
Ultra-low Power DNN Accelerators for IoT: Resource
Characterization of the MAX78000

Arthur Moss†⇤� Hyunjong Lee§⇤� Lei Xun⇧� Chulhong Min‡ Fahim Kawsar‡¶ Alessandro Montanari‡
†Newcastle University §KAIST ⇧University of Southampton ¶University of Glasgow ‡Nokia Bell Labs, Cambridge (UK)

⇤Indicates equal contribution. �Work done while authors were at Nokia Bell Labs, Cambridge (UK).

ABSTRACT
The development of edge devices with dedicated hardware acceler-
ators has pushed the deployment and inference of Deep Neural Net-
work (DNN) models closer to users and real-world sensory systems
than ever before (e.g., wearables, IoT). Recently, a further subset
of these devices has emerged: ultra-low power DNN accelerators.
These microcontrollers possess a dedicated hardware accelerator
and are able to operate with only `J’s of energy in milliseconds of
time. With their small form-factor, such devices could be used for
battery-powered machine learning (ML) applications. In this work,
we take a close look at one such device: the MAX78000 by Maxim
Integrated. We characterize the device’s performance by running
�ve DNN models of various sizes and architectures, and analyze
its operational latency, power consumption, and memory footprint.
To better understand the performance characteristics, we take a
step further and investigate how di�erent layer types (operation
type, kernel size, number of input and output channels) and the
selection of accelerator processors a�ect the execution time.
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1 INTRODUCTION
The development of deep learning [19] has shown great progress
in the last decades. Nowadays, deep learning is used in many appli-
cation domains, such as computer vision [11, 31], natural language
processing [4], activity recognition [24] and user interface [20].
Deep learning algorithms can deliver human-level accuracy for
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Figure 1: Peak performance of deep learning hardware ac-
celerators [15]. Most accelerators can be categorized into 3
classes: high-performance cloud/servers, low-power mobile
and embedded, and the ultra low power.

these applications, however, they are both computationally inten-
sive and memory access intensive.

To address the computational ine�ciency, many software-based
solutions have been proposed to modify deep neural networks
(DNNs) with the objective of �tting them in memory, increasing
execution speed, and decreasing energy demand [5, 9, 17, 25, 26, 39].
However, with the growing popularity of deep learning models and
increasing complexity demands from applications, novel HW ar-
chitectures started to emerge to speci�cally accelerate DNN-based
workloads [32, 34]. These dedicated accelerators typically contain
large on-chip memory to reduce expensive o�-chip memory ac-
cesses, large computational arrays for matrix multiplication and
addition, dedicated data �ow between computation cores for ef-
�cient data reuse and support low precision computing such as
int-8. Initially, these hardware accelerators were designed for and
deployed in the cloud (e.g., Google TPU [14]). However, in recent
years, hardware accelerators are moving into mobile/embedded
devices to take advantage of local computation for the low latency,
energy e�ciency, and privacy preservation, e.g., Apple A16 SoC
[22], Nvidia Jetson [28], Intel Neural Computing Stick [13], Google
Edge TPU [7]), and tiny MCU devices, (e.g., Maxim MAX78000 [12],
Arm Ethos [2] and Greenwaves GAP-8 [8]). Figure 1 shows the
peak performance and power of various accelerators.

Cloud and mobile/embedded accelerators have been studied and
characterized in previous works [1, 21, 23, 30, 37, 38]. However,
there are very few benchmark studies for tiny-scale accelerators
integrated into microcontrollers (MCUs) for ultra-low power infer-
ence. This paper focuses on the performance and resource char-
acterization of a board MAX78000 [12], which contains an Arm
Cortex-M4F core, a RISC-V core, and a convolution neural net-
work (CNN) accelerator, integrated into one package. We choose
the board with a better performance among the two commercially
available boards (MAX78000 and GAP-8). Arm Ethods micro-NPUs
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Figure 2: MAX78000 and its overall architecture.

and Greenwaves GAP-9 are not available at the time this work is
done. The device supports open-source toolchains that can be used
for research purposes. Previous studies and benchmarks for this de-
vice have focused only on the high-level benchmark with a limited
number of DNN models [6, 27]. In our paper, we conducted detailed
benchmarks and characterization at both macro and micro levels
to gain new insights regarding hardware-aware model design and
the breaking down of the performance. For the macro-benchmarks,
5 models varying in architecture and size with 4 di�erent datasets
(MNIST, CIFAR100, CamVid, FaceID) were characterized for la-
tency, power, and memory footprint. The paper o�ers empirical
insights and guidelines for practitioners and researchers interested
in deploying DNN models on the MAX78000 platform for ultra-low
power sensory tasks.

