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ABSTRACT
We investigate the thermal characteristics of tiny ML devices

with AI accelerators, to understand the thermal impact on

wearable devices. We identify the unique characteristics of

temperature measurement, temporal and spatial tempera-

ture variation, define two novel temperature metrics, satura-

tion temperature and rate, and report these metrics for each

compute component. For the analysis, we conduct various

benchmarks and evaluate the thermal profiles of different AI

applications and tasks. The results and insights lay an empir-

ical foundation for the development of heat-safe wearable

hardware.

CCS CONCEPTS
• Computer systems organization → Embedded sys-
tems; • Hardware → Thermal issues; • General and refer-
ence → Measurement.
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1 INTRODUCTION
The development of microcontroller (MCU)-based tinyML

devices such as Analog MAX78000 Feather [10], and Google

Coral Micro [5] is quickly reshaping how and where artificial

intelligence (AI) can be applied, making it more ubiquitous

and integrated into our daily lives. Compact AI accelerators

within such devices, like the MAX78000 measuring just 8mm

× 8mm, enhance the efficiency of AI computations in de-

vices. This allows compact wearable devices [8, 12] to run

AI continuously and offer a variety of situational services.

Despite significant research efforts to enhance processing

and energy efficiency in these tinyML devices, the critical

aspect of thermal efficiency and its management has received

less attention in the research domain. As overheating can

lead to device failure and reduced lifespan [2], temperature

throttling, which limits power once hardware chips reach a

thermal limit, is commonly implemented to mitigate these

risks. However, the thermal characteristics of AI applications

and the impact of temperature throttling on service of quality

for system-level heat management have not been actively

explored yet. The challenge is further complicated by the

nature of wearable devices, which are directly attached to

the body. Studies [3, 13] have indicated that even a moderate

temperature around 40C can cause skin injuries.

We explore the thermal characteristics of tinyML devices,

aiming to understand how these compact, efficient AI ac-

celerators generate heat while serving AI applications on

wearable devices. While thermal profiling and management

have been studied for higher-end devices like NVIDIA Jetson

boards [1] and smartphones [9], a detailed analysis for MCU,

the primary platform for wearable devices, is still lacking.

Our study focuses on two AI accelerator-equipped MCU

platforms, Google Coral Micro [5] and Analog MAX78000

featherboard [10] and conducts detailed benchmarks at both

macro and micro levels. For the macro benchmark, we de-

velop three AI applications and characterize their thermal

footprints to understand the insights of thermal trend. Then,

we perform the micro benchmark by focusing on primitive

tasks to break down the thermal footprint of AI applications.
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The key insights from our experiments are threefold: First,

it is important to consider spatial and temporal factors, as

heat distribution varies across the system and over time,

depending on the applications. Second, there is a nonlinear

correlation between power consumption and heat generation.

Third, prioritizing CPU temperature management is crucial.

2 BENCHMARK SETUP

Benchmarking thermal characteristics of AI accelerators

involves a comprehensive evaluation of their performance

under various operational conditions. For this, we evaluate

these devices across a range of settings while subjecting

them to realistic workload scenarios.

2.1 Hardware Platforms
Coral Micro [5]: The Google’s Coral Micro (see Figure 1

(left)) is an AI accelerator-equipped tinyML device designed

to bring Google’s powerful edge AI capabilities into compact

and energy-efficient form factors. This platform is optimized

for machine learning (ML) inference, making it ideal for

portable and wearable technology. It features the Edge TPU

coprocessor, a tailor-made hardware accelerator for Tensor-

Flow Lite models, which is capable of performing up to 4

TOPS while maintaining a small footprint. The Edge TPU is

configured to operate at 500 Mhz for the experiment. The

core of the device is powered by Arm Cortex-M7 and Cortex-

M4, ensuring a balanced performance for general computing

tasks alongside AI workloads. Its maximum input supply

voltage is 5 V.

