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ABSTRACT
We are now surrounded by multiple microphones available on vari-
ous devices around us including wearables. This opens unique op-
portunities for acoustic sensing applications to enhance the spatial
resolution of audio signals on the body. However, state-of-the-art
acoustic sensing applications still mostly utilize a single micro-
phone or a microphone array on a single device. In this paper, we
present Cocoon, a case study for on-body microphone collaboration
for spatial awareness. Cocoon is a novel wearable system that au-
tomatically provides users with situational services based on their
location. To this end, it combines spatial profiles from multiple
on-body microphones on the fly and identifies a user’s location by
matching the profile against the pre-registered ones. Our experi-
mental results show that Cocoon outperforms the existing single
microphone-based methods, 10.0% points and 21.5% points accuracy
increase in the controlled and real-world setup, respectively. Cocoon
also improves the robustness to slight movements and orientation
changes of the microphone, reducing the error rate by 17.5% points.
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Figure 1: Operational scenarios of Cocoon

1 INTRODUCTION
Thanks to its versatile capability, acoustic sensing has received
significant attention over the decades. Recently, a number of inter-
esting acoustic sensing applications have been proposed, addressing
a variety of problems including localization [9, 17, 20], user inter-
face [1, 16, 22], ventilation sensing [5], temperature sensing [21],
human activity recognition [14], safety [7], health sensing [6, 15, 25],
authentication [4, 24] and surrounding event detection [10].

Due to their ultra-compact form factor, microphones are also
embedded in many smart devices, e.g., smartphones, smart earbuds,
smartwatches, and other Internet of Things (IoT) devices. It is now
common to find ourselves surrounded by multiple microphones,
which can make acoustic sensing even more ubiquitous. However,
despite the ubiquitous nature of microphones, the capability of
acoustic sensing on the body is still often limited to a single device.

The use of multiple microphones offers exciting opportunities for
acoustic sensing [2, 3]. It can provide robust and reliable sensing by
selectively choosing the best-quality audio streams [13]. It can also
reduce interference and improve the quality of speech signals by
focusing a receiving radiation pattern in the direction of the desired
signal [26]. In addition, it enables applications to capture spatial
features of audio signals by measuring sound waves in both time
and space. While these ideas have been realized on microphone
arrays on a single device, e.g., active noise cancellation on earbuds
and speech enhancement on smart speakers such as Amazon Alexa,
very few attempts have been made using multiple wearable devices.

This paper presents Cocoon, a case study of on-body microphone
collaboration for spatial awareness. We define “Spatial awareness”
as a key factor that enables user-defined region-specific services,
i.e., whenever a user enters a dedicated space, the functions as-
sociated with that space automatically begin. Cocoon is a novel
wearable system that automatically provides users with situational
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services based on their location, as shown in Figure 1. For example,
a user can register specific places as a brainstorming region (e.g., a
working desk, a sofa), and it automatically activates active noise
cancellation and turns off notifications when the user enters the
region. To enable spatial awareness, Cocoon combines multiple on-
body microphones on the body and creates spatial profiles using the
sound they capture. Then, it identifies a user’s location (whether
a user stays in the registered region) by matching the profile with
the pre-registered one.

To enable spatial awareness, we adopt an impulse response as
a spatial profile, inspired by acoustic fingerprinting [18, 19]. Fin-
gerprinting mechanisms are based on the principle that, while a
speaker emits a chirp signal, the sound captured by the microphone
is used to calculate the impulse response of the acoustic medium
between the source of the signal and the microphone. In Cocoon, a
pair of earbuds with microphones captures the chirp signal from a
nearby smart speaker. Using the captured sound, each microphone
computes the impulse response, associated with the sound. Then,
Cocoon extracts key features such as peak amplitudes and peak
time differences from both signals and runs classification on each
of these features. The final classification is made using majority
voting.