2 MAX78000 PLATFORM
2.1 Hardware Overview
While a number of tiny-scale accelerators have been recently pro-
posed, e.g., MAX78000 [12], ethos-u55 and ethos-u65 [2], and GAP-
8 [8], there are yet only a few products that are commercially
available and provide access to and control over the underlying
operations. In this study, we chose the MAX78000 platform [12]
(Figure 2 (left)), developed by Maxim Integrated 1 in 2020, because it
is readily available and o�ers open source tools and documentation
useful for an in-depth analysis of its performance.

The MAX78000 is an AI microcontroller designed to run neural
networks at ultra-low power on tiny-scale devices. It is composed
of two major processing hardware modules: a dual-core microcon-
troller (MCU) and a convolutional neural network (CNN) accelera-
tor. On the controller side, it has an Arm Cortex-M4 processor with
FPU running at up to 100 MHz and a 32-Bit RISC-V co-processor
running at up to 60MHz. In terms of memory, it is equipped with
512 KB of Flash and 128 KB of SRAM.

Figure 2 (right) shows the overall architecture of the CNN accel-
erator. The hardware-based CNN accelerator consists of 64 convo-
lutional processors, weight storage memory of 442 KB, and data
memory of 512 KB. Each convolutional processor consists of a pool-
ing engine, input cache, weight memory, and convolution engine,

1https://www.maximintegrated.com

and is responsible for running a convolutional operation of a sin-
gle channel. These convolutional processors are grouped by four,
and processors in a group share a shared activation memory for
data input and activation data (8 bits for each processor in a 32-bit
word). Four of these groups are further grouped into a quadrant. A
quadrant has registers to program the execution con�guration for
each layer, and allows developers to con�gure execution details in-
cluding the processor selection, kernel address, input data address,
output memory address, and so on. This sub-division in quadrants,
groups and processors allows �ne control over which parts of the
accelerator are active to further reduce power consumption.

2.2 Compilation and Execution Flow
Since training is not supported on the MAX78000, the model needs
to be trained and compiled on a desktop environment, and the
inference execution is performed on the chip with the model binary.
Compilation: MAX78000 supports PyTorch for model develop-
ment. Maxim o�ers custom layer implementations for quantized
and fused operations as well as pipelines for quantization-aware
training or post-training quantization. After training, dedicated
tools convert PyTorch checkpoint or Tensor�ow-exported ONNX
�les to C code that can be compiled and executed on the MAX78000.

MAX78000 has a speci�c set of accelerated operations, which
are as follows: convolution 1D with kernel sizes 1 to 9, convolution
2D with kernel sizes 1 by 1 or 3 by 3, linear (fully connected layer),
max pooling, average pooling, ReLU activation, Abs activation,
and batch norm. Other operations can be executed on the ARM or
RISC-V cores but will incur latency penalties.
Execution:When MAX78000 executes a model, the MCU transfers
accelerator con�guration, input data, and weights to the CNN ac-
celerator. Then, the accelerator executes each layer of the model in
series. For each layer, it loads the kernels from its kernel memory
and assigns each input channel to one convolutional processor. The
acceleration is achieved by running processors in parallel.

We further explain how a unit operation is executed on one
convolutional processor. First, the pooling engine reads input or
activation data from the shared activation memory in a group to
which the processor belongs, and performs a (max or avg) pool-
ing operation. Second, if a pooling result can be used by adjacent
convolutional operations, it is pushed into the input cache for opti-
mization. Third, the convolution engine executes the convolutional
operation. Its result is delivered to the quadrant to which the pro-
cessor belongs and per-quadrant aggregated results are further sent
to the master quadrant. The entire sum of products is written to
the shared activation memory of convolutional processors in the
next layer so that it can be used as an input for the next layer.