MAX78000FTHR [10]: The Analog MAX78000FTHR

(see Figure 1 (right)) is a platform engineered to ML infer-

ence at ultra-low power. It combines dual-core MCUs (Arm

Coretex-M4 and RISC-V) and a specialized convolution neu-

ral network (CNN) accelerator, achieving up to 100× reduc-

tion in both latency and power consumption compared to

running AI only on MCUs. The board includes MAX20303

Power Management Integrated Circuits (PMICs) that sup-

ports the input voltage of 3.7 V.

For each device setup, we used a Lithium ion polymer

battery with 3.7 V and 500 mA to imitate real world wearable

devices. Additionally, to observe the thermal impact of higher

voltages, a battery pack with 5 V and 10000 mA battery is

also used for on Coral Micro (Section 4.3).

2.2 Measurement Setup
2.2.1 Temperature measurement methodology. To measure

the temperature of our target platforms, we used two pri-

mary methods: utilizing an on-chip temperature sensor and
employing an external thermal camera. This dual approach

AI AcceleratorMicrophone Coral Micro
RT1176 

MCU

Camera 
Sensor SRAM

PMIC

Embedded temperature sensor

MAX78000FTHR

Camera Sensor
MAX32625

MCU

MicrophonePMIC

AI Accelerator

Figure 1: Compute element locations of Google Coral
Micro [5] (left) and Analog MAX78000FTHR [10]
(right)

to temperature measurement allows for a thorough under-

standing of the thermal dynamics affecting not only the core

components but also peripheral ones, such as SRAM, cam-

era sensors, and others. For our experiments, we kept the

ambient room temperature at 25°C.

On-chip temperature sensor: Many embedded boards

are equipped with built-in temperature sensors that provide

direct and precise measurements of the chip’s temperature.

This allows for real-time monitoring of its thermal state at

the system level.

Thermal camera: We measure the skin-contact point

temperature using a Flir One Pro [7] thermal camera, which

allows for a non-contact method to observe the spatial and

temporal thermal changes across the device’s surface.

2.2.2 Energy measurement. We also measure energy foot-

prints using a Monsoon High Voltage Power Monitor [11]

at a 5000Hz sampling rate to track the power consumption

trends, setting the input voltage to match the battery’s for

benchmarking.

3 UNDERSTANDING THERMAL
MEASUREMENTS

While most system resource footprints are presented as a

single numerical value, such as 30% CPU usage or 15 mW

power cost, presenting thermal footprints poses significant

challenges due to the temporal and spatial variations in tem-

perature. As heat generation and dissipation change over

time, the same task can result in different amounts of heat

depending on the previous temperature. Similarly, heat distri-

bution is not uniform across the device’s surface, as different

electronic components generate varying amounts of heat.

3.1 Temporal Temperature Variations
We explain the characteristics of thermal footprints in com-

parison with energy footprints, which are regarded the most

relevant to heat generation. Thermal footprints and energy

costs, often considered proportional, actually differ due to

distinct physical principles. Figure 2 shows a comparison of

such characteristics during application execution. The en-

ergy footprint of a task is static and can be expressed as a

single numerical value such as joules, because it is unaffected

by temporal variables. Although the instant power within
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Figure 2: Heat and power consumption over time on
Coral Micro.
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Figure 3: Heat localization on Coral Micro.

a task execution can be dynamic, the energy consumed to

perform a specific task remains constant regardless of the

device’s previous operational state.

In contrast, the thermal footprint is dynamic and signifi-

cantly influenced by the device’s previous thermal state, as

dictated by the laws of thermodynamics [4]-—specifically,
the first law, which relates to the conservation of energy,

and the second, which addresses entropy increase in iso-

lated systems. Thus, a device’s heat output depends not only

on the current task but also on residual heat from previous

activities. Furthermore, due to thermal inertia-—a property
of materials that quantifies the rate of heat absorption and

release—-temperature changes within a device are gradual.

Moreover, the temperature of a device does not increase in-

definitely; it approaches a saturation point where the rate of

heat generation equals the rate of heat loss, stabilizing the

temperature.

Therefore, temperature reporting should be done in a way

that reflects the nature of its temporal variation which in-

volves using thermal trends to convey changes over time,

rather than a single value. To this end, we define two ther-

mal metrics: (a) the saturation temperature and (b) saturation
rate by calculating the derivative of the temperature across

measurement intervals.

