
GrooveMeter: Enabling Music Engagement-aware Apps by
Detecting Reactions to Daily Music Listening via Earable Sensing

Euihyeok Lee
Korea University of
Technology and

Education
Republic of Korea

Chulhong Min
Nokia Bell Labs
United Kingdom

Jaeseung Lee
Korea University of
Technology and

Education
Republic of Korea

Jin Yu
Korea University of
Technology and

Education
Republic of Korea

Seungwoo Kang∗
Korea University of
Technology and

Education
Republic of Korea

ABSTRACT
We present GrooveMeter, a novel system that automatically de-
tects vocal and motion reactions to music and supports music
engagement-aware applications. We use smart earbuds as sens-
ing devices, already widely used for music listening, and devise
reaction detection techniques by leveraging an inertial measure-
ment unit (IMU) and a microphone on earbuds. To explore reac-
tions in daily music-listening situations, we collect the first-kind-of
dataset containing 926-minute-long IMU and audio data with 30
participants. With the dataset, we discover unique challenges in
detecting music-listening reactions and devise sophisticated pro-
cessing pipelines to enable accurate and efficient detection. Our
comprehensive evaluation shows GrooveMeter achieves the macro
𝐹1 scores of 0.89 for vocal reaction and 0.81 for motion reaction
with leave-one-subject-out (LOSO) cross-validation (CV). More im-
portantly, it shows higher accuracy and robustness compared to
alternative methods. We also present the potential use cases.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
Listening to music is an integral part of our life. According to a
study [1], in 2022, we listened to music for more than 2.87 hours
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daily, equivalent to listening to about 57 songs. While listening to
songs, we often nod our heads, tap our feet, and sing along to the
songs simultaneously. These are the natural responses [8, 9, 27, 37],
which is considered a characteristic showing our engagement with
music [3, 14]. The reactions are compelling to enable interesting
music engagement-aware applications. For example, music player
apps can leverage listeners’ on-the-fly reactions to provide an
engagement-aware automatic music rating and recommendation
by observing which part of a song listeners often react to.

Observing responses to music listening has widely been in-
vestigated in music psychology studies. They provided insight-
ful findings to understand the characteristics of responses to mu-
sic listening. However, adopting these methods for real-life ap-
plications is almost impossible because they mostly rely on self-
report or bulky experimental equipment in controlled environments.
For example, the previous studies measured brain activity using
positron emission tomography or functional magnetic resonance
imaging [7, 25], observed music-induced movement using motion
capture systems [8, 15, 28], and measured physiological responses
such as an electrocardiogram and galvanic skin response [29].

We propose GrooveMeter, a novel mobile system that tracks reac-
tions to music listening to support music engagement-aware appli-
cations. As an initial attempt, we focus on readily observable bodily
reactions which people usually experience while listening to mu-
sic [16]. Specifically, we target singing along, humming, whistling,
and head motion because they are common reactions from our
in-the-wild dataset presented in §4. To this end, we use earbuds
as sensing devices and devise reaction detection techniques by
leveraging an IMU and a microphone on earbuds.

While research efforts have been made to recognize human
activities and gestures, detecting music-listening reactions with
sensor-equipped wearables has yet to be studied. Our observation
reveals unique challenges in detecting the reactions accurately and
robustly using audio and motion sensing. First, there are often
reaction-irrelevant events with similar signal characteristics, which
can cause false positive errors (e.g., mumbling to talk to themselves
or looking at monitors and a keyboard alternately). Second, since
listening to music is often a secondary activity, audio and motion
signals can be affected by background noise (e.g., sound of talking
nearby) and other motion artifacts, respectively. Models trained
with data from a lab environment show poor performance in daily
situations. Third, running reaction detection models on mobile
devices incurs considerable overhead for continuous execution.

To address the challenges, we devise sophisticated processing
pipelines for vocal and motion reaction detection with three main
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features. First, we investigate the signal characteristics of data seg-
ments that can be certainly labeled as non-reaction and devise a
method to effectively filter out those segments at the beginning of
the pipeline, not only for cost-saving but also for improving robust-
ness. Second, we elaborate multi-step reaction detection pipelines,
reflecting the unique patterns of reactions. Third, we leverage the
semantic similarity between sensor data and musical structure in-
formation retrieved from a song. The intuition is that the reactions
correlate with the song, e.g., a listener’s humming would naturally
follow the song’s pitch pattern. We correct ambiguously labeled
audio segments based on the prosodic similarity at the last stage.

To build and evaluate GrooveMeter, we collect the first-kind-of
dataset, called MusicReactionSet, from 30 participants under four
situations (resting in a lounge, working at an office, riding in a
car, and relaxing at a cafe). It contains 926-minute-long IMU/audio
data with manually-labeled accurate annotation. Our extensive
evaluation shows that GrooveMeter achieves the macro 𝐹1 scores of
0.89 and 0.81 with LOSOCV for vocal andmotion reaction detection,
respectively. More importantly, it achieves higher accuracy and
robustness compared to alternatives. Especially in noisy situations,
we observe a significant performance enhancement, e.g., an increase
in 𝐹1 score by up to 0.21 and 0.09 for vocal and motion reactions
in the case of relaxing at a cafe, respectively. To demonstrate its
usefulness, we develop a prototype on Android phones and earbuds,
along with example applications. We present a case study showing
the feasibility of automatic music rating and familiarity detection.