MAX78000 has an advanced feature (also called FIFO Processing)
for larger inputs whose input and the feature map cannot �t in its
activation memory. In this feature, the data is streamed into the
accelerator �rst-in �rst-out. The accelerator computes the partial
data, up to a speci�ed layer, which has a smaller feature map that
can �t in the activation memory of the accelerator. This is using the
characteristic of CNN models that the feature map size decreases
in its later layers. This is useful when the accelerator has to process
larger data (up to 1024K pixels) than its capacity (8K pixels). One
of the models we use for benchmarking uses this feature.
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Table 1: Models used for the macro benchmarks.

Model Layer
Count Accuracy

Hardware
Operations
(Millions)

Weight
Memory
(KB)

Peak
Activation
Memory
(KB)

Dataset
(Input Size)

ConvNet5 5 99.44 (Top-1)
100 (Top-5) 10.90 71.20 62.4 MNIST [18]

(28x28x3)

FaceIDNet 9 78.9 (Female)
88.9 (Male) 56.30 176.10 460.8 FaceID [29]

(120x160x3)

SimpleNet 14 54.2 (Top-1)
82.79 (Top-5) 18.50 381.80 40.96 CIFAR100 [16]

(32x32x3)

ResSimpleNet 17 51.33 (Top-1)
78.85 (Top-5) 18.60 381.80 61.44 CIFAR100 [16]

(32x32x3)

UNet 19
91.05
(pixel-wise
classi�cation)

187.80 281.30 294.91 CamVid [3]
(48x48x48)

3 MACRO BENCHMARKS
To design intelligent services on tiny devices, we need to know the
capabilities of the accelerators, and its time and energy cost for
running. We design and conduct a set of benchmarks aimed at char-
acterizing the performance and resource usage of the MAX78000.
Here we consider them at a macro level, analyzing end-to-end la-
tency and power consumption as well as overall memory footprint.

3.1 Experimental Setup
Equipment: The equipment included: aMAX78000 Evaluation Kit2
(EV Kit), a High Voltage Power Monitor3 (by Monsoon Solutions),
and a workstation. The EV Kit was selected because it exposes
power pins used to power only the MAX78000 chip. The regulators
and other peripherals on the EV Kit were disabled and the board
was powered through the Monsoon power monitor set at 3.3V. This
enabled us to monitor the power drawn only by the MAX78000 chip.
The power meter we used has a sampling rate of 5kHz. Since the
inference time, from model and data loading to model execution, is
from 8.3ms to 60.7ms, this sampling rate has su�cient granularity
for precise measurements. In other words, the data can yield an
accurate breakdown of power consumption per main operations
involved in executing an inference.
Models: Five CNN models of di�erent architectures and sizes were
selected for the benchmark experiment. All of the models were for
vision applications (recognition and classi�cation), and a total of
four di�erent data sets were used. The characteristics of the models
and the data sets used for training are reported in Table 1.

The models were selected to ensure a variation in their archi-
tecture and size and to ensure that the e�ect of di�erent data di-
mensions could be analyzed. These include classic feed-forward
architectures (ConvNet5, FaceIDNet [29], SimpleNet [10]), models
with residual blocks (ResSimpleNet [11]), and encoder-decoder ar-
chitectures (UNet [33]). Table 1 shows the number of operations
involved in running inference for each model and the amount of
weight memory used inside the accelerator to give an indication
of the size and complexity of each model. Accuracy and the peak
activation memory were also included. Interestingly, FaceIDNet
has the highest peak activation memory, even though it is smaller
than UNet. This can be explained by its architecture, between layer
0 and layers 1 and 2 of FaceIDNet, the input size rapidly expands to
be larger than any layer input in any of the models. In these 2 layers
40% of the model’s hardware operations occur. All the models used
2https://www.maximintegrated.com/en/products/microcontrollers/
MAX78000EVKIT.html
3https://www.msoon.com/high-voltage-power-monitor