2 BACKGROUND AND RELATED WORK

Microphone collaboration: The idea of utilizing multiple mi-
crophones has been intensively studied using microphone arrays
for a few decades [2, 3]. The most representative technique devel-
oped with microphone arrays is acoustic beamforming. It captures
spatial samples of the propagating wave frommultiple microphones
placed at different spatial locations and manipulates them to en-
hance the target sound source or suppress unwanted interference.
Microphone arrays are common now in mobile, wearable devices
and smart-home appliances, and are actively used for audio source
separation and enhancement [23]. Despite such benefits, few at-
tempts have been made yet to extend this mechanism to multi-
ple microphones on on-body wearables. Authors of [26] studied
beamforming for meeting transcription on asynchronous audio-
capturing devices such as mobile phones and laptops, and showed
that the word error rate decreases as the number of deployed micro-
phones increases. However, it does not apply to on-body wearable
scenarios due to their unique challenges, such as constantly mov-
ing and rotating on-body microphones. In this paper, as an initial
attempt to realize on-body microphone collaboration, we target
spatial awareness, i.e., instantly identifying a user’s surroundings,
and show its feasibility through the end-to-end implementation.

Acoustic fingerprinting on mobile devices: Acoustic finger-
printing has been investigated for indoor localization using audio
signals. EchoTag [20] enables phones to tag and remember indoor
locations by generating acoustic signatures, which are obtained by
transmitting a sound signal with a phone’s speakers and then sens-
ing its reflections with the phone’s microphones. SweepSense [9]
sweeps through a range of inaudible frequencies and measures the
intensity of reflected sound to deduce information about the imme-
diate environment, chiefly the materials and geometry of proximate
surfaces. Authors of [17] proposed a single-step calibration-free fast
indoor space mapping solution that quickly maps an indoor space

Figure 2: Example of spatial profiles captured from two mi-
crophones L (left) and R (right).

by simply walking around while holding a phone in a user’s hand.
Despite extensive and rich literature on audio localization, no prior
work has used multiple on-body microphones for spatial awareness
and fingerprinting. Here, we show that we can achieve enhanced
spatial resolution with their collaboration. Note that Cocoon is not
a competing technology with the existing acoustic fingerprinting
techniques, but it complements them.

3 MICROPHONE COLLABORATION
3.1 Multi-microphone Fingerprinting
While acoustic fingerprinting-based localization can be implemented
on a single microphone or multiple microphones on a single device
(e.g., a smartphone and a noise-cancelling earbud), using multiple
wearable microphones leads to the following benefits.
• Enhanced spatial resolution: Wearables are naturally worn
apart from each other, which enhances the spatial resolution of
sensing. Figure 2 illustrates different impulse responses captured
by two microphones on earbuds, which shows the reflections of
sound signals; we explain its details in §4. We further show that
multiple microphones can capture richer information when they
are far apart. Since wearables are significantly farther apart than
multiple microphones equipped with a single device, they can
provide additional information about surroundings.

• Increased feature dimensionality: As we can sense multi-
ple spatial profiles from multiple vantage points, we have more
feature dimensionality to better distinguish multiple locations.
Figure 2 shows that the dominant reflections arriving at the two
microphones will be significantly different.

• Robustness to slight movements: Multiple microphones will
be more robust and reliable in detecting slight movements than
a single microphone. This is because slight changes are very un-
likely to cause a significant difference in all the captured profiles
simultaneously.

3.2 Challenges
Despite the aforementioned benefits, it is not straightforward to
realize the collaboration of multiple microphones on different wear-
ables. We present several challenges that need to be addressed for
on-body microphone collaboration.
• Time synchronization: It is important to maintain tight time-
synchronization of multiple audio streams for microphone col-
laboration. However, many small-form factor wearable platforms
such as commercial earbuds and smart wristbands do not support
time-synchronization capability for audio streaming. Also, even
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with powerful devices supporting time-synchronization, such as
smartphones and smartwatches, it is not easy to synchronize the
audio streaming from different devices as the audio streams do
not contain the timestamp information.

• User movement: Since wearables are worn on the body, they
move and rotate as thewearermoves around. This poses two prob-
lems. First, the topology of microphones dynamically changes
causing relative differences in angles and distances between mi-
crophones. Second, the spatial profiles can be corrupted if micro-
phones move around while capturing acoustic signals.

• Efficient and robust collaboration: The most representative
method for processing multiple data streams is the sensor fu-
sion technique, i.e., designing a fusion model with concatenated
data streams. However, they often demand significant system re-
sources as the data streams need to be continuously transmitted.
Also, more importantly, the fusion model needs to be re-trained
from scratch if a new device is added or an existing device is
removed, which is impractical.