We summarize the contribution of this paper as follows. First,
we collect MusicReactionSet, containing IMU/audio data with 30
participants to explore reactions in daily music-listening situations.
Second, we develop GrooveMeter, a novel system that detects re-
actions to music listening via earables sensing. To the best of our
knowledge, this is the first to present an earable sensing solution
specialized for automatically detecting vocal and motion reactions
to music. Third, we propose a novel technique to detect reactions
efficiently and robustly by filtering out reaction-irrelevant data seg-
ments and leveraging music information retrieved from a song. We
also present a comprehensive evaluation using MusicReactionSet.

2 RELATEDWORK
Reaction sensing: Several works attempted tomonitor consumers’
reaction to multimedia content or performing arts, e.g., the re-
sponses of users watching movies [4], audience responses in live
performances [31], the experience of audiences in the play [43],
the frisson of audience during music performances via physiologi-
cal sensing [17]. They share a high-level goal with ours, detecting
content consumers’ reactions at runtime. However, due to different
characteristics of content-dependent reactions, the required sen-
sor modality, devices, and techniques should be different. We aim
at detecting music-listening reactions by reflecting unique signal
characteristics of the reactions. We also discover an opportunity
for robust detection in noisy conditions. We develop a novel tech-
nique to exploit the semantic similarity between sensor data and
music information. Note that the previous works do not utilize the
characteristic of contents, but rely on sensor data only.

Human sensing using earables: Recent works tried to sense
diverse human contexts using IMUs and microphones in earbuds.

They use IMUs to recognize physical activity [32], facial expres-
sion [26, 41], jaw movement [22], and gait posture [20]. Micro-
phones are used for eating detection [32], motion tracking [10],
gait sensing [11], and human activity recognition [30]. Musical-
Heart [34] monitors heart rate and activity level. However, we
focus on novel reaction sensing for daily music-listening situations.

Understandingmusic listening behavior and contexts: Some
studies tried to understand music-listening behavior and contexts.
One of the initial attempts was made in [35], which used text mes-
sages to analyze the music people heard. A smartphone-based tool
to collect music-listening behavior was also developed, e.g., sur-
rounding contexts, and user activity [45]. For contextual music
recommendation, a study tried to understand the users’ intent for
listening to music and its relationship to common daily activities
with an online survey [42]. A music recommendation model based
on activities, e.g., working, studying, and sleeping, was also pro-
posed [44]. Our work differs from them in two aspects. While most
of the existing studies focused on a user’s behavior and contexts,
i.e., what/when/why/where people listen to music, we focus on how
people react to music, which has been rarely studied in the field.
Next, we address unique challenges in detecting reactions to music
in real-life situations and devise novel reaction detection methods.

3 REACTION SENSING
Monitoring on-the-fly music listening reactions in unconstrained
mobile environments opens a broad spectrum of applications. Fig-
ure 1 shows the high-level process of how GrooveMeter supports
music engagement-aware applications. First, as a common basis for
any applications, GrooveMeter focuses on detecting vocal and mo-
tion reactions in real time using IMU and audio signals, i.e., which
type of reaction was made, and when and for how long. By combin-
ing this primitive information, GrooveMeter further provides music
engagement-aware applications with high-fidelity information, e.g.,
which part of a song listeners most sang along to or moved. We
discuss the potential scenarios with the case study in §5.3.

In this work, we target singing along, humming and whistling
as vocal reactions, and head motion as motion reactions. Note that
these are commonly observed reactions from our in-the-wild dataset
with 30 participants presented in §4.

We develop GrooveMeter based on three design considerations.
• Unobtrusive sensing: Tracking reactions to music in real-life
situations should not rely on neither infrastructure-deployed nor
excessive on-body sensors.

• Accurate and robust detection: Reaction detection should be
accurate and robust against reaction-irrelevant behaviors similar
to reactions, background noise, and other motion artifacts in
daily music-listening situations.

• Low overhead: Although GrooveMeter runs only while a user
listens to music, users would not prefer to consume much battery.

3.1 Vocal Reaction Detection
3.1.1 Challenges. Vocal reaction events: A straightforward way
of detecting sound events like vocal reactions is to use pre-trained
models or develop new ones. However, simply adopting existing
audio models does not fit our purpose. Recently, many sound classi-
fication models have been released, which are pre-trained with an
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Figure 1: High-level process to support music engagement-
aware applications.

Figure 2: YAMNet result for vocal reactions

enormous amount of data and predict a large number of real-life
events. For example, YAMNet [19] classifies 521 audio event classes.