Saturation temperature (𝑇𝑠 ): First, we express the ap-
proach using the following equation:

Δ𝑇
Δ𝑡 ≤ 𝛼 , where Δ𝑇 is

the change in temperature between consecutive measure-

ments, Δ𝑡 is the time interval between these measurements

and 𝛼 is a predetermined threshold value. When the rate of

change in temperature
Δ𝑇
Δ𝑡 is less than or equal to 𝛼 for 𝛽

consecutive times, it indicates that the temperature change

is minimal, and the component is considered to have reached

its saturation point. For this work, we set the measurement

interval, 𝛼 , and 𝛽 to 30 seconds, 0.02, and 3, respectively.

Saturation rate (𝑅𝑠 ): We define the saturation rate by
the following expression: 𝑅𝑠 =

𝑇𝑠−𝑇𝑏
𝑡𝑠

where 𝑇𝑠 , 𝑇𝑏 refers to

the saturation temperature and beginning temperature re-

spectively. 𝑡𝑠 refers to the amount of time till saturation in

seconds.

3.2 Spatial Temperature Variations
Temperature variations across a device’s surface demonstrate

the non-uniform dynamics of heat distribution due to dif-

ferent hardware components generating varying heat levels

during distinct tasks. Energy consumed by each hardware

units also varies, but can be aggregated to reflect total en-

ergy consumption because energy has a single input source

like battery which allows us to analyze its overall impact.

However, understanding thermal patterns requires a spatial

approach, especially in such devices that contact the skin,

because temperatures at specific points can critically affect

user’s comfort and safety. Additionally, temperature at any

point is affected by not only past thermal conditions but also

the current operations of nearby components. Thus, in this

paper, we will report the temperature measurements in three

representative points: CPU, AI accelerator, and SRAM.

Figure 7 depicts the spatial nature of temperature varia-

tions of the Coral Micro. Figure 7a shows six locations of

the thermal measurements and Figure 7b shows the change

in temperatures over time at the corresponding locations.

The results show that, the saturation temperature and rate

differ significantly depending on the location. According to

the reference [13], skin damage may occur at temperatures

of 40°C. The marker X in Figure 7b represents the time it

takes for each location to reach the threshold. All locations,

except for L2, surpass 40°C. Specifically, L1 takes 180s, L3

takes 420s, L4 and L5 each take 300s, and L6 takes 630s.

4 THERMAL BENCHMARKS
4.1 Application Workloads
For the benchmark, we develop and experiment three appli-

cations that can run on AI accelerator-equipped wearable

devices, each predominantly using different components.

• Live scene analytics uses computer vision and ML mod-

els on real-time video feeds from cameras to interpret

and extract information continuously, warning users of
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potential hazards. We utilize quantized and Coral Micro

compatible version of SSD_MobileNetv2, and run it con-

tinuously.

• Life logger records surrounding events for daily logging,

using video feed and SSD_MobileNetv2 to analyze scenes

similar to live scene analytics but at 0.2Hz since it does not
require immediate responses.

• Keyword spotting detects specific keywords in real-time

audio streams, allowing smart devices to respond to voice

commands. It uses lighter Keyword spotting (KWS) model

compared to those for object detection, resulting in lower

computational demand and reduced AI accelerator usage.

Audio signals are collected and KWS model inference is

triggered every two seconds.

4.2 Thermal Comparison among
Applications

4.2.1 Google Micro Coral. Figure 4a, 5a and 6a shows the

temperature change over time of three locations—MCU, SRAM,

and TPU— on the Coral Micro board with a battery pack of

3.7 V while running three different applications. The results

indicate that the Live scene analysis application generates

considerably more heat (up to 48°C) than the others, attribut-

able to continuous image sensor readings, frequent memory

I/O operations, and more ML inference. Although the same

model was used, Life logger application produces a lower

thermal impact than Live scene analysis due to lower ML

inference cycles, providing intervals for passive cooling (up

to 41°C). Keyword spotting application shows a trend similar

to Life logger, as it includes two second interval between

inferences to collect and process audio signals, which is less

computational intensive reaching up to 42.6°C.