4 COCOON SYSTEM
Cocoon enables spatial awareness via wearable microphone collab-
oration. Specifically, we chose earables (e.g., [8]) as target devices
because a pair of earbuds are constantly distanced apart, leading
to a good spatial resolution, relatively stable and socially accept-
able. As a sound source, we use a nearby smart speaker under the
assumption that the speaker is located in a fixed position.

The overall operational flow consists of two stages. First, a user
registers regions of interest where she wants to use situational
services. Once the registration is requested, Cocoon collects the
spatial profile from two earbuds and uses it as training data during
the training phase. Note that our objective is not localization, thus
Cocoon does not need to collect the data for all positions in a place.
Second, during the online phase, Cocoon detects if a user enters the
pre-registered regions bymonitoring the spatial profiles.We assume
that a smart speaker in a place periodically emits a chirp sound or
is triggered by a switch or gesture. Then, situational services (e.g.,
muting notification) are activated based on the detection results.

Figure 3 shows the Cocoon pipeline with 5 main components: (1)
Spatial sensing, (2) Spatial profile alignment, (3) Feature extraction
and ranking, (4) local classification and (5) collaboration.

Spatial sensing: The first step is to sense spatial profiles using
two microphones present on each ear. To enable spatial awareness,
we use impulse response (IR) as acoustic fingerprint features for the
following reasons. First, it captures the reflections of sound signals
in terms of amplitude and time shift, which indicates the distance
and amplitude of acoustic reflections coming from walls and objects
in the vicinity. Second, it can be generated from the acoustic signals
captured with a very short duration (in our implementation, 0.02s),
which is robust to the movement of microphones. We compute
IR using the Exponential Sine Sweep (ESS) technique. We first
emit a chirp signal from the speaker with a frequency range of
6-20 kHz, a duration of 0.02s, and a sampling rate of 48 kHz and
simultaneously capture the microphone signal. The speaker keeps
sending this ESS signal every 2 seconds. Then, we convolve the
captured microphone signal with the inverse of the transmitted
chirp signal. This resulting IR contains peaks corresponding to a

direct path and reflections from nearby walls and objects, as shown
in Figure 2. Thus, we can expect that the impulse response would
be similar if a speaker and microphones stay at the same location.
The transmitted sine sweep signal is given by:

𝑥 (𝑡) = 𝑠𝑖𝑛

(
2𝜋 𝑓1𝑇
𝑅

(
𝑒
𝑡𝑅
𝑇 − 1

))
where 𝑓1, 𝑓2 are the initial and final frequency of the sine sweep
signal,𝑇 is the duration of the sweep, and𝑅 = ln(𝑓2/𝑓1) is the sweep
rate. Now, the inverse filter is calculated by scaling the amplitude of
time-reversed 𝑥 (𝑡) by 𝑘 = exp(𝑡𝑅/𝑇 ) which will give 𝑓 (𝑡) = 𝑥𝑖𝑛𝑣/𝑘 .
Finally, we get IR ℎ(𝑡) by: ℎ(𝑡) = 𝑠 (𝑡) ∗ 𝑓 (𝑡) where 𝑠 (𝑡) is the signal
captured by the microphone.

Spatial profile alignment: After capturing the IR from both
microphones, we perform a number of signal processing steps be-
fore extracting features. First, we synchronize the two IRs captured
from the two microphones. To do this, we identify the direct path or
the strongest reflection observed at both microphones and remove
the signal before the highest peak from both IRs. Next, we clip the
signal after 6000 samples as this is equivalent to a reflection coming
from 42 meters away, which is not practical. Figures 4 (a) and (b)
show the signal representation before and after this pre-processing
step, respectively.

Feature extraction and ranking: After pre-processing, we
extract features from the signal for the classification model. As
the peaks in the IR correspond to the reflections coming from the
nearby walls and objects, we select the prominent peaks in the
signal because we can get more robust and distinguishable features
with stronger signals. Figure 4(c) shows the prominent peaks (in
red) extracted from the signal. Features such as peak amplitudes,
peak times or peak time differences can be chosen to represent
the selected peaks. Peak amplitude is the amplitude corresponding
to the selected prominent peaks, peak times are the time values
corresponding to the peaks, and peak time difference is the time dif-
ference between consecutive prominent peaks. We experimentally
find that the peak amplitude provides the best accuracy, whereas
peak time offers the worst. Hence, we use peak amplitudes and
peak time differences as our features.

