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A major bottleneck in training robust Human-Activity Recognition models (HAR) is the need for large-scale labeled sensor

datasets. Because labeling large amounts of sensor data is an expensive task, unsupervised and semi-supervised learning

techniques have emerged that can learn good features from the data without requiring any labels. In this paper, we extend

this line of research and present a novel technique called Collaborative Self-Supervised Learning (ColloSSL) which leverages

unlabeled data collected from multiple devices worn by a user to learn high-quality features of the data. A key insight that

underpins the design of ColloSSL is that unlabeled sensor datasets simultaneously captured by multiple devices can be viewed

as natural transformations of each other, and leveraged to generate a supervisory signal for representation learning. We present

three technical innovations to extend conventional self-supervised learning algorithms to a multi-device setting: a Device
Selection approach which selects positive and negative devices to enable contrastive learning, a Contrastive Sampling algorithm
which samples positive and negative examples in a multi-device setting, and a loss function called Multi-view Contrastive Loss
which extends standard contrastive loss to a multi-device setting. Our experimental results on three multi-device datasets

show that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques in majority of the experiment

settings, resulting in an absolute increase of upto 7.9% in 𝐹1 score compared to the best performing baselines. We also show

that ColloSSL outperforms the fully-supervised methods in a low-data regime, by just using one-tenth of the available labeled

data in the best case.
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1 INTRODUCTION

The adoption of human activity recognition (HAR) applications in mobile and wearable devices has increased

significantly over the last few decades, owing to the advancements in computational models that process raw

sensor data to infer human activities. Typically these computational models are trained using supervised learning,

i.e., it requires a set of labeled data samples to train the models. More recently, with the popularity of data-

hungry deep learning models in HAR [19, 31, 45], the need for large-scale labeled training data has become more

pronounced. However, prior works have highlighted that collecting large-scale labeled HAR data is cumbersome

especially outside of laboratory settings [9]. One key bottleneck for labeling HAR datasets is that sensor streams

(e.g., accelerometer traces) are not easy to interpret by visual inspection, which makes any post-hoc labeling

efforts non-trivial. A direct consequence of this challenge is that HAR data collection efforts [2, 35, 43, 44]

are usually done at a small-scale, in a controlled or semi-controlled setting, and mostly involve less than 50

participants, thereby resulting in models which do not generalize in real-life situations.

In contrast to the challenges involved in data labeling, the collection of unlabeled HAR data is much easier due

to the ubiquity of senor-enabled devices (e.g., smartphone, wearables) in our daily lives. As a result, machine

learning approaches which utilize unlabeled data during training have been gaining prominence in the HAR

literature. One of the most exciting paradigm in this direction has been self-supervised learning (SSL) [26], where

the core idea is to leverage the inherent structure present in the (unlabeled) input data to derive a supervisory

signal. Typically it is done by defining a Pretext Task, wherein a set of pre-defined transformations are applied to

the input data and a deep neural network is trained to predict those transformations in the data. For example, in

image datasets, the Pretext task could involve rotating an input image by 60°, and the deep neural network is

trained to learn that the original and rotated image share the same embedding. We usually are not interested in

the accuracy of the model on the Pretext task. Rather, we care about the intermediate representations (or features)

learned by the model, with the expectation that these features will carry good semantic or structural information

about the signal, which can be useful for various downstream tasks.

In recent years, we have seen some exciting explorations of self-supervised learning for activity recognition

with inertial sensors. Saeed et al. [46] explored SSL in a multi-task setting wherein they proposed eight different

transformations for accelerometer data, and trained a feature extractor to predict whether each transformation

has been applied or not. In doing so, they found that the feature extractor managed to learn the inherent structure

in the data and generate good features. Tang et al. [57] extended this idea by applying teacher-student training

and showed performance gains over prior work. Haresamudram et al. [21] investigated the idea of masking

sensor data at certain timesteps and training the feature encoder to reconstruct the missing data. More recently,

Haresamudram et al. [22] also proposed Contrastive Predictive Coding which leverages the long-term temporal

structure of sensor data streams for self-supervised learning. SSL has also been used in the context of change

point detection [11] and federated learning [47].

In this work, we extend the line of research on self-supervised learning for HAR, albeit in a different context. We

study a problem setting called Time-Synchronous Multi-Device System (TSMDS) which opens up an unexplored

opportunity for self-supervised learning. This problem setting is inspired by the current trend of people wearing

multiple intertial measurement unit (IMU)-enabled devices, including smartphones and consumer wearables.

Studies (e.g., [49]) even estimate that by the year 2025, each person will own 9.3 connected devices on average.

An example of this trend is shown in Figure 1a – here, a user is wearing multiple IMU-enabled devices which are

collecting time-synchronized sensor data while the user is performing a physical activity, such as jogging.

Apart from the growing importance and practicality of this problem setting, it presents a unique opportunity

for Contrastive Learning for HAR, one of the promising approaches for self-supervised learning. Contrastive

learning involves comparing a data sample against its transformed version and other samples in the dataset. Here,

in the TSMDS setting, multiple devices on a user’s body are capturing the same physical phenomenon (i.e., a
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(a) On-body inertial sensors (b) Acoustic sensors in a living space (c) Cameras at a traffic junction

Fig. 1. Examples of Time-Synchronous Multi-Device Systems (TSMDS) in different contexts.

user’s activity) from different perspectives. For example, when a user is running, both a smartphone placed in the

thigh pocket and a smartwatch worn on the wrist record sensor data for the running activity, but from different

perspectives due to their unique placements on the body. Thus, rather than manually generating transformations

of the data samples for contrastive learning, we can interpret the data from different devices in the TSMDS

setting as natural transformations of each other, and leverage it to design self-supervised contrastive learning

algorithms. Here, different devices collaborate in the process of self-supervised learning; hence we call this

approach Collaborative Self-Supervised Learning (ColloSSL).

In §3, we provide a formal definition of the TSMDS setting and give a primer on contrastive self-supervised

learning. In §4, we elaborate on the limitations of current contrastive learning techniques, which serve as

the motivation for our research problem. In §5, we introduce novel algorithms and optimization objectives

for Collaborative Self-Supervised Learning, namely Device Selection, Contrastive Sampling, and a Multi-view

Contrastive Loss function. Later, we present an end-to-end semi-supervised framework which uses Collaborative

Self-supervised Learning on unlabeled sensor data from multiple devices to learn a high-quality features from

the data, which is followed by training an HAR classifier on a small amount of labeled data to recognize specific

human activities. Finally, in §6, we compare the performance of our framework against a number of supervised

and semi-supervised training baselines on three multi-device HAR datasets. Our results show that ColloSSL

generally outperforms supervised training and other semi-supervised baselines in both low-data and high-data

regimes. We also present insights on the feature embeddings generated by ColloSSL as well as the robustness and

generalizability of ColloSSL.

Our work makes three major contributions:

• We present Collaborative Self-Supervised Learning (ColloSSL), a novel method for learning from unlabeled

inertial sensor data collected from multiple devices worn by the user. Different from prior methods [46, 57],

ColloSSL leverages natural transformations in the sensor datasets collected frommultiple devices to perform

contrastive learning, and learns a robust feature extractor for downstream HAR classification tasks.

• We introduce three key research challenges for ColloSSL and propose novel device selection and data

sampling algorithms, along with a new loss function which extends contrastive learning to a multi-device

setting.

• We present a thorough evaluation of ColloSSL on three multi-device HAR datasets covering both locomotion

activities and complex activities of daily living. Our results show that ColloSSL outperforms both fully-

supervised and semi-supervised baselines both in terms of recognition accuracy and labeled-data-efficiency.
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2 RELATED WORK

In this section, we review four sets of prior works that are relevant to this paper. Specifically, we review the

literature on human-activity recognition (HAR) and the emerging semi-supervised learning techniques aimed at

solving the labeled data scarcity challenge in HAR. Closely tied to our work is the recent trend of investigating

self-supervised learning in HAR – as such, we survey the recent ML literature on self-supervised and contrastive

learning and explain how it has been applied in HAR. Finally, we also highlight the relation of our work to prior

research in multi-device sensing environments.

Deep Learning for Human Activity Recognition. Human Activity Recognition is a classification task, where

the labels are activities like “walking” and “running” etc. that arise naturally in day-to-day activities. The problem

has been deeply studied by both signal processing researchers [13, 18–20, 41, 64], utilizing time-series data

from sensors embedded in mobile devies, as well as computer vision researchers, who focused on video and

camera-based solutions. For any deep learning or machine learning solution in general, the choice of feature

extractor plays a crucial role. Traditionally, the solutions were focused on statistical features that have been

studied by many researchers [13, 20, 41]. Later, deep convolutional and recurrent networks [18, 19, 64] were

shown to be effective in learning feature extractors from labeled data.

