NO 26.14 64.10 26.10 70.44

Memory I/O. We explored a 4-layer CNN and an 18-layer Unet,
including their weight, bias, and input loading/unloading. We re-
peated this operation 500 times for the CNN and 100 times for
the Unet. The results are shown in Table 4. The patterns in MIO
operations regarding core configuration control and frequencyman-
agement are similar to those in the inference and COMP operations,
and the patterns for node contiguity and CNN boost are also similar
to those in the inference operations, thus we omit the analysis. One
notable difference is that, unlike the inference operation, the ‘Num-
ber of Activated Nodes’ has almost no impact in the MIO operation.
This is because, even when all nodes are activated, the number of
nodes involved remains fixed, resulting in no noticeable impact on
power and energy consumption.

Idle.We first measured the power consumption of the default
busy-waiting implementation. As Table 5 shows, using RISC-V
as the main processor, along with slower system clocks and di-
viders, results in lower power consumption. However, busy-waiting
keeps all components active for continuous signal-waiting, causing

Table 5: Micro level power (𝑚𝑊 ) evaluation: idle phrase

Processor System Clock System Divider
ARM RISC-V IPO ISO 1 2 4
13.11 10.76 13.11 8.60 13.11 8.42 6.19

Table 6: The power (𝑚𝑊 ) of idle implementations

Default Wake-Up Source SLEEP LPM UPM

ARM 13.11 WUT 6.11 5.33 2.02
LPT 6.11 5.33 2.02

RISC-V 10.76 WUT 6.41 5.42 2.02
LPT 6.41 5.42 2.02

Table 7: The ‘Best’ configuration for working energy.

Processor Processor
Mode

System
Clock

System
Divider

Sensing ARM SLEEP ISO 2
Comp_1 ARM ACTIVE IPO 1
MIO_1 ARM ACTIVE IPO 1

Inference ARM SLEEP IPO 1
MIO_2 ARM ACTIVE IPO 1
Comp_2 ARM ACTIVE IPO 1
Idle ARM UPM ISO 2
Part CNN Nodes, CNN Divider = 1, WUT_UPM

high energy usage. Table 2 lists MAX78000’s power-saving modes.
SLEEP, LPM, and UPM modes offers deeper sleep states, reducing
the number of active components accordingly. We evaluated two
wake-up mechanisms: the Wake-Up Timer (WUT) and the Low-
Power Timer (LPT), since both of which support waking up the
MAX78000 from the above non-ACTIVE states. Table 6 shows the
power consumption for different idle implementations. The results
indicate that UPM mode provides the lowest power consumption
among all implementations, at only 2.02 𝑚𝑊 , as it activates the
fewest system components. Moreover, regardless of whether UPM
mode is entered via ARM or RISC-V or is woken up by WUT or
LPT, the power consumption remains approximately 2.02𝑚𝑊 .

3.2 Macro Benchmark
After conducting a micro-level analysis of each operation, we pro-
ceeded to a macro-level analysis using an end-to-end speech recog-
nition application (using KWS20 model [10]). We assume each
pipeline execution cycle lasts 2.5 seconds (total time), with the
idle time determined by the total duration of the operations in an
application. Because under the default system configuration, the
working-to-idle time ratio is about 1:3, closely matching real-world
conditions.

Based on the results of micro-level experiments, we selected
the system configuration variables that have significant impacts:
processor (ARM or RISC-V), operation mode (ACTIVE or SLEEP),
system clock (IPO or ISO), system divider (1 or 2), CNN divider (1 or
2), number of activated nodes (part or all), and idle implementation.
We used the pre-determined default configuration ofMAX78000 as a
baseline: processor = ARM, operationmode =ACTIVE, system clock
= IPO, system divider = 1, CNN divider = 1, number of activated
nodes = all, and using default busy-waiting idle implementation.
The default configuration is maintained throughout all operations.
We also designed a configuration that results in the lowest working

5
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Table 8: The time (T), power (P) and energy (E) evaluation for
the speech recognition experiment.