Local classification: We use the K-nearest neighbours based
Time Series Classification (TSC). For the distance metric between
the captured sound and the training data, we rely on Dynamic Time
Warping (DTW). This metric computes the similarity between two
temporal sequences. We train ML models for both peak amplitudes
and peak time differences, for each microphone. In other words,
we train 4 classifiers using four different sets of features, peak
amplitudes (L), peak time differences (L), peak amplitudes (R), and
peak time differences (R). These models take the respective features
as input and predict a user’s location or place.

Cocoon collaboration: For combining spatial profiles, we con-
sider two techniques. The first is feature concatenation, where we
train a model comprehensively on all the features of both left and
rightmicrophones together. The second is ensemble learning, where
we train individual models for each microphone and then combine
their predictions. We compare these two collaboration techniques
from the system’s point-of-view and choose the ensemble learning
technique as it has various advantages, such as less communication
requirement and flexibility to adding/missing wearables cases. The
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Figure 3: Cocoon overview

Figure 4: (a) Captured IR (b) after alignment (c) feature ex-
traction

proposed system fits one classifier for each time series data and then
aggregates their predictions. Cocoon brings together classifications
from 4 different models. We then use majority voting to come up
with the final outcome on the spatial profile; in a tie situation, we
follow the classifier with the highest confidence value.

5 EVALUATION
We performed experiments using the Cocoon prototype to validate
its performance. In this section, we describe our prototype and data
collection setup. Next, we show the accuracy and robustness of
Cocoon in comparison with the single microphone-based method.
For in-depth analysis, we further compare the detection accuracy
between audible and inaudible emitting sounds.We develop the
Cocoon prototype using two Raspberry Pi 4 boards, each of which
is connected to a USB microphone, and a MacBook laptop. The USB
microphones allow 16-bit recording and support a sampling rate
of up to 48 kHz. We use the laptop as a speaker that emits the ESS
signal with a delay of two seconds.

We use 2 different setups for data collection. Since real-life sound
sensing is affected by a number of factors simultaneously, we first
conduct a comprehensive study using the dataset collected in a
controlled setup in order to isolate the impact of other factors and
also better control the level of the movement. Then, we evaluate
the performance and robustness of Cocoon using a real-world setup.

Controlled setup: In the controlled setup, the two USB micro-
phones are placed on a ruler 20 cm apart, as shown in Figure 5. For
data collection, we collected data in 3 rooms: 2 conference rooms

Figure 5: Data collection setup

Methods Controlled setup Real-world setup
Cocoon 100% 98%
L (Left) 90% 80%
R (Right) 90% 73%

Table 1: Accuracy with single and dual microphones in con-
trolled and real-world setup.

and 1 bedroom. For each of these three rooms, the laptop (speaker)
was kept at a fixed location inside the room, and we collected data
for 20 positions in total (which can be assumed as a region of in-
terest). For each position, we collected the spatial profiles 10 times.
We collect data in two ways: one subset of the dataset consists of
IRs captured without any movement, and the second subset of the
dataset consists of IRs captured when the microphones are slightly
moved or changed in orientations.

Real-world setup: In the real-world setup, microphones are
clipped to human ears. We collect the data in the conference room
at five different locations with two participants. Note that we used
USB microphones and clipped them on ears because no commercial
earables provide yet access to simultaneous audio streams of their
microphones from two earbuds via Bluetooth classic. For the data
collection, the participant goes to the location, sits stationary on
the chair, and we record the spatial profile data.

5.1 Collaboration Accuracy
Table 1 shows the accuracy of the Cocoon detection in the controlled
and real-world setup. For the controlled setup, Cocoon achieves the
same accuracy, precision, recall, and F1 of 100% while both single
microphone scenarios achieve accuracy, precision, recall, and F1
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Figure 6: Decrease in accuracy with slight movements and
orientation changes; L and R represent left and right, respec-
tively.