were platform-speci�c, created using Maxim’s Pytorch-based ai8x
libraries that take into account the limitations of the MAX78000.
Execution and Measurements: There are a number of optimiza-
tion parameters that could a�ect the performance and resource
utilization of models executed on neural accelerators (e.g., volt-
age/frequency scaling of the HW, model design and compression,
etc.). Often the tuning of these parameters requires �nding a trade-
o� between memory/latency and accuracy (e.g., the bit width used
to quantize the model’s weights). As an initial characterization of
the MAX78000 platform where we want to explore its performance
for various potential applications, we use the default compilation
and optimization parameters provided by Maxim for each model.
This means that all models are executed with weights quantized at
di�erent bit widths ranging between 2bit and 8bit to ensure they �t
in the accelerator memory. All MCU compiler optimizations are also
disabled. During the execution of the models only the ARM core
and the CNN accelerator are active and running at their maximum
frequency (100MHz and 50MHz respectively), while the RISC-V
is disabled. We are keeping the ARM core active during inference
resulting in slightly higher power consumption (MCU + CNN ac-
celerator). However, it represents a more realistic scenario where
the MCU is performing other tasks while the accelerator runs a
model (e.g., preparing the next input, interfacing with peripherals,
or handling user input). Since we are interested in benchmarking
only the CNN accelerator component, in our measurements we do
not consider all the operations involved in a typical sensing pipeline
such as sensor reading, data transmission, and data management.

For each model we measure the latency necessary to set up the
accelerator, to load weights and data and for the inference using an
onboard timer with `s resolution. For the same operations, power
is measured with the Monsoon Power Monitor. Weights memory
and feature map peak memory consumption are recorded after each
model has been synthesized.

3.2 Memory Footprint
In DNN inference, o�-chip memory access costs orders of magni-
tude more energy and execution time than on-chip memory ac-
cess and inference itself [35]. Therefore, it is important to keep all
weights and feature maps on-chip to gain the e�ciency of hard-
ware accelerator. As shown in Table 1, all �ve models are below the
on-chip memory limits for both weight and feature maps. This is
thanks to the fact that the accelerator supports di�erent bit widths
for weights and feature maps. The model designer can use less than
8bits to represent the weights and can also mix di�erent bit widths
within the same model. For example, the SimpleNet model uses
2bit integer weights on most layers, except for a few layers where
8bit and 4bit are used. This o�ers great �exibility in deploying even
large models on the accelerator albeit with a potential accuracy
degradation. The same �exibility is not yet available in popular soft-
ware frameworks to run DNN models on microcontrollers, such as
Tensor�ow Lite for Microcontrollers [36], which only supports 8bit
integer kernel weights and 32bit integer bias weights. We wanted
to compare the performance di�erence between running models on
the ARM M4 Core and on the dedicated accelerator. However, due
to this TF-Lite Micro limitation, only the ConvNet5 can be deployed
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Figure 3: Latency of the �ve models with a breakdown of the
four main operations involved in executing an inference.

on the ARM Core of the MAX78000. The other models exceed the
�ash and RAM memory available to the MCU.

3.3 Execution Time
Inference execution time is a crucial metric for small systems that
need to react promptly to new input data. Executing an inference
on the accelerator involves di�erent operations including setting it
up, loading weights and data, executing the model, and o�oading
any result to the MCU. Figure 3 shows the execution time of each
model divided into the four main operations.
Accelerator Operations: They con�gure and control the CNN
peripheral: Enable, Initialize, Con�gure, Start, and Stop. With the
exception of CNN Con�gure these instructions have consistent
execution time across all the models. For instance: CNN Initialize
is consistently 1815`s, while CNN Start and Stop are always 14`s.
CNN Con�gure sets the model architecture parameters for the four
processor groups, taking from 52`s for ConvNet5 to 190`s for UNet.
Larger models with more parameters take longer to con�gure.
Weight Loading: This loads the kernel weights and the bias if
used. The weight loading latency was found to increase proportion-
ally to the weight memory size. For example, ConvNet5 uses only
71.2Kb of weight memory, taking 4.926ms to load. SimpleNet and
ResSimpleNet use 381.8Kb of weight memory, over 5 times more,
and the most of all the models. Their loading times are 29.24ms
and 26.21ms. The 5-fold increase in weight memory size caused
a 5-fold increase in the loading latency. From the 3ms di�erence
between SimpleNet and ResSimpleNet we can also infer that model
architecture has a small e�ect on the weight loading latency.
Data Loading: The data loading latency varies between the models
according to the input size. For instance, UNet has an input size
of 48⇥48⇥48, taking 7.54ms. SimpleNet and ResSimpleNet have
smaller inputs of 32⇥32⇥3 taking 0.28ms. The data is loaded almost
27 times faster because the input size 36 times smaller. ConvNet5 is
even faster, taking 55`s for its input of 28⇥28⇥3. This shows that
larger input data samples take longer to load. FaceIDNet is an ex-
ception. Although having an input half the size of UNet, 120⇥160⇥3,
it takes the longest to load at 12.1ms. The large input resolution
needs to be streamed in using FIFO registers. This increases latency
as data is being fetched incrementally, not all at once.
Inference: This operation is the inference of the CNN, it includes
the computation of each layer’s output in sequence, data unloading
and softmax operations. Softmax is implemented in software on the
MCU, not on the hardware accelerator. However since it operates
on small data the overhead introduced by the unloading of the