The three application’s saturation temperature (𝑇𝑠 ) and

rate (𝑅𝑠 ) are shown in Figure 4b, 5b and 6b. Despite the ther-

mal footprints appearing similar in Figures 5a and 6a, they

can be differentiated based on a combination of each compo-

nent’s 𝑇𝑠 and 𝑅𝑠 . Specifically, 𝑇𝑠 for SRAM (33.5°C) and the

𝑅𝑠 for the TPU (0.014°C/s) is lower in Keyword spotting com-

pared to𝑇𝑠 for SRAM (35.1°C) and 𝑅𝑠 for the TPU (0.022°C/s)

in Life logger.
The results also show an interesting relationship between

energy cost and produced heat. As expected, Live scene ana-
lytics consumes the highest power on average, 1035.4 mW

and generates the highest temperature. The average power

consumption of Life logger consumes around 633.3 mW,

while Keyword spotting consumes 750.9 mW. While the dif-

ference in power consumption is significant (almost 18%), it’s

not straightforward to directly correlate this to the amount

of heat generated. One reason is that the heat generated by

each hardware component differs, depending on the type

and intensity of the software task, even if the same amount
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Figure 4: Live scene analytic. (1035.4mW)
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Figure 6: Keyword spotting. (750.9mW)

of total power is drawn. This also implies that heat profiles

can not be simply estimated by the energy cost.

4.2.2 MAX78000FTHR. Figure 7a shows the temperature of

MCU, which often shows the highest temperature on the

surface, in comparison of MAX78000FTHR and Coral Micro

while running Live scene analytics; both boards are powered

on a battery pack of 3.7 V. The results show that, while a

noticeable increase in change is observed onGoogle CoralMi-

cro, the temperature for MAX78000FTHR board stays around

the ambient temperature (25°C) over the full duration of the

experiment. We conjecture that this is mainly due to the

use of the different processor chip. As a main processor, the

MAX78000FTHR uses an energy-efficient ARM Cortex-M4

core, while Coral Micro, on the other hand, uses a more pow-

erful ARM Cortex-M7 processor. Due to the lower power

profile of ARM Cortex-M4, the MAX78000FTHR tends to

generate less heat, contributing to a smaller thermal foot-

print. This is also verified from the power cost. Even for the
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(a) With enclosure. (b) Without enclosure.
Figure 8: Heat distribution.

same input voltage, 3.7 V, the average power consumed by

MAX78000FTHR and Coral Micro is 65.87 mW and 1035.4

mW respectively. As the noticeable heat changes are not ob-

served in MAX78000FTHR even with the highest workload,

we omit its footprint results in the next sections.

4.3 Impact of Input Board Voltage
The amount of voltage supplied to devices equipped with AI

accelerators can affect the intensity of the heat these devices

produce. Figure 7b illustrates the temperature of CPU over

time comparing the use of 3.7 V and 5 V battery as input

voltages for the Coral Micro. As expected, the results indicate

that using a higher voltage results in approximately 3°C more

heat. This is also clearly shown from the energy cost. Even for

the same application, the average power was 1035.4 mW and

1082 mW when 3.7 V and 5 V were provided, respectively.

The CPU generates 5% more heat when the board is sup-

plied with 5 V than at 3.7 V. This increase in heat can be

attributed to several factors. One contributing factor is that

when supplied with higher input voltage and the resistance

is static, it is natural that the current increases dictated by

the Ohm’s law. As a result, the increased current leads to

greater heat generation.

4.4 Impact of Enclosure
We conducted a case study comparing the temperature of

Coral Micro with and without an enclosure. Note that the

0 500 1000
Time (s)

20

30

40

50

Te
m

pe
ra

tu
re

 (°
C)

 (a) Enclosure

thermal camera
internal sensor

0 500 1000
Time (s)

20

30

40

50

Te
m

pe
ra

tu
re

 (°
C)

 (b) Bare bone

thermal camera
internal sensor

Figure 9: Temperature of CPU on Coral Micro board
(a) with and (b) without enclosure.

results of this experiment is not applicable to all enclosures

due to differences in size, material, and shape may impact dif-

ferent outcomes. For the enclosure of Coral Micro board, we

have used the plastic case manufactured by Google [6] and

put a battery pack as well underneath the board to simulate

a real wearable device.