However, the size, diversity and real-world representativeness of the datasets are crucial for satisfactory

real-world performances of machine learning and deep learning solutions [34, 59, 60]. Compared to other data

modalities such as images, videos and audio clips, where post-hoc annotations are often feasible, obtaining

labels for sensor time-series, especially those collected in free-living environments is very difficult [5]. This is

exacerbated by the variations between different use-cases and setups, which include different models or types of

embedded sensors, placements of sensors, and target activity classes, making it almost infeasible to collect data

which can represent all different possible setups. This leads to the paucity and limited quality of labeled data for

supervision, which might have an adverse effect on performance in the real world.

Unsupervised and semi-supervised learning, which include methods that aim to make use of unlabeled data to

overcome the limitations of purely-supervised methods, are some of the most popular directions of research in

HAR [54, 63, 68]. Our work also builds upon this line of research on semi-supervised learning techniques, albeit

in a different problem setting where we use unlabeled data obtained from multiple devices worn by a user to

generate a supervisory signal for representation learning.

Self-supervised Learning for Human Activity Recognition. Self-supervised learning (SSL) has become an

increasingly popular area of research in the machine learning community to minimize the reliance on labeled data

for training deep learning models [6, 8, 23, 25, 29]. In this vein, a number of self-supervised learning frameworks

have been proposed with their unique optimization objectives [8, 10, 17]. For example, the SimCLR [8] framework

trains a feature extractor to be agnostic against transformations, by using transformed views of the same sample

as positive pairs and contrasting them against other samples.

Researchers in the HAR community have recently started exploring how SSL techniques can be either extended

or designed specifically for HAR tasks [46, 48, 58]. In one of the early pioneering works, Saeed et al. used the task

of identifying which signal transformation has been applied to a particular data sample as a self-supervision task

[46]. A set of eight signal transformations were chosen to represent signal noises, and the authors reported a

performance gain by pre-training the model with this task. However, the authors focused on pre-training the

models with data from similar distributions and from a single device. The signal transformation task was also

adapted to train models for emotion recognition from electrocardiogram (ECG) data [50]. The overall approach

follows closely to that of the previous work [46], with additional explorations on the effects on performance

when using pre-training tasks of different levels of difficulties, and the relationship between the tasks used in

pre-training and in application. Recently, the SimCLR framework has been applied in HAR [58]. The authors
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explored a set of different combinations of transformation functions that are designed for time-series data, for

training feature extractors for sensor data based on the SimCLR framework. However, this work again focused

on leveraging data from a single sensor only, and the potential for extracting stronger supervisory signals from

other sensors and devices was not explored. An initial attempt to leverage multiple devices for SSL has been made

for visual representation [51]. It showed that time-synchronized visual representations can be used to provide a

reward function for robot manipulation via reinforcement learning. One of its limitations is that it utilizes data

from two camera views only, but our proposal is compatible with settings with more than two data sources, and

we thoroughly explored settings with different numbers of IMU devices.

Multi-device Environments for HAR: Multi-device environments for HAR have been actively studied for

the past couple decades from various angles. We briefly review the past research on multi-device environments,

focusing on sensor selection and fusion for HAR. Firstly, sensor selection strategies have been proposed to

maximize the system utility in body sensor networks, by dynamically selecting the best sensor based on predefined

parameters of each device, such as average accuracy, resource usage, and device availability [27, 28, 36, 67]. While

these strategies focus on providing better runtime system performance in a multi-device environment, they do

not use the data from multiple devices to improve the accuracy of activity recognition. For this purpose, a number

of deep learning based sensor fusion techniques [37, 39, 61, 65, 66] have been proposed, which train a fusion

model by concatenating multiple sensor streams. While they show significant improvement in model accuracy,

they assume that all sensor data streams are labeled. Instead, our work focuses on leveraging unlabeled data from

multiple devices to learn good quality features from the data, which can later be used to train a downstream

HAR model with a very small amount of labeled data. Moreover, in contrast to fusion-based approaches, we do

not require the availability of all devices at inference time; the data from multiple devices is only needed during

training, and inference can happen independently on each device.

3 PRELIMINARIES

In this section, we explain the TSMDS problem setting and provide a short primer on contrastive self-supervised

learning.

3.1 Time-Synchronous Multi-Device Systems

We begin by providing more details on the problem setting explored in this work called Time-Synchronous

Multi-Device Systems (TSMDS). It is important to note that our objective is not to claim that it is a problem

setting that has not been studied before; instead, we argue that this is an interesting problem space in which

self-supervised learning has not been studied. In this section, we conceptually describe this problem setting and

later in §5.1 we formalize it mathematically.

In the context of human-activity recognition, the TSMDS problem setting is similar to a Body-Area Network

in which multiple computing/sensor devices are worn on, affixed to or implanted in a person’s body [24]. The

essential characteristic of TSMDS is that all devices observe a physical phenomenon (e.g., a user’s locomotion

activity) simultaneously and record sensor data in a time-aligned manner (Figure 1a). Even though our work

focuses on HAR using motion data, the TSMDS setting is rather generic and can be found in many other sensory

applications. In a smart home (Figure 1b), multiple voice assistants (e.g., Siri in a smartphone, Alexa and Google

Home in a living room) can listen to a user’s speech and audio commands simultaneously. In a camera network

deployed at a traffic junction (Figure 1c), multiple cameras capture the same scene from different perspectives

simultaneously.
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Below we state the two key assumptions we have made for exploring TSMDS setting in the context of HAR:

• We assume that all sensor devices in the multi-device system share the same sensor sampling rate, or that

their data can be re-sampled to the same rate. This assumption ensures that the dimensions of the data that

will be fed to the HAR model remain consistent across different devices, and it simplifies the design of the

neural network architecture of the HAR model.

• By definition, we assume that multiple devices in the TSMDS setting are collecting sensor data in a

time-aligned manner. Admittedly, the assumption that the sensor datasets across multiple devices are

perfectly time-aligned is strong in real-world applications. There could be timestamp noise or system clock

misalignment across devices, which could skew the temporal alignment of multi-device datasets. However,

prior research [55] in HAR has shown timestamp noise for accelerometer and gyroscope sensors is very

small, usually less than 10ms. We hypothesize that such a small noise will not degrade the performance

of our solution, and empirically validate this hypothesis by showing that our approach is robust against

moderate amounts of temporal misalignment between devices (§7.6).

3.2 Primer on Contrastive Self-Supervised Learning

Contrastive Learning is a type of self-supervised learning algorithm where the goal is to group similar samples

in the dataset closer and dissimilar samples far from each other in the embedding space [3, 8]. In contrastive

learning with unlabelled data, a data sample (called the anchor sample) from the training dataset is taken and

often a pre-defined perturbation (e.g., rotation) is applied to generate a transformed version of the sample. During

the training process, the transformed sample is considered as the positive sample and other randomly selected

data samples from the dataset are considered as negative samples. All three types of data samples (anchor, positive,

negative) are fed to a neural network to obtain feature embeddings. The goal of the model training is to bring

the feature embeddings of the anchor and positive sample closer, while pushing the embeddings of anchor and

negative samples far from each other. In this process, the model learns to extract good quality feature embeddings

just using unlabeled raw data, and these embeddings could be later used for downstream classification tasks.

One of the most important factors that underpins the performance of contrastive learning is the choice of

the perturbation(s) that are applied to each anchor sample for which we want the model to remain invariant,

while remaining discriminative to other negative samples. Prior research [8, 58] has shown that the choice of

perturbations chosen by the algorithm designer can have a profound impact on the performance of contrastive

learning. They found that the top-1 accuracy of a model pre-trained with contrastive learning on the ImageNet

dataset can drop dramatically from 56.3% (using an image crop and coloring transformation) to just 2.6% (using

image rotation transformation).

4 MOTIVATION AND CHALLENGES FOR COLLABORATIVE SELF-SUPERVISED LEARNING

Instead of specifying manual transformations (e.g., rotation) during contrastive learning, we ask whether it is

possible to leverage natural transformations that are already available in sensor datasets. Interestingly, the TSMDS

setting presents a unique scenario where we have such natural transformations of HAR data across different

devices. As shown in Figure 1a, multiple devices worn by the user are simultaneously capturing the same physical
activity (e.g., running) from different views. As such, we can consider the dataset from different devices as natural

transformations of each other. This observation can also be validated from an early seminal HAR work by Kunze

and Lukowicz [30], where they argued that the accelerometer and gyroscope data collected by body-worn sensors

depend on the translation and rotation characteristics of the body part where the sensor is placed. Since different

body parts have different translation and rotation characteristics (e.g., wrist has a higher rotational degree of

freedom than chest), it induces natural transformations in the accelerometer and gyroscope data collected from

different body positions.
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Fig. 2. Illustration of two research challenges in ColloSSL: Device Selection and Contrastive Sampling. The anchor sample is

denoted by the grey rectangle. The green and red rectangles denote the positive and negative samples that are selected by

our Device Selection and Contrastive Sampling algorithms described in §5.4.