The pre-trained models show satisfactory accuracy for daily
events. However, none of them includes our target vocal reaction
events yet, and accordingly they show poor performance. For ex-
ample, YAMNet’s singing label is mostly derived from video clips
where a song is played with instruments. However, when listeners
make singing reaction while listening to music via earbuds, the
captured audio includes only their singing voice. Figure 2 shows
our preliminary study with YAMNet; it shows the output of the soft-
max layer. YAMNet hardly selects the singing label, but it classifies
singing reactions mostly as the speech. Developing a custom model
with newly collected data could address these issues. However, it
still requires collecting large-scale real-life sound events to reflect
user variability and avoid errors due to noises in daily situations.

Mixed with background noise: Background noise (e.g., a
sound of nearby people talking or background music in a cafe)
makes it more complicated to detect vocal reactions correctly. We
observe that YAMNet often classifies singing and humming reac-
tions mixed with diverse noise in a cafe as themusic label. Moreover,
under a noisy condition, YAMNet’s softmax scores of the reaction-
relevant labels tend to be relatively low and sometimes even lower
than reaction-irrelevant labels. From our data collected in noisy
places such as a cafe and a car, only 5.3% of singing/humming seg-
ments result in greater than 0.95 of YAMNet softmax score; in less
noisy places such as lounge, 11.7% does so.

Intermittence and alternation:When a vocal reaction is made,
it does not continue ceaselessly within a session, but sporadically
and sometimes alternately with other reactions. For example, when
listeners sing along, we observe intermittent, short-period pauses
that the listener makes to breathe. Also, they often make differ-
ent types of reactions alternately. For example, while listeners are

Figure 3: Vocal reaction detection pipeline

(a) Sound level (b) Movement level
Figure 4: CDF of sound and movement levels

singing along, they often switch to humming or whistling momen-
tarily if they do not know the lyrics and come back to sing along
again in the part where they know the lyrics.

Processing cost: Sound classification often involves processing-
heavy operations such as MFCC computation and deep neural
networks. While today’s models provide optimization for on-device
processing, e.g., MobileNet architecture of YAMNet, it still incurs
significant overhead for continuous execution. For example, contin-
uously performing audio classification with YAMNet on Galaxy S21
while playing songs incurs 3% drop in battery level for one hour.

3.1.2 Overview. To address the aforementioned challenges, we de-
vise a novel pipeline that detects vocal reactions efficiently and
reliably. Figure 3 shows its overview with three major operations.
First, we adopt the early-stage filtering operation to save cost. Its
key idea is to filter out data segments that can be certainly labeled as
non-reaction (§3.1.3). Second, we initially classify sound events with
the YAMNet model (§3.1.4) and correct ambiguous labels by lever-
aging music information retrieved from a song being played (§3.1.5).
Last, it smooths the final outputs to cope with the momentarily
introduced short, intermittent events (§3.1.6).

3.1.3 Certain Non-reaction Signal Filtering . A filtering operation
aims to identify data segments that can be certainly labeled as non-
reaction, and avoid the processing-heavy operations for those seg-
ments. It is based on two observations. First, vocal reactions would
make sound events above a certain volume due to a short distance
between the earbud’s microphone and the wearer’s mouth. Thus,
sound events below a certain volume threshold can be confidently
labeled as non-reaction. Figure 4a shows the cumulative distribution
function (CDF) of one-second decibel numbers for sound events
and validates our hypothesis. Second, vocal reactions also incur a
certain level of kinetic movement of an earbud because the mouth
movement for vocal reactions activates the Zygomaticus muscle
located between the mouth and ear [22, 26]. If no motion is detected,
the corresponding audio signal is unlikely to be the reaction label.
Interestingly, large motion is also associated with non-reaction
since listeners hardly make vocal reactions when they walk or run.
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Table 1: Mapping from YAMNet to GrooveMeter labels
YAMNet GrooveMeter
humming, singing singing/humming
whistling, whistle whistling
speech, music ambiguous (candidate for singing/humming or non-reaction)
others non-reaction

Figure 4b shows the CDF of the standard deviation of one-second
accelerometer magnitude, which supports this observation.

Based on the findings, we design a two-step filtering component.
It first monitors the level of movement defined as the standard
deviation of accelerometer magnitude values, and filters out data
segments out of the threshold range (we set the range to 0.0104 and
0.12). Second, it further filters out previously unfiltered segments if
their decibel is lower than a threshold (currently, 49 dB). We place
the motion-based filter before the sound-based filter because it is
more lightweight. From our measurement, the former consumes 113
mW on Galaxy S21, while the latter does 134 mW. It labels filtered
segments as non-reaction and delivers them to the post-processing
stage without performing the subsequent operations.

3.1.4 Sound Event Classification . Target events: We target three
types of vocal reaction events; singing (along)/humming, whistling,
and non-reaction. We combine singing and humming into the same
class because they are often observed alternatively, even in a single
reaction session, as mentioned above.

Preprocessing: Audio data are resampled at 16 kHz and divided
into 1-second-long segments. We then apply a Low Pass Filter of
order 1 (cut-off at 2 kHz) to reduce noise signals with frequencies
higher than the major frequency range of the vocal reactions.