Methods Audible Signal Inaudible signal
Cocoon 100% 80%
L (Left) 90% 65%
R (Right) 90% 70%

Table 2: Accuracy with audible and inaudible signals

of 90%, 93%, 93%, and 92% respectively. It can be clearly seen that
Cocoon achieves the higher accuracy of region detection by collabo-
rating two microphones, compared to the single microphone-based
approach. This validates our hypothesis that wearable collaboration
leads to better spatial profiling by having increased dimensionality
and enriched spatial information. More specifically, Cocoon achieves
a 10% and 21.5% points increase in detection accuracy on average
in both controlled and real-world setups, respectively. Interestingly,
we observe that performance improvement is more significant in
the real-world setup. The single microphone-based approach shows
satisfactory performance (90%) in the controlled setup, but perfor-
mance degrades much in the real-world setup, i.e., 10% and 17%
point decrease in the left and right microphones, respectively. How-
ever, the performance degradation of Cocoon is just 2%, which im-
plies more robust spatial sensing from the collaboration of multiple
microphones. We omit per-room and per-participant results as we
did not find a statistically significant difference.

5.2 Collaboration Robustness
As discussed earlier, we record the data with and without slight
movements and orientation changes in the controlled setup. To
incur movement and orientation changes, we change the chair’s
position and orientation slightly. We train a model using a subset of
the dataset that does not involve any changes to the microphones
and we train another model using the entire dataset. Figure 6 shows
the accuracy of both of these models. We observe that the accuracy
decrease in Cocoon is less than that in single microphone scenarios.
This corroborates our intuition that multiple microphone collabora-
tion leads to robustness as slight changes are very unlikely to cause
a significant difference in all the captured profiles simultaneously.

5.3 Audible and Inaudible Chirp Signal
Chirp signals, an essential requirement in our system, can be emit-
ted from the speaker with a wide range of frequencies. We study

Figure 7: Accuracy variation with # of peaks selected.

the performance of Cocoon under the influence of audible and in-
audible chirp signals using the controlled dataset. We use 6-20 kHz
signal frequency and 15-20 kHz signal frequency for audible and
inaudible signals, respectively. Table 2 shows the accuracy of Co-
coon with inaudible and audible chirp signals. While Cocoon shows
a reasonable performance with the inaudible sound (i.e., 80%), its
performance is lower than that with the audible chirp signal. This is
because higher frequency signals are less likely to penetrate objects.
Thus, the reflections are not strong enough, and IR will be very
sensitive to objects in the vicinity. On the other hand, audible chirp
signals are more robust while being audible to naked ears. However,
to make this system more practical, it is essential that we use an
inaudible signal so that it is not hearable. This will also help in
eliminating the effect of ambient noise as we can filter out the chirp
signal from background noise. We leave performance improvement
of the inaudible sound as future work.

5.4 Feature Analysis
As mentioned in Section 4, one important hyper-parameter that
affects the detection performance is the number of prominent peaks
from the IRs. The more peak we take into consideration while
training, the more descriptive the acoustic footprint of a location is.
We call this the peaks parameter 𝑝 . We change this parameter and
observe the accuracy of the models. We use the dataset recorded
in the controlled setup for this experiment. Figure 7 shows the
accuracy variation (y-axis) with a change in 𝑝 value (x-axis).

The results show two notable implications. First, the accuracy
of Cocoon is always higher than the single microphone approach
regardless of the 𝑝 value. This is because two acoustic signals can
describe the location with more spatial information. Second, the
accuracy peaks when 𝑝 = 50 and then fluctuates as 𝑝 increases.
Initially, when 𝑝 is low, accuracy is lower because less information
regarding the location is available. As more number of peaks are
trained, more information about the location is trained in the model.
However, after the accuracy has peaked, the peaks might not be
very prominent to reflect unique features, and it might get affected
by interference from the ambient noise of the region. We configure
the value of 𝑝 to be 50 because the accuracy saturates and then
decreases eventually after this value.
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5.5 System Cost
In this paper, we prototyped our system using Raspberry Pi 4 boards
because no commercial earable platforms provide yet access to
simultaneous audio streams from two microphones and ML pro-
grammability on the device. However, to get some insights about
the system cost of Cocoon in the deployment setup, we measure the
execution latency on Raspberry Pi 4 and discuss its implication on
commercial earable platforms.