In summary, the TSMDS setting allows us to capture time-aligned sensor datasets which have natural transfor-

mations across them. Our idea is to leverage these natural transformations to define a pretext task and perform

contrastive learning.

Research Challenges in ColloSSL. To motivate our research challenges, we present an example illustration in

Figure 2. The figure shows a 15-second trace of unlabeled accelerometer data collected simultaneously from 𝑁

(=4) body-worn devices. Each accelerometer trace is segmented using a window length of 3 seconds, thereby

giving us 5 windows/samples for each device. Let us say we would like to train a feature extractor for the ‘chest’

body position using contrastive learning. As such, the data samples from ‘chest’ would become the anchor samples.
The first anchor sample from ‘chest’ (𝑎) is highlighted by a grey rectangle in Figure 2. As explained above, to

perform contrastive learning, we need to select appropriate positive and negative samples. Below we identify

three key research questions in this direction:

• From the remaining 𝑁 − 1 devices (i.e., upperarm, forearm, head), how do we select positive and negative

samples for contrastive training? Intuitively, there will be some devices whose data distribution will be too

far apart from the data distribution of ‘chest’. If we use these far-apart devices to obtain positive samples
and push them closer in the embedding space to the anchor samples, it may lead to degenerate solutions for

contrastive learning. Further, as the data distribution of each device changes depending on the user’s activity,

we need to account for these dynamic changes while selecting devices. We call this research challenge

as Device Selection 1 and propose a data-driven strategy which uses the Maximum Mean Discrepancy

(MMD) as a metric to dynamically select positive and negative devices during contrastive learning. As an

illustration, we show in Figure 2 that our strategy chooses ‘upperarm’ as the positive device and ‘forearm’

and ‘head’ as the negative devices for the given data samples. The selection algorithm is described in detail

in §5.4.1.

• In addition to Device Selection, we need to answer which samples from the selected devices will act as

positive or negative samples. For example, if we select ‘upperarm’ as the positive device, which one of its

5 samples (or windows) will act as the positive sample for the anchor sample (𝑎)? We call this challenge

Contrastive Sampling 2 and propose the idea of using time-synchronized samples from positive devices
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and time-asynchronized samples from negative devices. For example, in Figure 2, the time-synchronized

sample from the positive device is highlighted with a green rectangle, whereas the time-asynchronized

samples from negative devices are highlighted with red rectangles. The rationale and details behind the

contrastive sampling algorithm are provided in §5.4.2.

• Finally, to enable contrastive learning in a group of devices, we need to define a new optimization objective.

To this end, we propose a novel loss function calledMulti-View Contrastive Loss which can take an arbitrary

number of positive and negative samples as input and compute a loss metric, which is then optimized using

stochastic gradient descent (§5.5).

5 COLLABORATIVE SELF-SUPERVISED LEARNING

In this section, we introduce our proposed approach of Collaborative Self-Supervised Learning for HAR.

5.1 Problem Statement

We formalize the TSMDS problem setting as follows: we are given 𝐷 devices with time-aligned and unlabeled

sensor datasets {X𝑖 }𝐷𝑖=1. Without loss of generality, we assume that the datasets are pre-segmented into𝑇 windows,

as is the convention in HAR tasks. Each dataset X𝑖 contains 𝑇 windows {𝑥1𝑖 , · · · , 𝑥𝑇𝑖 }, where 𝑥
𝑗

𝑖
denotes a set of

sensor samples from device 𝑖 in window 𝑗 . In general, a sensor sample could be any form of IMU measurement,

e.g., 3 dimensional accelerometer data, 3 dimensional gyroscope data, 1 dimensional accelerometer norm. In our

work, each sensor sample is a 6-dimensional vector, created by stacking together 3-axis of accelerometer and

3-axis of gyroscope data.

Let 𝐷∗ ∈ 𝐷 be an anchor device (e.g., a smartphone) for which we want to train an HAR prediction model. Let

L∗ = {(𝑥1∗, 𝑦1∗) · · · , (𝑥𝑚∗ , 𝑦𝑚∗ )} be a (small) pre-segmented labeled dataset from the anchor device with𝑚 windows

(𝑚 ≪ 𝑇 ) where 𝑥
𝑗
∗ is the set of sensor samples in window 𝑗 and 𝑦

𝑗
∗ is the class label assigned to those samples.

Our objectives are two-fold: first, we aim to use the unlabeled datasets {X𝑖 }𝐷𝑖=1 from all the devices to train

a feature extractor 𝑓 (.) using ColloSSL. The trained feature extractor should be able to generate high-quality

feature embeddings for the anchor device data. Second, we aim to use this pre-trained feature extractor 𝑓 (.)
to obtain feature embeddings for the labeled anchor samples 𝑥

𝑗
∗ , and subsequently train an HAR classifier 𝑔(.)

which maps these features embeddings to the corresponding class labels 𝑦
𝑗
∗ .

5.2 Solution Overview

Our proposed solution is illustrated in Figure 3 and works as follows:

1. We initialize the feature extractor 𝑓 (.) with random weights.

2. We sample a batch 𝐵 of time-aligned unlabeled data {𝑥1𝑖 , · · · , 𝑥𝐵𝑖 }𝐷𝑖=1 from all 𝐷 devices.

3. Device selection 1 in Figure 3: Given an anchor device 𝐷∗
, we first decide which of the remaining

devices will provide positive samples and negative samples for contrastive learning in this batch of data.

This is done through a Device Selection algorithm explained in §5.4.1.

4. Contrastive sampling 2 in Figure 3: Next, for each anchor sample, we decide out of all samples in the

batch 𝐵, which specific samples from the positive and negative devices should be used for contrastive

learning. While data sampling has been studied as an important aspect of SSL in the past, we present an

algorithm called Contrastive Sampling (§5.4.2) which extends data sampling to the TSMDS setting.

5. Multi-view contrastive learning 3 in Figure 3: The anchor, positive and negative sample(s) are fed to

the feature extractor 𝑓 (.) to generate feature embeddings. These feature embeddings are used to compute a

Multi-view Contrastive Loss (detailed in §5.5), which pushes the positive embeddings closer to the anchor,

and negative embeddings far from the anchor.
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Fig. 3. Overview of Collaborative Self-Supervised Learning. Please refer to §5.2 for a detailed explanation.

6. Steps 4-5 are repeated until all anchor samples in the batch 𝐵 are computed, and Steps 2-5 are repeated

until the Multi-view Contrastive Loss converges. Upon convergence, we expect that 𝑓 (.) has learned to

extract high-quality features for the anchor device.

7. Supervised fine-tuning 4 in Figure 3: Finally, we use the pre-trained feature extractor 𝑓 (.) and the

labeled dataset from the anchor device (L∗) to train an HAR classifier using supervised learning (§5.5.1).

5.3 Feature Extractor

We use a temporal (1-dimensional) convolutional neural network as the feature extractor. This design choice

is inspired by prior work on self-supervised learning in HAR [46] and allows us to do a fair comparison of our
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solution against the baselines by keeping the model architecture consistent across different techniques. The

architecture consists of three 1D convolutional layers, with 32, 64 and 96 filters and a kernel size of 24, 16, and 8

respectively, all with stride 1. For regularization, we use Dropout between every pair of layers with a rate of 0.1,

and apply L2 regularization with a regularization factor of 1e-4. Finally, the output of the last Conv1D layer is

passed to a GlobalMaxPooling (1D) layer.

The input to 𝑓 (.) is a 2-dimensional tensor, with time on one axis and sensor data on the other. As we use both

3-axis accelerometer and 3-axis gyroscope traces as the input, the dimension of sensor data is 6. As such, given a

sampling rate of 50 Hz and a window length of 2 seconds, the input tensor to the model is of dimension 100 × 6.

The output of 𝑓 (.) is a feature embedding with dimension (96 × 1).

5.4 Device Selection and Contrastive Sampling

As explained in §4 and Figure 2, two key challenges in ColloSSL are: (1) Device Selection, i.e., selecting the devices
from which positive and negative samples will be taken, and (2) Contrastive Sampling: deciding which samples

from the selected devices will be used for contrastive learning.