Audio feature extraction: The preprocessed segments are con-
verted to spectrograms using the Short-Time Fourier Transform
with a periodic Hann window; we set a window size and a window
hop to 25 ms and 10 ms, respectively. We then map the spectrogram
to 64 mel bins with a range between 125 and 7,500 Hz and compute
log mel spectrograms. Finally, we frame the features into a matrix
of 96× 64 (96 frames of 10 ms each and 64 mel bands of each frame).

Classification and labeling: We use YAMNet [19] as a base
component for the sound event classification. However, since the
taxonomy of YAMNet labels does not fit our target classes, we
construct a mapping from YAMNet to GrooveMeter labels, as shown
in Table 1. As discussed, YAMNet is poorly discriminating singing
reactions from speech and music. We thus map speech and music
labels from YAMNet output to ambiguous. We perform further
investigation for ambiguous segmentswith the correction operation.
Other labels are directly sent to the post-processing operation.

Rank constraint relaxation: Simply relying on the YAMNet’s
result is insufficient for accurate detection even with applying label
mapping. Due to the background noise and characteristics of vocal
reactions, YANNet outputs speech or music as a top-1 classification
label only for 57.8% of singing/humming segments in our dataset.
The ratio increases as we include speech or music labels in a lower
rank, e.g., 65.4% (top 2) and 70.1% (top 3). The whistling segments
also show a similar characteristic.

To address the problem, we employ a rank constraint relaxation
policy, allowing some of the segments that YAMNet does not clas-
sify as one of our target labels to go through the correction step.
Here we need a balance to avoid unnecessary costs for the correc-
tion step and an increase in false positive errors due to additional

(a) Singing along (b) Non-reaction

Figure 5: Notes of a chromatic scale

Figure 6: Similarity differences

non-reaction segments that can be incorrectly classified as vocal
reactions. We do not apply relaxation if the quality of the YAMNet
output is good enough. Otherwise, we check if lower-ranked results
include some vocal reaction labels. If so, we consider it an uncertain
label that needs further investigation.

To quantify the quality of the classification output, we adopt
the strategy of uncertainty sampling [39] in the domain of active
learning. More specifically, we use the least margin, whichmeasures
the uncertainty by taking the difference between the confidence
values of the top two output classes. If the margin is lower than a
threshold, we check top-𝑘 YAMNet output labels. If they include
our target labels (the first three rows in Table 1), the segment is
considered uncertainly labeled and forwarded to the correction
step. We empirically set the margin threshold and 𝑘 to 0.9 and 5.

3.1.5 Music information-leveraged Correction . We finalize ambigu-
ous or uncertain segments from the previous step by leveraging
music information of a played song. Based on the prosodic similar-
ity between the audio signal and the song, we correct ambiguous
segments with speech or music labels to singing/humming or non-
reaction. We also deal with uncertain segments in the same way.

Prosodic similarity computation: We consider the melody to
measure the prosodic similarity between a vocal signal and a song,
which refers to a linear succession of musical tones. Our intuition is
that vocal reactions would follow the sequence of notes of a played
song, but reaction-irrelevant speech signals would not. Step 2-2
in Figure 3 shows the detailed procedure. To extract the sequence
of a note, we first extract the pitch information every 0.1 seconds
using CREPE [24], a state-of-the-art pitch tracker. We then convert
it to a musical note with an octave number. We convert it again
to a 12-tone chromatic scale without an octave number because
we observe that vocal reactions are often made an octave higher
or lower than a song. For the song’s audio file, we perform vocal
extraction before pitch extraction to focus on the predominant
melodic line of music. This insight is based on our observation that
vocal reactions mostly follow vocals rather than instruments. We
use Spleeter [18] to separate a vocal source from a song.

We compute the similarity between two sequences of notes (one
from a user’s vocal signal and the other from a song) and make a
final decision. We map 12 notes (from C, C#, to B) to twelve integers
(0 to 11). Figure 5a shows a high correlation of note patterns with
the song, but the non-reaction part does not (Figure 5b).We consider
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(a) Nodding - case 1 (b) Nodding - case 2

Figure 7: Diverse patterns of motion reaction

(a) Riding in a car (b) Chewing cookie

Figure 8: Repetitive, reaction-irrelevant motions
dynamic time warping (DTW) [6] as a similarity function since two
patterns can vary in speed.

We label a segment as non-reaction if the DTW distance is larger
than a threshold. Otherwise, we apply label mapping and confirm
its final label, i.e., speech and music to singing/humming, whistling
and whistle to whistling, humming and singing to singing/humming.
Currently, we set the threshold to 130. Figure 6 presents the dis-
tribution of DTW distance values of singing/humming reaction
and non-reaction segments in our dataset. Interestingly, it shows
similar distribution regardless of noise conditions.