Figure 4: Current Pro�le of SimpleNet.

last layer’s data from the accelerator and the computation of the
softmax is very limited (in the order of 10`s, it varies according to
the number of data outputs).

We observed that the inference latency increases with model
size: from 1.44ms for ConvNet5, to 2.74ms and 2.99ms for SimpleNet
and ResSimpleNet. Doubling the number of hardware operations
e�ectively doubled the latency, see Table 1. FaceIDNet had far more
hardware operations but an inference latency of 1.93ms. This can
be explained by its use of FIFO registers to fetch input data incre-
mentally, which is initialized and occurs during the inference. The
data loading and inference happens simultaneously so their latency
values should be summed, giving 14ms. UNet had an inference
latency of 31.4ms, it is the largest model with the most hardware
operations, and the largest data input.

We also compared the execution time of models running on the
accelerator with those running on just the MCU core. As mentioned
in the previous section, only ConvNet5 is su�ciently small to �t
in the memory dedicated to the ARM core using TF-Lite Micro.
When clocking the ARM core at the maximum frequency (100MHz)
this model runs in 10.1s against the 8.3ms when running on the
accelerator. The speedup is thanks to the parallel execution of the
convolutional operations within the accelerator.
Key takeaways: The MAX78000 accelerator is speci�cally opti-
mized for parallel convolution operations and models that use these
operations extensively. Many device con�guration operations never
changed or varied by only a few milliseconds, leaving little room to
optimize. It was clear that even the inference latency represented a
limited portion of the end-to-end execution latency of the platform.
The main bottlenecks we identi�ed concerned memory access to
load weights and input data rather than operation execution, see
Figure 3. To reduce the weight-loading latency the weight memory
size must be decreased, either by using small kernels or by reducing
the size and complexity of the model (via compression, pruning,
and quantization). The MAX78000 aids in this, allowing integer
kernel weights of 8, 4, 2, and 1 bit. To reduce data loading latency,
e�orts to pre-process data to reduce input size must be considered.

3.4 Energy Consumption
Energy consumption is a critical metric when considering this kind
of platform, which is described as capable of running DNN’s using
`J’s worth of energy. To characterize its energy consumption, we
measured its current draw while running each model.
Current Pro�le: Figure 4 shows the current pro�le when execut-
ing SimpleNet. The e�ect of CNN operations on the current draw
can be observed. For instance, when the accelerator is enabled, the
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Table 2: Average power draw and energy consumed during
an inference (including weights and data loading).

Model
Average
Power
(mW)

Energy
(`J)

ConvNet5 26.00 215.80
FaceIDNet 32.07 901.17
SimpleNet 25.34 869.16
ResSimpleNet 25.00 787.50
UNet 56.44 3425.91

current draw doubles, from idling around 3.5mA to 7.5mA. The
next section, CNN Con�guration, covers all operations that prepare
for an inference including: con�guration, weight-loading, and data-
loading. These operations concern data movement and processor
register con�guration, and were found to have a negligible impact
on the current being drawn. The Inference is the activation of the
CNN, which is the most power intensive operation peaking near
27mA, a 4-fold increase. In Post-inference, the current fell back to
7.5mA and then 3.5mA, accounting for the inference �nishing, any
processing MCU-side, and the peripheral being disabled. All the
models produced current pro�les similar to Figure 4. This demon-
strates that while the model architecture or data input can vary, the
MAX78000 will respond consistently in terms of its current draw
and energy consumption.
Average Power: Table 2 shows the average power draw and energy
consumed during an inference for each model. UNet consumed the
most power on average at 56.44mW. This was expected because it
is the largest model with the most hardware operations, see Table 1.
FaceIDNet was the second with an average of 32.07mW, followed
by SimpleNet (25.34mW) and ResSimpleNet (25mW).