Before we present our approach, we first explain that for a given anchor sample (𝑥 ), what makes a ‘good’ positive

(𝑥+) and negative (𝑥−) sample for contrastive learning. Recall that the objective of contrastive learning is to guide

the feature extractor 𝑓 to map 𝑥 and 𝑥+ closer to each other in the feature space, and 𝑥 and 𝑥− far from each other.

Goodness of positive samples. We propose that a good positive sample 𝑥+ should have the following two

characteristics:

(P1) 𝑥+ should belong to the same label/class as the anchor sample 𝑥 . Because if 𝑥 and 𝑥+ are from different

classes and yet the feature extractor 𝑓 tries to map them closer to each other, it would lead to poor class

separation and degrade the downstream classification performance.

(P2) 𝑥+ should come from a device whose data distribution has a small divergence from that of the anchor

device. This is important because if the anchor device and positive device are very different in their data

characteristics (e.g., wrist-worn IMU vs. chest-worn IMU), then it might affect the feature extractor in

extracting meaningful invariant embeddings.

Note that in ColloSSL, we do not have access to the ground-truth labels of the data. As such, enforcing (P1) on
𝑥+ may seem tricky at first. However, from the definition of TSMDS setting, we know that all devices collect the

HAR data simultaneously and in a time-aligned fashion. Hence, we can naturally assume that the ground-truth

labels (e.g., walking, running) are also time-aligned across devices. Therefore, if we can ensure that 𝑥 and 𝑥+ are

time-aligned, it will implicitly guarantee that they have the same labels.

Goodness of negative samples.We propose that a good negative sample 𝑥− should have the following two

characteristics:

(N1) 𝑥− should be a true negative, i.e., belong to a different class than the anchor sample 𝑥 . Because if 𝑥 and

𝑥− are from the same class and yet the feature extractor 𝑓 tries to push them away, it could lead to poor

classification performance.

(N2) The most informative negative samples are those whose embeddings are initially near to the anchor

embeddings, and 𝑓 needs to push them far apart. In this scenario, 𝑓 gets a strong supervisory signal from

the data and more useful gradients during training. In the alternate scenario when negative embeddings

are already far apart from anchor when the training initializes, 𝑓 will receive a weaker supervisory signal

from the data, which could adversely impact its convergence.
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Again, due to the unavailability of class labels in ColloSSL, strictly enforcing (N1) is not possible. A solution is

needed which can encourage this characteristic on negative samples, and minimize the possibility of 𝑥 and 𝑥−

belonging to the same class.

Having defined what constitutes a good positive and negative sample, we now describe our device selection and

contrastive sampling algorithms.

5.4.1 Device Selection. Our device selection algorithm is designed to increase the likelihood of selecting ‘good’

positive and negative samples. For brevity, we refer to the devices from which positive (or negative) samples

are taken as positive devices (or negative devices). Formally, we are given a set of 𝐷 devices with time-aligned

and unlabeled sensor datasets {X𝑖 }𝐷𝑖=1. Let 𝐷∗ ∈ 𝐷 be the anchor device. Let 𝐷𝜃 = 𝐷 \ 𝐷∗
be a candidate set of

remaining devices from which we want to choose positive and negative devices.

Our device selection algorithm works as follows: first, we sample a batch of time-aligned data from the anchor

device 𝐷∗
and each of the device in 𝐷𝜃

. Let 𝑥∗ and 𝑋𝜃 = {𝑥𝑖 } |𝐷
𝜃 |

𝑖=1
be the data batches from the anchor and the

candidate devices, respectively.

We compute the pairwise Maximum Mean Discrepancy (MMD) between 𝑥∗ and each of the data batches in 𝑋𝜃
.

MMD is a distribution-level statistic to compute the distance between two data distributions; a higher MMD

implies a larger distance between distributions [16]. After obtaining the batch-wise MMD scores between each

pair of device batches, we use the following device selection policy:

Closest Positive. The device whose data has the least MMD distance from the anchor data is chosen as the

positive device. This choice satisfies the criteria (P2) for selecting good positive samples and ensures that 𝑓 (.)
can reasonably map the embeddings of the two samples closer to each other. Note that we also experimented

with using more than one positive device, but found that using just one (closest) device as positive gives the best

performance.

Weighted Negatives. For negative devices, we use ‘all’ devices from the candidate set 𝐷𝜃
, but their contributions

during training are weighted by the inverse of their MMD distance from the anchor samples. Devices which have

smaller MMD distance to anchor get higher weights during contrastive training, and devices with higher MMD

distances get smaller weights. This policy serves two objectives: firstly, by assigning higher weights to devices

with smaller MMD distances to the anchor, it satisfies (N2) and ensures that those negative samples which are

closer to the anchor get more weight during training. Secondly, the use of ‘all’ devices as negatives serve as a

hedge against the scenario when (N1) is violated on one device. For example, even if one device violates (N1)
and ends up choosing 𝑥− from the same class as 𝑥 , the other devices can cover for it, and ensure that its impact

on the feature extractor is minimal.

The weights assigned to each negative device 𝑖 ∈ 𝐷𝜃
can be expressed as:

𝑤𝑖 =
1

𝑀𝑀𝐷 (𝑥∗, 𝑥𝑖 )
(1)

The weights are further normalized by dividing each weight with the maximum weight across devices.

As an example, we apply our device selection policy to the RealWorld HAR dataset (details of the dataset are

provided in §6.1). The dataset contains sensor data from 7 IMU-equipped devices: 𝐷 = {chest, upperarm, forearm,

thigh, shin, head, waist}. We choose ‘chest’ as the anchor device and obtain the pairwise MMDs between data

from ‘chest’ and data from the remaining devices. This results in the following pairwise MMD scores: {chest-head:
0.45, chest-waist: 0.61, chest-thigh: 0.67, chest-upperarm: 0.77, chest-forearm: 0.83, chest-shin: 1.51}. In line with our

selection algorithm, we choose head as the positive device and {head, waist, thigh, upperarm, forearm, shin} as the
negative devices with weights inversely proportional to their MMD scores.
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5.4.2 Contrastive Sampling. At the previous stage, we have decided which devices in 𝐷𝜃 will act as positive and

negative. Now, we decide which data samples should be picked from each device for contrastive training.

Formally, we are given an anchor device𝐷∗
, a set of positive (𝐷+

) and negative devices (𝐷−
). Let 𝑃𝑖 = {𝑝1𝑖 , · · · , 𝑝𝑇𝑖 }|

|𝐷+ |
𝑖=1

, 𝑁 𝑗 = {𝑛1𝑗 , · · · , 𝑛𝑇𝑗 }|
|𝐷− |
𝑗=1

, 𝐴 = {𝑎1, · · · , 𝑎𝑇 } be the time-aligned data batches from the 𝑖𝑡ℎ positive, 𝑗𝑡ℎ negative,

and the anchor device respectively. Here, 𝑝𝑡𝑖 , 𝑛
𝑡
𝑗 and 𝑎

𝑡
each denote a data sample at time-step 𝑡 .

The objective of contrastive sampling is to select ‘good’ positive and negative embeddings for a given anchor

sample 𝑎𝑡 . Our sampling policy works as follows:

Synchronous Positive Samples. For a given anchor sample 𝑎𝑡 at time-step 𝑡 , we choose its time-aligned positive

counterparts 𝑝𝑡𝑖 as the positive samples. As explained earlier, this choice ensures that the anchor and positive

samples have the same labels, and satisfies the (P1) criteria for good positive samples.

Asynchronous Negative Samples. A criteria for good negative samples (N1) is that they should belong to

a different class from the anchor sample. As we do not have access to ground-truth labels during contrastive

learning, it is impossible to strictly enforce (N1). As a solution, we make use of the observation that negative

samples which are not time-synchronized with the anchor are more likely to be from a different class. That is, for

an anchor sample 𝑎𝑡 at time-step 𝑡 , a good negative sample would be 𝑛𝑡
′ | 𝑡 ′ ≠ 𝑡 .

This choice however still does not guarantee that the labels at time-steps 𝑡 and 𝑡 ′ will be different; for example,

a user’s activity at 𝑡 = 0 and 𝑡 ′ = 100 may happen to be the same by random chance. To minimize the possibility

of such cases, we use a simple trick: a large batch size of 512 is used during ColloSSL which ensures that each

batch has diverse class labels in it and the possibility of a label overlap at 𝑡 and 𝑡 ′ by random chance is reduced.

5.4.3 Summary. The techniques presented in this section address the two core research challenges of ColloSSL

identified in Figure 2. Using the Device Selection algorithm, we first decide which of the devices will act as positive

or negative during training. Next, the Contrastive Sampling algorithm finds the ‘good’ positive and negative

samples from the selected devices, which can be used for contrastive learning with the anchor embedding.