3.1.6 Post processing . Smoothing: We use a Hidden Markov
Model (HMM) to smooth the classification output. The key idea is
to train the HMM model from the sequence of the classification
outputs of the training dataset and to use the trained model for
the output smoothing. We define the observation sequence as a
sequence of the classification outputs and perform smoothing by
estimating the optimal sequence of hidden states, which can be
mapped to the smoothed sequence of reaction events. More specif-
ically, for a given sequence of classification outputs at time 𝑡 , 𝑂𝑡

= ( 𝑜1, . . . 𝑜𝑡 ), we extract the sequence of hidden states with the
maximum probability, 𝑆𝑡 = ( 𝑠1, . . . 𝑠𝑡−1 ), from time 1 to 𝑡 − 1. Then,
the smoothed value at time 𝑡 , 𝑠𝑡 , is obtained as follows:

𝑠𝑡 = argmax
𝑠𝑡

𝑝 (𝑠𝑡 |𝑂𝑡+1, 𝜆) (1)

We apply the Viterbi algorithm [13] for efficient computation of
maximum probability and use the 6 second-long window as an
input sequence, i.e., a sequence of recent 6 classification outputs.

3.2 Motion Reaction Detection
3.2.1 Challenges. Periodic and repetitive, but diverse motion
trajectories: From our observation, motion reaction often exhibits
repetitive, periodic patterns. For example, head nodding (Figures 7a
and 7b) continues for some duration with a regular pattern, which
yields a signal waveform with a certain level of periodicity. One
may argue that typical pipelines for physical activity recognition
can easily capture such patterns. However, we found that classifiers
using widely-used features representing the signal’s periodicity or
statistical features were ineffective for in-the-wild reaction data,
as shown in §5.2. It is mainly because real-life motion reactions
to music tend to vary, unlike well-defined activities or gestures
following typical motion trajectories. For example, people often
move their heads to the music, sometimes up and down or side to
side, and the magnitude and speed of the reaction also vary, even
for the same person or listening session. Figures 7a and 7b show
two different patterns of head nodding from the same participant.

Figure 9: Motion reaction detection pipeline.

Figure 10: CDF of movement
level of motion reactions.

Figure 11: Frequency distribu-
tion of motion reactions.

Confusing motion trajectories from reaction-irrelevant
movements: In our preliminary study, there are several reaction-
irrelevant movements that show repetitive patterns and accordingly
can cause classification errors in reaction detection. For example,
the movement and vibration of a car during a ride can cause the
repetitive IMU signal on earbuds, even though the person does not
make any specific motion (Figure 8a). Similarly, chewing a cookie
also generates a certain level of repetitive patterns (Figure 8b).

Affected by other motion artifacts: People often listen to
music as a secondary activity, which means that their primary
task (e.g., relaxing at a cafe) and corresponding movement (e.g.,
chewing a cookie) can affect the IMU signal. For example, when a
user is nodding to the rhythm while performing another activity,
the periodicity from the nodding movement is less clearly shown.

3.2.2 Overview. We design a novel pipeline for motion reaction
detection that addresses the challenges. Figure 9 shows its overview
with two main operations, preprocessing and reaction detection.
First, we adopt a simple filter to avoid unnecessary processing for
the classification operation (§3.2.3). Then, we remove the noise
caused by other motion artifacts by adopting a low-pass filter
(§3.2.4). Second, we extract a sequence ofmotion units from raw IMU
signals to represent an abstraction of a user’s motion pattern. With
the sequence, we detect motion reaction using LSTM, performing
binary classification (head motion vs. non-reaction) (§3.2.5).

3.2.3 Reaction-irrelevantmovement filtering . Wedesign a threshold-
based filter based on our observation. It sorts out reaction-irrelevant
data by looking into the movement level. We define the movement
level as the standard deviation of a 1-second segment of accelerome-
ter signal. Similarly in themotion filter of vocal reaction detection, it
is obvious that no movement implies non-reaction. Large movement
is also associated with a non-reaction, because it is very unlikely
that listeners nod their head while doing workout, running, etc.
Note that we carefully select a threshold range that can filter out
non-reaction cases without missing reaction cases. We examine the
CDF of the movement level (see Figure 10) and empirically set the
low and high threshold values to 0.0092 g and 0.114 g, respectively.

3.2.4 Noise removal . The next step is to remove motion noise
caused by other motion artifacts. The intuition behind this idea is
that a listener’s motion reaction tends to follow beat patterns of a
song. Accordingly, we could expect that motion reactions tend to
exhibit low frequency movement, considering that typical tempo of
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Figure 12: In-the-wild data collection in various places

Table 2: Characteristics of music listening situations
Situation Reaction-irrelevant motions Background Noise

Resting
in a lounge

random movement while
sitting on a chair

noise from air-purifier,
murmuring sound outside, ...

Working
at an office

motions during web search
and word processing

keyboard typing, mouse
clicking sound, ...

Riding in a car bouncing along the road various noises of driving car

Relaxing
at a cafe

drinking coffee,
chewing a cookie

background music, nearby
conversation, chewing sound, ...

common music genres ranges between 60 and 180 beats per minute.
Figure 11 shows a distribution of dominant frequency extracted
from our motion reaction data. Dominant frequencies are less than
4 Hz. Thus, we process the raw IMU data with a low pass filter (LPF)
of order 1 (cut-off at 5 Hz), allowing some margins.