The major operations for runtime inference are spatial sensing,
spatial profile alignment, feature extraction & ranking, classifica-
tion, and collaboration as described in Figure 3. Themain bottleneck
is the classification; the rest of the operations take less than 10ms
in total since the input data size is quite short, i.e., 6000 samples.
For the classification, the individual model size varies from 78-90
kilobytes and it takes around 80ms for each inference, i.e., around
160ms on one device. However, when we select the peaks parameter,
𝑝 = 50, the maximum time taken for model inference is reduced to 3
ms and the model size is reduced to around 10 kilobytes, which is a
drastic reduction from the previous case. Considering that today’s
smart earbuds are increasingly equipped with powerful processors,
we envision that Cocoon can easily be adopted into earbuds. For
example, the 2nd generation of AirPods Pro is equipped with the
Apple H2 chip and Galaxy Buds Pro is equipped with Broadcom
BCM43015; the detailed processing capability of these chips is not
open yet, but we can expect that they are powerful enough to sup-
port many features, e.g., active noise cancellation and on-device
AI using various sensors on earbuds. It is also important to note
that the main operations of Cocoon can be easily offloaded to the
smartphone if the resource of earbuds is not sufficient.

6 DISCUSSIONS
In this paper, we have explored the feasibility of our Cocoon system
from multiple perspectives. However, there are a few limitations of
Cocoon which we plan to investigate in our future work.

Chirp sound: Cocoon relies on chirp sounds for detecting a pre-
registered region of interest. It requires a speaker in the vicinity to
emit either an audible or inaudible sound, which is not a practical
assumption. In addition, while audible chirp signal supports the
system with better accuracy performance, it could be annoying to
the user as discussed in Section 5.3. On the other hand, using in-
audible chirp sound lowers the accuracy of detecting pre-registered
regions. We plan to eliminate this requirement by performing addi-
tional experiments using ambient sound sources present in a user’s
environment like vent noise or refrigerator noise to capture spatial
profiles by multiple microphones.

Environmental factors: As our Cocoon system relies on audio
signals for spatial awareness, performance is impacted by environ-
mental factors such as surrounding obstacles and ambient noise.
For the proposed application of Cocoon, the system should be ro-
bust to these factors to eliminate the need for training for every
single situation and setup. To ensure that the proposed system is
robust to environmental factors, we plan to opportunistically sense
spatial profiles whenever the user is inside a pre-registered region.
To detect the presence of the user in a Cocoon, we can utilize other
sensing modalities such as IMU for human activity detection and
understand if the user walked away. Then, the system can group

these opportunistically captured spatial profiles with the previously
trained profiles. This can be achieved with incremental learning
on the deployed model during run-time. Additionally, it might be
useful to integrate the user’s expected position based on past local-
ization attempts into the collaboration to enhance the robustness
to movements. We also plan to investigate the frequency spectrum
(transfer function) of the captured spatial profiles to gather more
location-specific information. This frequency spectrum will tell us
about which frequencies are more absorbed than the others. De-
pending on the environment, Cocoon can decide which frequency
to be selected to enhance accuracy performance.

Number and orientation of wearable devices: In this work,
we use two earables’ microphones for Cocoon profiling. Our col-
laborative microphone system can be extended to microphones
present on different on-body devices such as smartwatch and smart
glasses. Based on a few studies [26], adding more microphones to
the system can increase accuracy and efficiency. However, at the
same time, including additional microphones fromwearable devices
poses additional challenges such as inconsistent orientation and
distance between microphones and hardware heterogeneity of the
microphones on each wearable which all contribute to performance
degradation. In our setup, we experiment with two fixed distanced
microphones which provides us with significantly different acous-
tic information. When adding a new device such as smartwatch
to the existing orientation, the mobility of the smartwatch causes
inconsistent orientation and distance across the microphones on
wearables in our Cocoon system. This inconsistency may create
issues such as variable time differences between IRs leading to
false inference results of pre-registered regions. To alleviate this is-
sue, the continuous distant measurement between wearables using
acoustic/BLE ranging techniques and training on different distances
between wearables may be required. For the proposed system, the
microphones should not be too close or too far. This is because if
they are too close, they will not capture significantly different infor-
mation about the environment. When they are too far, they cannot
be used to localise a small space. Wearables’ microphones are at a
significant distance apart from each other and yet constrained on
the human body, making on-body microphones a good choice for
localizing a user in a region. With multiple present devices, we also
have to address the heterogeneity in the microphone hardware. In
such cases, the spectrum frequency which the sensor can capture
may be different [11, 12]. For instance, microphone on constrained
smartwatch may capture less information compared to the one
on the smartphone. We aim to explore this situation with micro-
phones of different quality as commodity microphones are prone
to non-linearity that can significantly disrupt the recorded audio.