A curious reader may have noted that the positive and negative devices selected by our algorithm are not

mutually exclusive. The positive device which has the least MMD distance from the anchor will also get selected

in the set of negative devices. During Contrastive Sampling, however, the samples selected from this device will

differ: when it acts as the positive device, samples which are time-synchronized with the anchor will be selected.

However, when it acts as a negative device, samples which are not time-synchronized with the anchor will be

selected.

5.5 Multi-view Contrastive Loss

In this section, we explain how the positive and negative samples selected from the previous step are used to

train the feature extractor. Firstly, the anchor sample, positive samples(s) and negative samples are fed to the

feature extractor to obtain feature embeddings. Let {𝑧+𝑖 }|
|𝐷+ |
𝑖=1

and {𝑧−𝑗 }|
|𝐷− |
𝑗=1

be the selected feature embeddings

from the 𝑖𝑡ℎ positive and 𝑗𝑡ℎ negative device. Let 𝑧∗ be the anchor embedding.

We propose a novel loss function called Multi-view Contrastive Loss, which is inspired by the standard

contrastive loss function but compatible with multiple positive and negative samples.

L𝑴𝑪𝑳 = − log

∑ |𝐷+ |
𝑖=0

exp

(
sim

(
𝑧∗, 𝑧+𝑖

)
/𝜏
)

©«
∑ |𝐷+ |

𝑖=0
exp

(
sim

(
𝑧∗, 𝑧+𝑖

)
/𝜏
)

+∑ |𝐷− |
𝑗=0

𝑤 𝑗 exp

(
sim

(
𝑧∗, 𝑧−

𝑗

)
/𝜏
) ª®¬

(2)
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where sim(.) denotes cosine similarity,𝑤 𝑗 is weight assigned to the 𝑗𝑡ℎ negative device according to (1), and 𝜏 is a

hyperparameter denoting temperature.

L𝑴𝑪𝑳 is minimized for each batch of data using stochastic gradient descent. Effectively, the loss minimization

during training guides the feature extractor 𝑓 (.) to increase the cosine similarity between anchor and positive

embeddings (i.e., push them closer in the feature space), and do the opposite for anchor and negative embeddings.

In doing so, 𝑓 (.) understands the structure of the sensor data from different devices, and learns to map raw data

into good quality features, which can be useful for various downstream classification tasks.

5.5.1 Supervised Fine-tuning. Finally, after the feature extractor is trained using ColloSSL, it can be used for

training down-stream HAR classification models. To this end, we follow the approach by Saeed et al. [46] of

freezing the weights of the feature extractor except its last convolution layer and adding a classification head to

the model. The classification head consists of a fully connected layer of 1024 hidden units with ReLU activation,

followed by an output layer with the number of units equal to the number of labels. The model is then trained

with a small labeled dataset L∗ from the anchor device by optimizing the standard Categorical Cross Entropy

loss.

6 EVALUATION

We evaluate ColloSSL on three multi-device HAR datasets, and compare its performance against various HAR

baselines such as self-supervised learning, semi-supervised learning and fully-supervised learning. Our key

results include:

• ColloSSL outperforms the fully-supervised learning in a low-data regime. In 15 out of the 18 anchor devices,

ColloSSL trained with 10% or 25% of the labeled data achieves higher 𝐹1 score than the fully-supervised

model trained with 100% labeled data.

• ColloSSL also outperforms various HAR baselines in terms of recognition performance. When the same

amount of labeled data is used, ColloSSL has an absolute increase of 7.9% in the 𝐹1 score, compared to the

best performing baseline.

• Through visualization of t-SNE plots and saliency maps, we show that ColloSSL generates well-separable

and meaningful feature embeddings across classes.

• ColloSSL is robust to temporal misalignment of data frommultiple devices; less than ±0.006 difference in the
𝐹1 score is observed when up to 0.5s and less than ±0.01 difference when up to 3s of time synchronization

error is introduced in devices.

6.1 Experimental Setup

Datasets: For our experiments, we use three datasets for human activity recognition (HAR) which have time-

aligned sensor data from multiple devices: RealWorld [56], Opportunity [44], and PAMAP2 [43] as shown

in Table 1. In common, they contain 3-axis accelerometer and 3-axis gyroscope data sampled simultaneously

from multiple on-body devices. The inertial sensors used in two of the datasets are also heterogeneous: the

RealWorld dataset uses a Samsung Galaxy S4 smartphone and a LG G smartwatch to collect the sensor data,

while the inertial sensors used in the Opportunity dataset also come from different manufacturers such as

InertiaCube3 and Sun SPOT.

• RealWorld: The RealWorld dataset [56] contains accelerometer and gyroscope traces of 15 participants,

sampled at 50 Hz simultaneously on 7 sensor devices mounted at forearm, thigh, head, upper arm, waist,

chest, and shin. Each participant performed 8 activities: climbing stairs down and up, jumping, lying, standing,
sitting, running/jogging, and walking.
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Table 1. Summary of the datasets used for evaluation. The RealWorld andOpportunity datasets also contain heterogeneous

sensors from different manufacturers.

Dataset No. of devices (positions) No. of users No. of activities (labels)

RealWorld [56] 7 (forearm, thigh, head, upper arm,

waist, chest, shin)

15 8 (stair up, stair down, jumping,

lying, standing, sitting, running,

walking)

Opportunity [44] 5 (back, left lower arm, right shoe,

right upper arm, left shoe)

4 4 (standing, walking, sitting, lying)

PAMAP2- Locomotion [43] 3 (arm, chest, ankle) 8 4 (standing, walking, sitting, lying)

PAMAP2-ADL [43] 3 (arm, chest, ankle) 8 12 (standing, walking, sitting, lying,

running, cycling, nordic walk-

ing, ascending stairs, descending

stairs, vacuum cleaning, ironing,

rope jumping)

• Opportunity: The Opportunity dataset [44] consists of IMU data collected from 4 participants performing

activities of daily living with 17 on-body sensor devices, sampled at 30 Hz. For our evaluation, we select

five devices deployed on back, left lower arm, right shoe, right upper arm, and left shoe, and we target to

detect the mode of locomotion classes, namely standing, walking, sitting, and lying.
• PAMAP2 (Locomotion and ADL): The PAMAP2 Physical Activity Monitoring dataset [43] contains

data of 18 different physical activities, performed by 9 participants with 3 IMUs. The IMUs were deployed

over the wrist on the dominant arm, on the chest, and on the dominant side’s ankle with a sampling rate

of 100 Hz. Out of 9 participants, we used the data from 8 of them, since the remaining user has data for

only one activity class. We performed the evaluations using two different splits of the dataset: PAMAP2 -

Locomotion, which consists of 4 locomotion activities, standing, walking, sitting, and lying, and PAMPA2

- ADL, which consists of 12 ADL activities: running, cycling, nordic walking, ascending stairs, descending
stairs, vacuum cleaning, ironing, and rope jumping, along with the four locomotion activities.

Baselines: We compare ColloSSL against 6 baselines, divided in the following 4 categories:

• Random: In the Random baseline, we assign random weights to the feature extractor and freeze them.

During the supervised fine-tuning, only the classification head is trained using labeled data from the anchor

device. This baseline is used to confirm that our learning task is not so trivial that it can be solved with a

random feature extractor.

• Supervised: To represent supervised learning, we devise two baselines, Supervised-single and Supervised-
multi. In both baselines, the feature extractor and classifier are jointly trained using labeled data by

optimizing a cross entropy loss. In Supervised-single, a separate model is trained on the labeled data of

each anchor device. On the other hand, Supervised-multi trains a common model using labeled data from

all devices present in the dataset.

• Semi-supervised: As example of semi-supervised learning, we use two AutoEncoder [4] baselines:

AutoEncoder-single and AutoEncoder-multi. In both these baselines, the feature extractor acts as

an ‘encoder’ that converts unlabeled input samples into feature embeddings. We add a separate ‘decoder’

neural network which does the inverse task, i.e., it tries to map the feature embeddings back to the input

samples. The encoder and decoder together form the AutoEncoder (AE) and are trained by minimizing the

MeanSquaredError between the input data and the reconstructed data. In AutoEncoder-single, a separate

AE is trained for each anchor device, where in AutoEncoder-multi, a common AE is trained using data
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from all devices. After the AE training converges, we discard the decoder and use the trained encoder as

our feature extractor 𝑓 (.). Subsequently, 𝑓 (.) is fine-tuned on the labeled data from the anchor device.