Figure 8a and Figure 8b show the heat distribution of Live
scene analytics when operating at 3.7 V, with and without

an enclosure, respectively. As presented earlier, when an

enclosure was not used, heat hotspots are observed close to

the hardware components that generate heat. Interestingly,

with a casing, as depicted in Figure 8a, heat is spatially dis-

tributed inside while highest temperatures are focused near

the outlets, highlighted in red box in each scenario.

We further compare temperatures measured from a ther-

mal camera and an on-chip sensor. Figure 9 (a) shows the

CPU temperature in a Coral Micro enclosure, revealing a

significant disparity between sensor readings and thermal

imaging due to heat trapped by the casing. The results indi-

cate that the temperature builds up within the casing and

eventually exceeds 50°C, which are record-high values in

comparison to results obtained without the casing.

Figure 9 (b) illustrates the temperature changes for a Coral

Micro bare-bone setup. Ideally, both measurements should

align, but there is a 4°C discrepancy, possibly due to sensor

placement, emissivity settings, reflective surfaces, calibration

errors, and other environmental factors.

4.5 Micro Benchmark: Primitive Tasks
To further understand the different heat profiles of appli-

cations, we carry out an in-depth analysis of the thermal

impact of primitive tasks. While continuously running these

individual tasks alone in isolation does not reflect typical

application behavior, it helps pinpoint the thermal effects

of their execution. We elaborate four tasks which are com-

monly included in AI application pipelines and investigate

their thermal characteristics when these tasks are executed

continuously.
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Figure 10: 𝑇𝑠 and 𝑅𝑠 per task.

• MLmodel inference task executes model using an AI ac-

celerator.In Coral Micro, this operation is called Invoke().

We utilise quantised and Coral Micro compatible version

of SSD_MobileNetv2.

• Memory I/O task accesses and retrieves data from the

flash memory and buffer in SRAM. LfsReadFile() opera-

tion reads and buffers 6.4MB of data continuously.

• Sensor I/O task captures sensor from the hardware and

write to memory. GetFrame() is used to continuously

capture 324×324 image in Coral Micro.

• Idle task refers to a background process which has no

other active tasks or processes requiring CPU time.

Figure 10 shows the 𝑇𝑠 and 𝑅𝑠 for each task, with the idle

task serving as a baseline. The results show important impli-

cations. First, as expected, the 𝑇𝑠 and 𝑅𝑠 significantly vary

depending on the task because each task primarily utilizes a

specific operation and a subset of components. For example,

the 𝑇𝑠 and 𝑅𝑠 (25.3°C, 0.014°C/s) are significantly lower for

the TPU component during theMemory I/O task compared to

ML model inference task (32°C, 0.033°C/s). Second, regardless

of the task type, CPU always reports the highest 𝑇𝑠 and 𝑅𝑠
since it is continuously used to control other peripherals.

This remains true even for idle tasks, which report a 𝑇𝑠 of

37.36°C without any tasks. This indicates the importance of

focusing on CPU heat management in the design of heat-safe

wearable hardware. Third, the AI accelerator efficiently man-

ages temperatures during continuous ML model inference
task, maintaining an increase of no more than 7°C, due to the

edge TPU’s specialized hardware design that supports high

parallelism of MAC (multiply-accumulate) operations in AI

accelerators which makes them highly efficient and hence

generates less heat.

5 KEY TAKEAWAYS & CONCLUSION
We explored the thermal characteristics of AI accelerator-

equippedMCUs. Our findings underscore two critical aspects

of thermal management in devices. First, the location of heat-

generating components significantly affects device tempera-

tures, necessitating multiple values for accurate representa-

tion. Second, we emphasize the importance of considering

the temporal aspect of temperature data, rather than relying

solely on basic metrics. We introduced novel metrics that

combines saturation temperature and rate per component

and assess using both macro and micro benchmarks. This

comprehensive insight is particularly crucial for wearable de-

vices, where the compact size requires strategic placement of

electronic components within a constrained space to ensure

user comfort and device efficiency.
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