7 CONCLUSION
We present Cocoon, a collaborative acoustic sensing mechanism
using on-body wearables equipped with microphones. Particularly,
it is used to localise users by detecting their spatial profile. Cocoon
captures the impulse response associated with audio channels be-
tween a speaker that emits chirp signals and each microphone that
capture these signals. It leverages intrinsic separation between the
microphones to enrich spatial information retrieved from the audio
signals.

94



REFERENCES
[1] Takashi Amesaka, Hiroki Watanabe, Masanori Sugimoto, and Buntarou Shizuki.

2022. Gesture Recognition Method Using Acoustic Sensing on Usual Garment.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 6, 2 (2022), 1–27.

[2] Jacob Benesty, Jingdong Chen, and Yiteng Huang. 2008. Microphone array signal
processing. Vol. 1. Springer Science & Business Media.

[3] Michael Brandstein and Darren Ward. 2001. Microphone arrays: signal processing
techniques and applications. Springer Science & Business Media.

[4] Jagmohan Chauhan, Yining Hu, Suranga Seneviratne, Archan Misra, Aruna
Seneviratne, and Youngki Lee. 2017. BreathPrint: Breathing acoustics-based user
authentication. In Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services. 278–291.

[5] Bhawana Chhaglani, Camellia Zakaria, Adam Lechowicz, JeremyGummeson, and
Prashant Shenoy. 2022. FlowSense: Monitoring Airflow in Building Ventilation
Systems Using Audio Sensing. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 6, 1 (2022), 1–26.

[6] Yanbin Gong, Qian Zhang, Bobby HP NG, and Wei Li. 2022. BreathMentor:
Acoustic-based Diaphragmatic Breathing Monitor System. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022),
1–28.

[7] Wenqiang Jin, Srinivasan Murali, Youngtak Cho, Huadi Zhu, Tianhao Li,
Rachael Thompson Panik, Anika Rimu, Shuchisnigdha Deb, Kari Watkins, Xu
Yuan, et al. 2021. CycleGuard: A Smartphone-based Assistive Tool for Cyclist
Safety Using Acoustic Ranging. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 5, 4 (2021), 1–30.

[8] Fahim Kawsar, Chulhong Min, Akhil Mathur, and Alessandro Montanari. 2018.
Earables for Personal-Scale Behavior Analytics. IEEE Pervasive Computing 17, 3
(2018), 83–89. https://doi.org/10.1109/MPRV.2018.03367740

[9] Gierad Laput, Xiang’Anthony’ Chen, and Chris Harrison. 2016. Sweepsense:
Ad hoc configuration sensing using reflected swept-frequency ultrasonics. In
Proceedings of the 21st International Conference on Intelligent User Interfaces. 332–
335.

[10] Hong Lu, Wei Pan, Nicholas D Lane, Tanzeem Choudhury, and Andrew T Camp-
bell. 2009. Soundsense: scalable sound sensing for people-centric applications
on mobile phones. In Proceedings of the 7th international conference on Mobile
systems, applications, and services. 165–178.

[11] Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and Nicholas D.
Lane. 2019. Mic2Mic: Using Cycle-Consistent Generative Adversarial Networks
to OvercomeMicrophone Variability in Speech Systems. In Proceedings of the 18th
International Conference on Information Processing in Sensor Networks (Montreal,
Quebec, Canada) (IPSN ’19). Association for Computing Machinery, New York,
NY, USA, 169–180. https://doi.org/10.1145/3302506.3310398

[12] Chulhong Min, Akhil Mathur, Alessandro Montanari, and Fahim Kawsar. 2022.
SensiX: A System for Best-effort Inference of Machine Learning Models in Multi-
device Environments. IEEE Transactions on Mobile Computing (2022).