Default Best
T (us) P (mW) E (mJ) T (us) P (mW) E (mJ)

Sensing 398759 13.69 5.459 429413 3.68 1.580
COMP_1 46018 12.83 0.590 46018 12.83 0.590
MIO_1 132435 25.27 3.347 132435 25.27 3.347

Inference 14631 106.73 1.562 14631 98.81 1.446
MIO_2 68 10.77 0.001 68 10.77 0.001
COMP_2 1292 16.73 0.022 1292 16.73 0.022

Idle 1906797 15.60 29.746 1876143 2.02 3.790
Total
Energy - - 40.726 - - 10.775

Working
Energy - - 10.980 - - 6.985

energy consumption during the execution of an application pipeline,
labeled as ‘Best’, the configuration is shown in Table 7.

The results in Table 8 show that the proportion of energy con-
sumption is different across the operations of the pipeline. For
instance, in the operations of idle, sensing, MIO, and inference ac-
count for a higher percentage, indicating that particular attention
should be paid to optimizing energy consumption in practical appli-
cations. Compared the ‘Best’ with the ‘Default’ configurations, the
main differences between them are: the system clock and system
divider during the sensing and idle operations, the operation mode
during the sensing, inference and idle operations, as well as the
idle implementation. These differences indicate that the default
configuration of the MAX78000 only optimizes parts of the opera-
tions, including COMP_1, MIO_1, inference, MIO_2, and COMP_2,
but does not consider the entire end-to-end process, neglecting
the sensing and idle operations and the optimal configuration of
the operation mode. In addition, simply applying the static system
configuration to the entire pipeline is not energy-efficient, as the
optimal energy-efficient configuration differs for each operation.
The ‘Best’ configuration takes into account every operation in the
pipeline, and dynamically adjusts the system configuration for each
operation to minimize energy consumption. Compared to the ‘De-
fault’ configuration, the ‘Best’ configuration reduces total energy
by 3.78𝑋 and working energy by 1.57𝑋 . In addition, in terms of
latency, the ‘Best’ configuration is only slightly slower than the
default configuration during the sensing operation. For application
scenarios that involve waiting periods (𝑒.𝑔., when task execution is
intermittent), the slight increase in sensing operation latency has a
negligible impact.

4 LIMITATIONS AND FUTUREWORKS
In this section, we discuss some limitations of this study, as well as
the future works.

Limited experimentalMCUs. In this study, we have conducted
experiments on the MAX78000. Other MCUs, such as ARM Ethos-
U65 [2] and GreenWaves GAP9 [3], still require further exploration
in future work. However, we believe that the findings of this study
are general to other MCUs. This is because the energy characteriza-
tion observed in MAX78000 tend to be influenced by fundamental
factors such as workload characteristics, data flow, and hardware
architecture—elements that are similar across a range of MCUs.

Limited experimental scenarios/cases. In the micro-level ex-
periments, we have considered two scenarios for each operation,
while in the macro-level experiments, we have used speech recog-
nition as an example. Nevertheless, we do not cover all scenarios
and sensor types (𝑒.𝑔., accelerometers). In future work, we plan
to further explore the energy characterization of AI accelerators
across a broader range of application scenarios and sensors.

System and algorithm co-design to reduce energy. In this
study, we primarily analyzed energy characterization from a system
perspective and observed that there is a trade-off between energy,
latency, and power. Balancing this trade-off requires considering the
specific scenario, as each scenariomay have particular requirements
for energy, latency, and power. In such cases, these requirements,
along with the trade-off, present an optimization problem. In the
future, we plan to co-design system and algorithm to achieve the
optimal balance of energy, latency, and power.

5 CONCLUSION
In this paper, we conducted a variety of benchmarks to analyze the
energy characterization of the ultra-low-power DNN accelerator,
MAX78000. First, we performed a micro-level analysis by analyzing
each operation of the pipeline independently, followed by a macro
level analysis, treating the pipeline as a whole. The system configu-
rations cover three aspects and eight variables, where we evaluated
the impact of these variables on power and energy consumption.
Additionally, we discovered that the most energy-efficient system
configuration is dynamic for each operation and thus proposed
the most energy-efficient configuration for a speech recognition
example. Beyond these data and findings, our benchmark study
offers valuable insights for the development of wearable devices
equipped with tiny AI accelerators and efficient human-centered
sensing technologies.
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