The average power draw of ConvNet5 was 26mW, fractionally
exceeding SimpleNet and ResSimpleNet. This might seem odd due
to the di�erence in model size but is likely explained by the in-
ference latency of each model. Both SimpleNet and ResSimpleNet
have a higher peak power draw than ConvNet5. They also have
inference times of 2.74ms and 2.99ms to ConvNet5’s 1.44ms. When
the power draw of each model is averaged over their the execution
time, ConvNet5 having a slightly higher average power draw is not
so strange. ResSimpleNet having a lower average power draw than
SimpleNet is not unexpected either. ResSimpleNet has the larger
execution latency due to its additional layers, averaging the power
consumption over this additional time accounts for the di�erence-
especially as they both draw similar amounts of power.
EnergyConsumption:The energy consumption of theMAX78000
during an inference was found to vary between models, see Table 2.
ConvNet5 consumed the least energy, approximately 0.22mJ. This
can be explained by it being the smallest model in terms of hardware
operations. It also has the lowest latency. The quicker the inference
is completed the less energy that is used. UNet’s energy consump-
tion was found to be 3.43mJ, greater than the sum of the energy
consumption of the other models. A larger model that runs longer
will inevitably consume more energy. ResSimpleNet consumes less
energy than SimpleNet, 0.788mJ to 0.869mJ. It is the di�erences
in model architecture causing this. ResSimplnet has more layers
and more hardware operations, although they are residual layers
which are computationally less intense requiring less energy than

Figure 5: Latency of di�erent operation types and kernel
sizes, on two di�erent input data sizes. Linear layers cannot
run a 32x32 image, due to insu�cient activation memory,
hence only compared for the smaller input.

Conv2D layers. This is why the di�erence is not that much. FaceI-
DNet has an energy consumption that exceeds models with more
layers. As explained previously, it is a compact model with many
more hardware operations than, for example, SimpleNet. It also
requires the use of FIFO registers adding to the energy overhead.
Key takeaways: Smaller models use less energy with a lower aver-
age power consumption because they have less hardware operations
and execute faster. So, as with latency, to reduce the average power
draw and energy consumption the focus should be on model opti-
mization and data pre-processing. Energy overhead is reduced by
using less hardware operations and smaller and less-dense inputs.

4 MICRO BENCHMARKS
We further conduct a micro benchmark to investigate the system
implications for maximizing the acceleration bene�t. More speci�-
cally, we study the impact of two key factors on the latency of the
model execution; (a) the model architecture and (b) the selection of
convolutional processors.

4.1 Impact of Model Architecture
For this benchmark, we use a two-layer model by default and report
the end-to-end execution time of the model. The two layers are both
Conv2D with kernel sizes of 3 ⇥ 3 and padding of 1. Throughout
the experiment, all the variances of models (operation type, kernel
sizes, number of output channels) are made in the second layer.
Operation type and kernel size: Figure 5 shows the execution
time for di�erent operation types (Conv2D, Conv1D, and Linear)
and kernel sizes (1 to 9 for Conv1D and 1⇥ 1 and 3⇥ 3 for Conv2D).
Surprisingly, for the same data size, there was no di�erence in
the execution time regardless of the operation type and kernel
size. This is because the convolution engine in each convolutional
processor takes a 2-dimensional convolution of a 3 ⇥ 3 kernel as a
basic execution unit. In case when less kernel size is used, the other
data is �lled with zeros.
Number of input channels: In this experiment, we use a single
layer model of convolution 2Dwith kernel sizes of 3⇥3 and padding
of 1, with 4 output channels, and manipulate the number of input
channels of the layer. This was to avoid measuring the data writing
to the layer of interest and to solely measure the time for processing
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Figure 6: (Left) Execution time under di�erent number of
input channels. (Right) Execution time under di�erent num-
ber of output channels.