3.2.5 Motion reaction classification . The classification operation
includes two major steps. The first step is deriving temporal motion
patterns from IMU signals. As mentioned, motion reactions do not
showwell-defined, typical movement trajectory and duration. Thus,
we devise a method that abstracts IMU signals reflecting human
motions and detects motion reactions accordingly. We define a
motion unit representing a set of features derived from a short time
interval of IMU data. It can be viewed as an abstraction of the user’s
motion pattern, which represents reactions to music, random body
motion irrelevant to the reactions, or a stationary state. To extract
motion units, we segment the preprocessed IMU data into 100ms
and compute statistical features for each gyroscope axis, i.e., max,
min, mean, range, standard deviation, and RMS.

Next, we classify a sequence of motion units into one of two
classes, head motion and non-reaction. Considering that the input
is a temporal sequence, we adopt an LSTM model widely used for
predicting sequential data. We build a classification model consist-
ing of an LSTM layer with 32 hidden units, a dropout layer with a
drop rate of 0.5, a ReLU layer, and a softmax layer. We empirically
set a window size to 7 seconds, where the 𝐹1 score starts to saturate.

4 MUSIC REACTION DATA
To build and evaluate GrooveMeter, we create MusicReactionSet, a
novel dataset consisting of audio and IMU data from a variety of
music listening reactions. To the best of our knowledge, this is the
first dataset targeting reactions in music listening situations. The
data collection was conducted under IRB approval.

Participants:We recruited 30 participants (M: 18, F: 12) from
a university campus; their ages were between 20-26 (mean 22.7).
We obtained informed consent from the participants. All of them
reported that they frequently listen to music in daily life. They were
compensated with a gift card worth USD 18.

In-the-wild data collection: Each participant was invited to
four places and listened to a set of songs while doing other activities,
i.e., resting in a lounge, working at an office, riding in a car, and
relaxing at a cafe (see Figure 12). We consider these places to (a)

reflect diverse real-life situations where people often enjoy listening
to music and (b) investigate the impact of diverse audio and motion
noise. Table 2 shows the characteristics of four situations.

In each situation, the participants freely chose three songs with
two different genres, i.e., exciting/up-tempo and slow/soft, from
the top-50 chart in a music streaming service. They listened to the
songs using earbuds and a smartphone provided. To collect data
from their natural reactions, we did not give any instruction and
also let them be alone in the places. Note that we did not include
the data from the first song because they felt a little distracted
right after they moved to a new place. Finally, 926 minute-long
IMU/audio data were collected from 240 music listening sessions.

Setup: We used earbuds for music streaming and IMU/audio
sensing, and an Android phone for connecting earbuds and con-
trolling music playing. For earbuds, we used Apple AirPods Pro,
but also additionally used eSense [21] to collect IMU data, i.e., one
eSense unit on the left ear and one AirPod unit on the right ear; note
that AirPods did not allow developers to access IMU data when we
collected the data. The sampling rate of a microphone on AirPods
Pro and IMU on eSense was set to 44.1 kHz and 70 Hz, respectively.
For ground truth tagging, we recorded data collection session with
a covered camera, marked with a red rectangle in Figure 12.

5 EVALUATION
For evaluation, we implemented the prototype of GrooveMeter as
an Android service on two phones, Galaxy S21 and Galaxy S8+.
We use TensorFlow Lite [2] to run our pipelines with YAMNet
and LSTM. We also measure the processing latency and energy
cost. Due to the page limit, we only brief the energy cost, 3.7 mJ/s
(w/ filtering) and 7.3 mJ/s (w/o filtering) on Galaxy S21. The early
filtering approach saves 50% of energy.

5.1 Vocal Reaction Detection
5.1.1 Overall Performance. We present the overall performance of
the vocal reaction detection. We use LOSO CV with the MusicReac-
tionSet dataset. Note that we used the original YAMNet model [19]
for the classification task, thus the same model is used for testing
all subjects. LOSO CV is considered to obtain the threshold values
in the vocal reaction pipelines to avoid the over-fitting problem.

Figure 13 shows the averaged precision and recall of vocal reac-
tion labels over 30 validations. The results show that GrooveMeter
achieves the reasonable performance of the vocal reaction detection
even for an unseen user and under a variety of real-life background
noise types; the macro-averaged 𝐹1 score is 0.90. More specifically,
it detects singing/humming reactions with 0.85 and 0.87 of preci-
sion and recall, respectively, and whistling reactions with 0.93 and
0.78. The recall of whistling is relatively low compared to others
because some whistling segments with weak sound or mixed with
background noise are incorrectly inferred by YAMNet. The results
also show that our method correctly identifies non-reaction events.
The precision and recall for the non-reaction label are 0.99 and 0.97.

5.1.2 Effect of filtering: We examine the effect of early-stage filter-
ing. Figure 14 shows the 𝐹1 score and filtering ratio with different
filtering strategies. For the study, we developed three different ver-
sions of vocal reaction detection pipeline; none, motion, and sound.
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Figure 13: Overall performance Figure 14: Effect of filtering Figure 15: Robustness against noise

We define the filtering ratio as the number of filtered segments di-
vided by the total number of segments; a high filtering ratio means
less processing cost. Nonemeans the reaction detection without any
filtering operation. Motion and sound refer to the pipeline when
only motion- and sound-based operation is added, respectively.