• Self-supervised: To compare the performance of ColloSSL with a state-of-the-art self-supervised learning

(SSL) technique, we adopt the Multi-task SSL technique proposed by Saeed et al. [46]. Multi-task SSL

learns a multi-task temporal convolutional network with unlabeled data for transformation recognition

as a pretext task to learn a general feature extractor and trains a recognition model based on the feature

extractor with a small labeled dataset. The fine-tuning stage aligns the model to the data distribution

of a particular device, and to ensure fair comparisons across different baselines on specialized models,

separate recognition models are trained for each anchor device. Please note that although there are other

SSL techniques proposed for HAR, we chose [46] as a baseline, because it also applies transformations to

the sensor data values, thus making it a fairer comparison against ColloSSL.

Data pre-processing and hyperparameters: The accelerometer and gyroscope traces are segmented into time

windows of 3 seconds for RealWorld and 2 seconds for Opportunity and PAMAP2 datasets without any overlap.

These window sizes are chosen based on prior explorations with these datasets, e.g., [7, 32]. Finally, the dataset

was normalized to be in the range of -1 and 1.

Our training setup is implemented in Tensorflow 2.0. We used the TF HParams API
1
for hyperparameter tuning

and arrived at the following training hyperparameters: {ColloSSL learning rate: 1e-5, fine-tuning and supervised

learning rate: 1e-3, 𝜏 = 0.05, batch size = 512 }.

Evaluation Protocol and Metrics: In ColloSSL, even though we use unlabeled data from multiple devices to

train the feature extractor, our evaluation is always done on a single anchor device (e.g., chest-worn IMU for

RealWorld). We divide the participants into multiple groups and conduct leave-one-group-out cross-validation.

The number of groups of RealWorld, Opportunity, and PAMAP2 is set to 5, 4, and 4, respectively. More specifically,

we train the feature extractor using unlabeled data from all groups except a held-out group. Thereafter, the feature
extractor along with the classification head is fine-tuned on a labeled dataset from the anchor device. Finally, the

fine-tuned model is tested on the data from the held-out group.
We use the macro 𝐹1 score (unweighted mean of 𝐹1 scores over all classes) as a performance metric, which is

considered a reasonable evaluation strategy for imbalanced datasets [40]. The weighted 𝐹1 score is also known to

take class imbalances into account, however as argued by Plötz [40], it could inflate recognition results in the

favor of majority class.

6.2 Performance of ColloSSL in a Low-data Regime

We evaluate the HAR performance of ColloSSL against baseline techniques in two aspects. First, we study whether

our solution performs on-par compared to the baselines in a low-data regime, i.e., whether ColloSSL shows

comparable performance even with a small amount of labeled data. Second, we investigate whether our solution

outperforms the baselines in terms of the recognition accuracy, with the same data availability, i.e., when all

baselines are trained with the same amount of labeled data.

To study the low-data regime, we fine-tune ColloSSL and other baselines except Supervised-single, using 10%,

25%, 50%, 75%, and 100% of the available labeled data from the anchor device. The fine-tuned models are then

evaluated on the anchor device from the validation/held-out group. Supervised-single is used as a reference point,

thus trained using 100% of the training data. Note that the labeled training data available in our datasets for

each anchor device (on average) is as follows: RealWorld: 1027 windowed samples (approximately 51 minutes),

Opportunity: 3014 samples (approximately 100 minutes), PAMAP2 - Locomotion: 1280 samples (approximately

42 minutes), and PAMAP2 - ADL: 5709 samples (approximately 190 minutes).

1
https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 17. Publication date: March 2022.

https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams


17:16 • Jain and Tang, et al.

Table 2. Classification performance: average of macro 𝐹1 scores and the minimum percentage of labeled data outperforming

the fully supervised model (Supervised-single). For each anchor device, bold numbers represent the highest 𝐹1 score, and red

numbers indicate the technique which requires the least amount of labeled data to outperform Supervised-single. When a

technique does not outperform Supervised-single, we denote its best-achieved performance with an asterisk.

Dataset

(anchor)

Supervised-

single

Random

Supervised-

multi

AutoEncoder-

single

AutoEncoder-

multi

Multi-task

SSL

ColloSSL

RealWorld
forearm 0.732 (100%) 0.253 (50%)* 0.495 (100%)* 0.723 (100%)* 0.739 (75%) 0.734 (50%) 0.767 (25%)

head 0.643 (100%) 0.211 (25%)* 0.537 (100%)* 0.647 (100%) 0.646 (25%) 0.670 (25%) 0.690 (10%)

shin 0.781 (100%) 0.375 (100%)* 0.628 (100%)* 0.784 (10%) 0.765 (75%)* 0.81 (10%) 0.81 (10%)

chest 0.715 (100%) 0.228 (50%)* 0.650 (100%)* 0.478 (75%)* 0.720 (25%) 0.722 (10%) 0.716 (25%)

thigh 0.701 (100%) 0.283 (100%)* 0.586 (100%)* 0.695 (75%)* 0.656 (25%)* 0.675 (75%)* 0.690 (25%)*

upper arm 0.726 (100%) 0.268 (75%)* 0.595 (100%)* 0.739 (75%) 0.708 (100%)* 0.753 (10%) 0.740 (25%)

waist 0.745 (100%) 0.297 (25%)* 0.674 (100%)* 0.582 (75%)* 0.770 (10%) 0.778 (10%) 0.781 (10%)

Opportunity
back 0.439 (100%) 0.164 (50%)* 0.253 (25%)* 0.446 (10%) 0.445 (50%) 0.380 (25%)* 0.556 (10%)

lla 0.370 (100%) 0.197 (100%)* 0.398 (25%) 0.386 (25%) 0.375 (25%) 0.374 (100%) 0.516 (10%)

left shoe 0.391 (100%) 0.164 (10%)* 0.396 (75%) 0.282 (100%)* 0.172 (25%)* 0.164 (100%)* 0.416 (25%)

right shoe 0.378 (100%) 0.164 (10%)* 0.392 (25%) 0.265 (100%)* 0.166 (50%)* 0.183 (100%)* 0.402 (10%)

rua 0.416 (100%) 0.164 (10%)* 0.293 (100%)* 0.447 (10%) 0.375 (10%)* 0.277 (10%)* 0.538 (10%)

PAMAP2 - Locomotion
ankle 0.731 (100%) 0.609 (50%)* 0.589 (10%)* 0.651 (10%)* 0.770 (10%) 0.774 (50%) 0.784 (100%)

chest 0.654 (100%) 0.295 (50%)* 0.738 (10%) 0.669 (75%) 0.655 (10%) 0.730 (10%) 0.741 (10%)

hand 0.723 (100%) 0.496 (25%)* 0.731 (25%) 0.723 (100%) 0.750 (10%) 0.791 (10%) 0.740 (10%)

PAMAP2 - ADL
ankle 0.550 (100%) 0.262 (100%)* 0.548 (100%)* 0.56 (25%) 0.489 (100%)* 0.567 (50%) 0.578 (25%)

chest 0.640 (100%) 0.156 (100%)* 0.64 (50%) 0.623 (25%) 0.607 (75%)* 0.615 (100%)* 0.651 (50%)

hand 0.575 (100%) 0.208 (50%)* 0.585 (25%) 0.577 (75%) 0.586 (50%) 0.596 (50%) 0.617 (25%)

Table 2 shows the classification performance for the various anchor devices, averaged over all validation

groups in a leave-one-group-out evaluation. More specifically, we report the minimum percentage of labeled

data required by each technique to surpass the performance of Supervised-single (in parenthesis), and the

corresponding macro-𝐹1 score averaged over all validation groups. In case a technique does not surpass the

performance of Supervised-single, we report its best performing 𝐹1 score and labeled data percentage.

Our results confirm the data-efficiency of ColloSSL. In 15 out of the 18 anchor devices, including those for

ADL recognition, ColloSSL with 10% or 25% of labeled data achieves higher 𝐹1 score than Supervised-single

trained with 100% labeled data. In the remaining three cases, ColloSSL shows comparable 𝐹1 score with 25% of

labeled data when evaluated at the thigh-worn device in RealWorld (ColloSSL: 0.690, Supervised-single: 0.701), a

higher 𝐹1 score with 100% of labeled data when evaluated at the ankle-worn device in PAMAP2 (ColloSSL: 0.784,

Supervised-single: 0.731), and a comparable 𝐹1 score with 50% of labeled data evaluated at the chest-worn device

in PAMAP2 - ADL (ColloSSL: 0.651, Supervised-single: 0.640).