[13] Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. 2019.
A Closer Look at Quality-Aware Runtime Assessment of Sensing Models in
Multi-Device Environments. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems (New York, New York) (SenSys ’19). Association for
Computing Machinery, New York, NY, USA, 271–284. https://doi.org/10.1145/
3356250.3360043

[14] Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, and Mayank Goel.
2022. SAMoSA: Sensing Activities with Motion and Subsampled Audio. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3
(2022), 1–19.

[15] Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaniel Watson. 2015.
Contactless sleep apnea detection on smartphones. In Proceedings of the 13th
annual international conference on mobile systems, applications, and services. 45–
57.

[16] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota.
2016. Fingerio: Using active sonar for fine-grained finger tracking. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems. 1515–1525.

[17] Swadhin Pradhan, Ghufran Baig, Wenguang Mao, Lili Qiu, Guohai Chen, and Bo
Yang. 2018. Smartphone-based acoustic indoor space mapping. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 2 (2018),
1–26.

[18] Mirco Rossi, Julia Seiter, Oliver Amft, Seraina Buchmeier, and Gerhard Tröster.
2013. RoomSense: an indoor positioning system for smartphones using active
sound probing. In Proceedings of the 4th Augmented Human International Confer-
ence. 89–95.

[19] Stephen P Tarzia, Peter A Dinda, Robert P Dick, and Gokhan Memik. 2011. Indoor
localization without infrastructure using the acoustic background spectrum. In
Proceedings of the 9th international conference on Mobile systems, applications, and
services. 155–168.

[20] Yu-Chih Tung and Kang G Shin. 2015. EchoTag: Accurate infrastructure-free
indoor location tagging with smartphones. In Proceedings of the 21st Annual

International Conference on Mobile Computing and Networking. 525–536.
[21] Haoran Wan, Lei Wang, Ting Zhao, Ke Sun, Shuyu Shi, Haipeng Dai, Guihai

Chen, Haodong Liu, and Wei Wang. 2022. VECTOR: Velocity Based Temperature-
field Monitoring with Distributed Acoustic Devices. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3 (2022), 1–28.

[22] Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiquitous
keyboard for small mobile devices: harnessing multipath fading for fine-grained
keystroke localization. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services. 14–27.

[23] Weiguo Wang, Jinming Li, Yuan He, and Yunhao Liu. 2020. Symphony: localizing
multiple acoustic sources with a single microphone array. In Proceedings of the
18th Conference on Embedded Networked Sensor Systems. 82–94.

[24] Zi Wang, Yili Ren, Yingying Chen, and Jie Yang. 2022. Toothsonic: Earable
authentication via acoustic toothprint. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 1–24.

[25] Xuhai Xu, Ebrahim Nemati, Korosh Vatanparvar, Viswam Nathan, Tousif Ahmed,
Md Mahbubur Rahman, Daniel McCaffrey, Jilong Kuang, and Jun Alex Gao. 2021.
Listen2cough: Leveraging end-to-end deep learning cough detection model to
enhance lung health assessment using passively sensed audio. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 1 (2021),
1–22.

[26] Takuya Yoshioka, Dimitrios Dimitriadis, Andreas Stolcke, William Hinthorn,
Zhuo Chen, Michael Zeng, and Xuedong Huang. 2019. Meeting Transcription
Using Asynchronous Distant Microphones. In Proc. Interspeech 2019. 2968–2972.
https://doi.org/10.21437/Interspeech.2019-3088

95

https://doi.org/10.1109/MPRV.2018.03367740
https://doi.org/10.1145/3302506.3310398
https://doi.org/10.1145/3356250.3360043
https://doi.org/10.1145/3356250.3360043
https://doi.org/10.21437/Interspeech.2019-3088

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Microphone Collaboration
	3.1 Multi-microphone Fingerprinting
	3.2 Challenges

	4 Cocoon System
	5 Evaluation
	5.1 Collaboration Accuracy
	5.2 Collaboration Robustness
	5.3 Audible and Inaudible Chirp Signal
	5.4 Feature Analysis
	5.5 System Cost

	6 Discussions
	7 Conclusion
	References