a layer. Figure 6 shows the execution time with the di�erent number
of input channels. It also shows an interesting result, which is
that the execution time does not increase proportionally to the
number of input channels. It rather increases in a stepwise manner,
i.e., at every 64 channels. This is because the CNN accelerator
has 64 convolutional processors and accordingly, the maximum
number of operations that can be executed in parallel is also 64. If
the number of input channels is greater than 64, the accelerator
performs multiple passes over the input data to complete the layer.
Number of output channels: Figure 6 shows the execution time
for di�erent numbers of output channels (number of input channels
is �xed for this experiment). The result shows that the end-to-end
latency increase is proportional to the increase in the number of out-
put channels. This is because the convolutional processors compute
one pixel of an output channel at a time. Each additional output
channel incurs the computation latency of one output channel.
Key takeaways: The �ndings imply thatMAX78000-speci�c model
tuning needs to be conducted to maximize the acceleration bene�t,
i.e., by considering the aforementioned results. For example, the
number of input/output channels of each layer should be chosen
carefully to avoid unnecessary overhead. The number of channels
should ideally be a multiple of 64 to ensure good utilization of the
64 processors and good model accuracy (i.e., a higher number of
channels typically results in better accuracy since more features are
computed) while avoiding latency penalties because the accelerator
needs to perform multiple passes on the data (Figure 6).

4.2 Impact of Convolutional Processor Selection
MAX78000 allows developers to select which convolutional pro-
cessors out of 64 to be used in each layer. We study the impact of
processor selection on execution time. For this study, we use the
same two-layer model as in §4.1, but set the number of input/output
channels in both layers to 2. Similar to the previous experiments,
we change the processor selection only in the second layer.
Intra-group selection: Figure 7 shows the execution time when
two processors are selected in the same group. Interestingly, the
execution time is di�erent depending on the last index out of two
processors, but regardless of the �rst index. We see a latency in-
crease of approximately 20% between selecting processors (0, 1)
and (0, 3) which could add signi�cant overhead when applied to
larger layers and multiplied for many layers within the model. This
is because, when the �nal output of the current layer is written to

Figure 7: (Left) Performance of intra-group processor selec-
tion. (Right) Performance of inter-group processor selection.

the shared activation memory to be used as an input for the next
layer, the memory is accessed in a sequential manner in the shared
activation memory of a group, i.e., from processor 0 to processor 3.
However, memory writing stops when the output is written to all
assigned convolutional processors in a group.
Inter-group selection: Figure 7 shows the execution time when
two processors are selected in di�erent groups. The distance here
denotes the di�erence between the indexes of two groups of the
selected processors. It shows that as the distance grows, the total
execution time increases. For example, although the same number
of processors is used, the execution time increases from X to Y
when the inter-group distance increases from 1 (250 `s) to 3 (414
`s), respectively. This is because memory writing is conducted
in a sequential manner, i.e., group by group. That is, rather than
writing the data into multiple groups at once, MAX78000 writes the
data to the group after the memory access in the previous group
is �nished. However, we observed that it can directly jump to the
shared memory of the group with the smallest index, so only the
distance between groups a�ects the performance.

Note that we also conducted experiments with a di�erent number
of input channels and the same trends were observed.
Key takeaways: The results in this subsection imply that it is
important to use the minimum number of groups with consecutive
processors for runtime performance optimization.While the latency
overhead seems small in absolute terms (⇡ 200`s), it adds up quickly
for models with many layers and results in signi�cant penalties
in terms of inference time, and consequently energy consumption.
The optimal processor placement is still an open problem given that
automatic tools are not provided. We leave this for future work.

5 CONCLUSION
In this paper, we conducted a variety of benchmark studies to char-
acterize the resource and performance of the ultra-low power DNN
accelerator, MAX78000. First, we analyzed the operational latency,
power consumption, and memory footprint of �ve DNN models
with various sizes and architecture. Second, we further investigated
the system implications in terms of the model architecture and
convolutional processor selection in order to maximize the accel-
eration. Beyond the numbers, our benchmark study further o�ers
meaningful insights for the development of on-device AI systems
on ultra-low power, tiny-scale AI accelerators.
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