Table 2 also shows (in red font) the technique which requires the least amount of labeled data to surpass

Supervised-single. We observe that ColloSSL generally performs better compared with other semi-supervised

approaches (AutoEncoder-single and AutoEncoder-multi) and self-supervised approach (Multi-task SSL). More

specifically, in 13 out of 18 anchor devices, ColloSSL used the lowest percentage of labeled data across the

baselines. This is remarkable considering that AutoEncoder-single, AutoEncoder-multi, and Multi-task SSL win

at 5, 4, and 6 anchor devices; note that multiple winners can be chosen.
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Fig. 4. Assessing the classification performance of ColloSSL and baselines across different percentages of labeled data. Note

that some baselines had very poor performance and are not visible in the plot. Please refer to Table 2 for in-depth results.

Finally, Table 2 shows (in bold font) the technique which provides the highest performance in a low-data

regime. Here ColloSSL has the highest 𝐹1 score in 14 out of 18 anchor devices across all techniques. Multi-task

SSL also outperformed the supervised baseline in most cases, and outperformed ColloSSL in 3 of the remaining

scenarios. This could be attributed to the data-efficiency of self-supervised methods, and in certain scenarios,

pre-text tasks based on specific data transformations could offer the right data diversity for training a feature

extractor. However, for Opportunity dataset, there are several cases where the Multi-task SSL baseline failed to

outperform the supervised baseline. One possible reason for this is that the effectiveness of SSL methods which

rely on manual data transformations can be highly dependent on the dataset and the specific transformations

used by the technique [8]. It is possible that the manual transformations employed by this baseline were not

optimal for Opportunity, which resulted in poor recognition accuracy. Instead, ColloSSL does not define any

manual transformations on the datasets and leverages natural transformations present in the data; hence overall

it is more robust to dataset variations.

Figure 4 provides further insights into these findings by plotting the performance of various techniques when

they trained or fine-tuned with different percentage of labeled data from the anchor device. We present two

important findings. First, regardless of the percentage of labeled data used for fine-tuning, ColloSSL generally
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Table 3. Comparison of classification performance (average and standard deviation of macro 𝐹1 scores) for different anchor

devices, when 100% of the labeled data is available for fine-tuning. lla: left lower arm, rua: right upper arm.

Dataset

(anchor)

Random

Supervised-

single

Supervised-

multi

AutoEncoder-

single

AutoEncoder-

multi

Multi-task

SSL

ColloSSL

RealWorld
forearm 0.248 (0.028) 0.732 (0.065) 0.495 (0.039) 0.723 (0.045) 0.718 (0.064) 0.738 (0.057) 0.774 (0.053)
head 0.123 (0.028) 0.643 (0.055) 0.537 (0.031) 0.647 (0.071) 0.627 (0.061) 0.663 (0.026) 0.730 (0.046)
shin 0.375 (0.045) 0.781 (0.044) 0.628 (0.060) 0.799 (0.064) 0.761 (0.078) 0.785 (0.052) 0.806 (0.103)
chest 0.135 (0.030) 0.715 (0.104) 0.650 (0.054) 0.461 (0.127) 0.729 (0.09) 0.708 (0.061) 0.720 (0.095)

thigh 0.283 (0.024) 0.701 (0.11) 0.586 (0.022) 0.670 (0.061) 0.616 (0.088) 0.651 (0.120) 0.679 (0.101)

upper arm 0.126 (0.028) 0.726 (0.090) 0.595 (0.019) 0.731 (0.066) 0.708 (0.063) 0.756 (0.084) 0.772 (0.042)
waist 0.157 (0.049) 0.745 (0.127) 0.674 (0.042) 0.579 (0.167) 0.775 (0.051) 0.783 (0.102) 0.806 (0.070)
Average 0.207 (0.090) 0.720 (0.039) 0.595 (0.058) 0.659 (0.103) 0.705 (0.057) 0.726 (0.050) 0.755 (0.044)
Opportunity
back 0.164 (0.010) 0.439 (0.092) 0.217 (0.012) 0.434 (0.114) 0.432 (0.107) 0.355 (0.076) 0.665 (0.134)
lla 0.197 (0.050) 0.370 (0.013) 0.396 (0.082) 0.458 (0.028) 0.369 (0.016) 0.374 (0.011) 0.553 (0.018)
left shoe 0.164 (0.009) 0.391 (0.043) 0.394 (0.046) 0.282 (0.073) 0.171 (0.010) 0.164 (0.009) 0.443 (0.040)
right shoe 0.164 (0.009) 0.378 (0.024) 0.354 (0.032) 0.265 (0.056) 0.164 (0.009) 0.183 (0.011) 0.448 (0.026)
rua 0.164 (0.009) 0.416 (0.060) 0.293 (0.068) 0.437 (0.126) 0.277 (0.058) 0.185 (0.034) 0.700 (0.131)
Average 0.171 (0.013) 0.399 (0.025) 0.331 (0.068) 0.375 (0.084) 0.283 (0.106) 0.252 (0.092) 0.562 (0.107)
PAMAP2 - Locomotion
ankle 0.558 (0.115) 0.731 (0.100) 0.558 (0.072) 0.635 (0.012) 0.754 (0.081) 0.720 (0.095) 0.784 (0.088)
chest 0.160 (0.052) 0.654 (0.136) 0.680 (0.082) 0.687 (0.120) 0.639 (0.098) 0.716 (0.141) 0.742 (0.112)
hand 0.397 (0.180) 0.723 (0.111) 0.738 (0.092) 0.723 (0.105) 0.729 (0.088) 0.777 (0.065) 0.737 (0.078)

Average 0.372 (0.163) 0.703 (0.121) 0.659 (0.111) 0.682 (0.099) 0.708 (0.102) 0.738 (0.109) 0.754 (0.097)
PAMAP2 - ADL
ankle 0.262 (0.038) 0.550 (0.124) 0.548 (0.135) 0.566 (0.090) 0.489 (0.151) 0.559 (0.096) 0.646 (0.184)
chest 0.156 (0.062) 0.640 (0.189) 0.655 (0.177) 0.66 (0.150) 0.606 (0.104) 0.615 (0.169) 0.66 (0.185)
hand 0.170 (0.030) 0.575 (0.078) 0.647 (0.090) 0.575 (0.063) 0.585 (0.095) 0.621 (0.089) 0.664 (0.087)
Average 0.196 (0.047) 0.588 (0.038) 0.617 (0.049) 0.601 (0.044) 0.560 (0.051) 0.598 (0.028) 0.657 (0.008)
Total

average 0.237 0.603 0.551 0.579 0.564 0.579 0.682

outperforms the baselines. This shows that our design of device selection, contrastive sampling, and group

contrastive loss contributes to enhancing the performance of HAR. Second, we can again observe that ColloSSL

outperforms the fully-supervised model (Supervised-single) even with much less labeled data , including for

PAMAP2 - ADL, which contains with more complex activities of daily living.

6.3 Comparison of ColloSSL Recognition Performance with Baselines

We now compare the classification performance of ColloSSL against various baseline techniques when sufficient

labeled data is available. Here, we use 100% of the labeled training data available from the anchor device for

fine-tuning ColloSSL, AutoEncoder-single, AutoEncoder-multi, and Multi-task SSL, and for training Supervised-

single and Supervised-multi. Then, we evaluate these techniques on the anchor device from the held-out group.

A hyperparameter search on training parameters was conducted for all pipelines to ensure optimal performance.

Table 3 shows the mean and standard deviation of macro 𝐹1 scores for different anchor devices. On average, the

results show that ColloSSL outperforms baseline techniques for all datasets we used. ColloSSL has an absolute

increase of around 7.9% in the 𝐹1 score over the average of all anchor devices across all datasets, compared to
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Fig. 5. t-SNE visualizations to compare the features learned by ColloSSL and various baselines.

the best performing baseline, Supervised-single. We also observe that ColloSSL outperforms Multi-task SSL, a

state-of-the-art self-supervised learning technique for HAR for all except one anchor device. This validates our

design choice of leveraging natural transformations from the TSMDS settings for self-supervised contrastive

learning. Furthermore, our method outperforms the best performing baseline by 4% in 𝐹1 score in absolute

terms in PAMAP2 - ADL, which demonstrates that our proposed method can offer performance gain in simpler

locomotion recognition, as well as more complex ADL recognition.

6.4 Embedding Similarity and Data Saliency

In this section, we delve deeper to analyze the feature embeddings learned by the feature extractor and compare

them between ColloSSL and Fully Supervised settings. We also present Saliency Maps to understand how the

HAR models trained in these two settings are making their predictions.

Visualizing the feature space using t-SNE plots:We visualize the learned feature embeddings of ColloSSL

and the baselines (Supervised-single) using t-distributed stochastic neighbor embedding (t-SNE) plots [62].

t-SNE is a statistical method that is used to explore and visualize high-dimensional data. Based on Stochastic

Neighbor Embedding, it reduces the dimensionality of data in a nonlinear way and places each data point in

a location in a space of two or three dimensions. Specifically, t-SNE aims to discover patterns in the data by

clustering data points based on their similarity.