Interestingly, the filtering operation is not only effective for re-
ducing computation cost, but also helpful in improving performance
by effectively filtering out reaction-irrelevant segments. While none
achieves 0.8 of 𝐹1 score without any filtering, both (applying both
filtering operations) increases the 𝐹1 score by 0.1. Specifically, the
filtering ratios of motion and sound-based operation are 12% and
60%, respectively. The motion-based filtering reduces a fair amount
of non-reaction data to process without compromising performance.
The sound-based filtering reduces even more amount of data. Also,
it effectively removes false positives of the original YAMNet, which
were made due to background noise, thereby increasing the 𝐹1
score. When both operations are used together, the filtering ratio
increases up to 63% together with the increase in 𝐹1 score by 0.1.

5.1.3 Robustness against acoustic noise: We further investigate the
robustness of our technique against noise in real-life situations.
As presented in §4, we consider four places exhibiting different
noise characteristics, and compare the 𝐹1 scores. We break down
the performance by comparing GrooveMeter with two variants:
YAMNet-label-mapping and GrooveMeter-w/o-smoothing. We in-
clude the filtering operation to examine overall performance.

Figure 15 shows the macro-averaged 𝐹1 scores for vocal reactions
and non-reactions. The results show the GrooveMeter’s robustness
regardless of different noise characteristics. Compared to YAMNet-
label-mapping (YAMNet-based classification and label mapping),
it increases the 𝐹1 score by 0.08, 0.09, 0.12, and 0.21 in lounge,
office, car, and cafe, respectively, by adopting music information-
leveraged correction (GrooveMeter-w/o-smoothing) and smoothing
(GrooveMeter). The correction operation does contribute much in
the cafe due to relatively large false positives from background
noise (0.04 increase of 𝐹1 score). Interestingly, the smoothing shows
meaningful improvement by leveraging the temporal association
of reaction labels (further 0.17 increase in 𝐹1), thereby achieving
comparable performance to other places.

5.2 Motion Reaction Detection
We present the performance of our motion reaction detection. For
the validation, we used LOSOCVwith theMusicReactionSet dataset.
We implement three baselines by referring to prior works as follows.

• RandomForest represents feature-based sensing pipelines to
recognize repetitive and periodical physical activities, e.g., [5, 23,
33]. We use time and frequency-domain statistical features [12]
and auto-correlation-derived features [5, 23] from IMU data, and
choose Random Forest as a classifier.

• CNN represents a deep learning method for activity recognition,
e.g., [38], which uses convolutional neural network with 6-axes
IMU data. We build a classifier consisting of 3 convolutional
layers with a ReLU activation function, a max pooling layer, 2
dropout layers with a drop rate of 0.5, and a softmax layer.

• ConvLSTM represents a method that combines convolutional
and LSTM recurrent layers for activity recognition with wear-
ables, e,g., [36]. It uses convLSTM [40] with 6-axes IMU data. We
build a model consisting of a ConvLSTM layer, a dropout layer
with a drop rate of 0.5, a ReLU layer, and a softmax layer.

5.2.1 Overall Performance. Figure 16a shows the performance com-
parison between GrooveMeter and the baselines. The results show
that GrooveMeter detects the head motion more accurately than
the baselines. While there is a marginal difference in the 𝐹1 score of
the non-reaction, GrooveMeter increases the 𝐹1 score of the head
motion by 0.09 on average, compared to the baselines. For the head
motion, the 𝐹1 score of GrooveMeter is 0.74, whereas that of Ran-
domForest, CNN, and ConvLSTM is 0.60, 0.71, and 0.65, respectively.
One may argue that the performance improvement of GrooveMe-
ter from CNN (0.03 increase) is marginal. However, we found that
GrooveMeter is more robust to motion noisy environments. We
present the in-depth analysis in §5.2.2.

We take a deeper look at the performance of GrooveMeter. Fig-
ure 16b shows, even for an unseen user, our method provides rea-
sonable performance. Specifically, it detects head motion with 0.72
and 0.75 of precision and recall, respectively. For non-reaction, it
achieves 0.88 of precision and 0.87 of recall.

We look into the results depending on the genre (Figure 16c).
The results of exciting/up-tempo songs show higher precision and
recall for the reaction than those of soft/slow songs, resulting in a
relatively large 𝐹1 score. Specifically, the 𝐹1 scores of head motion
and non-reaction are 0.75 and 0.85, respectively, for up-tempo songs.
Those for slow songs are 0.70 and 0.89, respectively. While listening
to up-tempo songs, people tend to nod vigorously. Thus, motion
reactions showmore prominent signals and clear periodicity, which
yields better performance. In contrast, with soft/slow songs, motion
reactions tend to be weak, and their trajectory is small. Thus, more
reaction data can be confused with non-reaction motions.

5.2.2 In-depth Comparison . To better understand the difference
from the baselines, we additionally collected the controlled dataset
in a lab setting condition. We recruited 10 (M: 6, F: 4) additional
participants (ages: 20-26, mean: 23.1), compensated with a gift card
worth USD 9. We asked them to follow an instructed scenario: two
sessions to collect music-listening reactions and one for others. In
the first 2 sessions, we provided the top 100 music and let them
freely select a song to listen to in every session. Then, they were
asked to make a given reaction naturally, but continuously for 60
to 90 seconds. The last session’s task was freely moving around the
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(a) Comparison with baselines (b) Precision/Recall (c) Per-genre result

Figure 16: Motion reaction detection performance
Figure 17: Effect of activities

Table 3: Comparison with the baselines
Controlled MusicReactionSet

Lounge Office Car Cafe Avg.
Head motion
RandomForest 0.96 0.61 0.54 0.67 0.59 0.60

CNN 0.93 0.74 0.68 0.75 0.66 0.71
ConvLSTM 0.97 0.66 0.57 0.73 0.64 0.65
GrooveMeter 0.94 0.75 0.72 0.75 0.72 0.74
Non-reaction
RandomForest 0.92 0.81 0.90 0.80 0.86 0.84

CNN 0.85 0.84 0.92 0.86 0.89 0.89
ConvLSTM 0.92 0.81 0.89 0.86 0.89 0.86
GrooveMeter 0.86 0.84 0.91 0.85 0.90 0.88

lab and making music-irrelevant motions while listening to music,
which represents non-reaction.

Table 3 shows the 𝐹1 scores of head motion and non-reaction,
respectively, in the controlled and MusicReactionSet datasets. We
first look into the performance of the head motion. Interestingly,
while all the methods show similar performance in the controlled
data, the performance gap is noticeable in MusicReactionSet. The
𝐹1 scores are over 0.93 in the controlled data. In MusicReactionSet,
the 𝐹1 score generally decreases due to motion noises and diverse
motion reaction patterns, but GrooveMeter shows a smaller gap
than the baselines.

For the non-reaction class, CNN and GrooveMeter show lower 𝐹1
than the others in the controlled data, but they show higher 𝐹1 in the
MusicReactionSet. The 𝐹1 scores of CNN and GrooveMeter are 0.89
and 0.88, whereas those of RandomForest and ConvLSTM are 0.84
and 0.86, respectively. We conjecture that this is because the head
motion and non-reaction segments have clearly distinguishable
patterns in the controlled data. However, in MotionReactionSet,
there are more confusing cases due to various patterns of natural
head motions and daily motion noises, increasing false positive
errors of RandomForest and ConvLSTM.

5.2.3 Effect of Activities. Figure 17 shows the macro-averaged 𝐹1
scores and filtering ratios with four different activities. While it
shows similar performance regardless of activities, 𝐹1 scores of head
motion in the office and cafe cases are slightly smaller than the
others. The filtering ratio of lounge is 10%, larger than the others.
The car case is only 0.4% since most of non-reaction data are within
the filter range due to the movement by the car.

5.3 Application Case Study
Wepresent application case studies to show the potential of GrooveMe-
ter. We further recruited ten participants and asked them to listen to
eight songs. We randomly selected four songs that they had never
listened to before from the top 50 charts, namely unknown songs.
We chose the other four songs from their playlist, i.e., known songs.

Figure 18: Confusion matrix of rating prediction.

Automatic music rating: One straightforward use case is auto-
matic and fine-grained music rating. Today’s music rating mostly
relies on a user’s manual input and simple statistics, e.g., the num-
ber of plays. We envision that rating can be automatically predicted
in a fine-grained way by observing listeners’ reaction patterns.

To study its feasibility, we asked the participants to provide
ratings for eight songs they listened to, on a scale of 5; 5 means
"I like this song very much.". To build a rating prediction model,
we extract statistical features from the reaction detection output,
i.e., normalized duration and the number of each reaction label,
and use a decision tree as a classifier. We examine the rating pre-
diction performance with LOSO CV. We used the data only from
unknown songs since rating prediction is more useful for the songs.
Figure 18 shows the confusion matrix of rating prediction. Higher
values around the diagonal indicate that the predicted ratings are
meaningfully close to the actual ratings (MAE: 0.22).

Familiarity detection: We investigate if the familiarity of a
song can be detected using music listening reactions, i.e., to detect if
a user has already listened to a song before or not. This functionality
would help music streaming services accelerate to build a new
subscriber’s music preferencewithout explicitly askingwhich songs
have been enjoyed before. We build a decision-tree model trained
by using statistical features of vocal and motion reaction events.
Similarly to automatic music rating, we validate its performance
in a LOSO manner, but using the full dataset. The 𝐹1 score for the
detection of known and unknown songs is 0.78 (precision: 0.85,
recall: 0.72) and 0.81 (precision: 0.76, recall: 0.88), respectively.

6 CONCLUSION
We present GrooveMeter, a novel system to detect vocal and motion
reactions to music via earable sensing. It features novel processing
pipelines to make reaction detection accurate, robust, and efficient.
We present extensive experiments to show its effectiveness with a
dataset from 30 participants in daily music-listening situations.
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