Using t-SNE, we project the 96-dimensional feature embeddings generated by the feature extractor onto

a 2D space in the following settings: ColloSSL w/o finetuning, ColloSSL w/ finetuning, and fully-supervised,

multi-task SSL and autoencoder-single. Figure 5 shows the t-SNE plots for two users and two anchor devices

from the RealWorld (top) and PAMAP2 (bottom) datasets. In common, we observe that ColloSSL w/o finetuning

already generates well-separable feature embeddings across classes. It implies that ColloSSL captures the semantic
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(a) Climbing down activity collected from a chest-work IMU (b) Walking activity collected from a waist-worn IMU

Fig. 6. Saliency map for samples of RealWorld dataset; (top) raw input signal, (middle) and (bottom) magnitude values

computed from the input signal. The intensity of color indicates the impact of the region on the model prediction. We observe

that ColloSSL and fully supervised model show similar patterns of the color intensity. This implies that models trained with

both approaches largely focus on similar regions of the data to make their predictions.

structure of the data very well. The class separation in the embeddings is further improved by finetuning with a

small amount of labeled data as shown in ColloSSL w/ finetuning. We also observe that the nature of clustering

learned with ColloSSL is largely comparable with those learned with fully-supervised model trained with 100%

of the labeled data. The two baselines, autoencoder and multi-task SSL, also achieve a reasonably good cluster

separation; however certain classes end up having high overlap in their features. For example, multi-task SSL

finds it difficult to separate the data Climbing up, Climbing Down, and Walking activities in Figure 5 (top).

Visualizing the salient regions in the data using Saliency maps. For a better interpretability of our findings,

we visualize saliency maps [46, 53] for two randomly selected data samples from the RealWorld dataset. A

saliency map illustrates the regions of the data sample that have the most effect on a model’s prediction; the parts

with higher color intensity shows the regions that contribute most to the model’s prediction. Our objective is to

understand if the salient regions of the data remain consistent across ColloSSL and Fully-Supervised training.

Figure 6 shows the saliency maps for two randomly selected data samples from the RealWorld dataset; a

sample of a climbing down activity collected from a chest-worn IMU in Figure 6a and a sample of a walking
activity collected from a waist-worn IMU. We visualize the three-axis raw input data from the accelerometer and

gyroscope separately in the top pane. The middle and bottom panes show the saliency maps for this input data

produced by ColloSSL and Fully-supervised training for a class with the highest prediction score. For ease of

understanding, we only present the magnitude values of the accelerometer and gyroscope data in the saliency

maps. In the middle and bottom panes, the intensity of color indicates the impact of the region on the model

prediction. The regions with strong intensity imply that they contribute to the model prediction more than those

with weak intensity.
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Table 4. Comparison of various device selection strategies in terms of performance (average and standard deviation of macro

𝐹1 scores) for the PAMAP2 - ADL dataset.

Anchor Closest Positve & Random Negative Random Selection ColloSSL

chest 0.649 (0.175) 0.631 (0.166) 0.662 (0.185)
ankle 0.602 (0.122) 0.553 (0.095) 0.646 (0.184)
hand 0.651 (0.088) 0.634 (0.085) 0.664 (0.087)

Figure 6 shows that ColloSSL and the fully-supervised model show a similar pattern in color intensity, both for

accelerometer and gyroscope samples. For example, in Figure 6a, the periodic peaks in the accelerometer data on

the x-axis (blue color) are largely responsible for the model’s prediction in both ColloSSL and fully-supervised

settings. The takeaway from this result is that the models trained with ColloSSL and fully-supervised training

largely focus on similar regions of the data to make their predictions. This confirms that ColloSSL is able to

generate meaningful representations of data for the HAR classification task.

7 ANALYSIS

In this section, we present a set of ablation studies and also analyze the performance of ColloSSL under real-world

constraints in sensor devices. Please note that due to space constraints, we present the results on only one dataset

and a subset of anchor devices in each section, however the results also hold for other scenarios.

7.1 Analysis of the Device Selection Strategy

Our proposed device selection strategy (§5.4.1) uses the closest device (least MMD distance) to the anchor as the

Positive device and all devices as Negatives, weighted by the inverse of their MMD distance to anchor. In this

ablation experiment, we compare this strategy against two baselines: i) Random Selection ii) Closest Positive and

Random Negative Selection. In the Random Selection strategy, we randomly pick one positive and one negative

with replacement in each batch. In the Closest Positive & Random Negative strategy, we pick the closest device

with the least MMD distance to anchor, but randomly choose one negative device.

Table 4 shows the experiment result on the PAMAP2 - ADL dataset with 12 ADL activities. We observe that

ColloSSL outperforms the two baseline approaches. In particular, the Random Selection strategy performs the

worse as it often picks positive devices which have different data distributions from the anchor device. The

Closest Positive & Random Negative also has a lower performance as it does not prevent the violation of the (N1)
criteria for negative samples as described in §5.4. This finding supports our hypothesis that using ‘all’ devices for

negative samples serve as a hedge against the scenario when (N1) is violated on one of the devices.

7.2 Analysis of the Contrastive Sampling Approach

We now evaluate the effect of contrastive sampling by running an ablation on the PAMAP2-ADL dataset. We

compare ColloSSL’s asynchronous negative sampling against its counterpart, synchronous negative sampling.

Note that, positive samples are sampled synchronously in both the settings, otherwise positive samples will

violate characteristic (P1). Table 5 exhibits the improvement in performance by using asynchronous negative

sampling. We attribute this gain to the knowledge that synchronous samples in TSMDS setting belongs to the

same class as the anchor sample; hence by negatively contrasting these samples, the feature extractor is violating

(N1) and learns poor representations.

7.3 Analyzing the Role of Weights in Multi-view Contrastive Loss

In multi-view contrastive loss, we introduce weights as a way to differentiate between the contributions of each

negative device towards the optimization objective. To investigate the effect these weights have on ColloSSL, we
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Table 5. Comparison of the effect of contrastive sampling on performance (average and standard deviation of macro 𝐹1
scores) for the PAMAP2 - ADL dataset.

Anchor Synchronous positive and negative ColloSSL

chest 0.6307 (0.180) 0.662 (0.185)
ankle 0.601 (0.101) 0.646 (0.184)
hand 0.639 (0.076) 0.664 (0.087)

Table 6. Comparison of the effect of Weights over performance (average and standard deviation of macro 𝐹1 scores) of

ColloSSL in the PAMAP2 - ADL dataset.

Anchor ColloSSL w/o weights ColloSSL

chest 0.658 (0.184) 0.662 (0.185)
ankle 0.601 (0.112) 0.646 (0.184)
hand 0.636 (0.076) 0.664 (0.087)

conducted an experiment where the weights were removed from the loss function (i.e., all devices were assigned

the same weight). Table 6 shows the result of our experiment. We can observe that use of the weighted loss

criterion improves the performance of ColloSSL which supports our hypothesis that weighted negatives help in

pushing closer negative embeddings further away from the anchor device (N2) resulting in better features.

7.4 Robustness to Sensor Heterogeneity

In the TSMDS setting, devices placed at different body positions could be heterogeneous, in that they can come

from different manufacturers or use different inertial sensors. In this section, we probe the robustness of ColloSSL

to sensor heterogeneity by synthetically adding two types of heterogeneity in the IMU data based on prior

literature [14, 15, 42].

Prior research has shown that deterministic errors in IMU sensors are the prominent causes of heterogeneity

in the sensor data. Deterministic errors are caused by variations in sensor components across manufacturers,

imperfections introduced in the analog circuitry of the sensor during the manufacturing process [12], or temper-

ature differences between initial calibration and operational stages [1]. Two of the major types of deterministic

errors are scale factor errors and bias errors [15].

For this experiment, we induce different scale factor and bias errors to each IMU device in the RealWorld

dataset. For each device, we sample a scale factor 𝑆 from a normal distribution with 𝜇 = 1.0 and 𝜎 = 0.05 (low

heterogeneity) and 𝜎 = 0.1 (high heterogeneity). Similarly, we sample a bias factor 𝐵 from a normal distribution

with 𝜇 = 0.0 and 𝜎 = 0.05 (low heterogeneity) and 𝜎 = 0.1 (high heterogeneity). Following the methodology

proposed in [15], the two factors are introduced to the raw datasets {X𝑖 }𝐷𝑖=1 to obtain X′
𝑖 = 𝑆 × (X𝑖 − 𝐵), where

X′
𝑖 denotes the dataset with induced sensor heterogeneity for the 𝑖𝑡ℎ device. Thereafter, we run the end-to-end

training pipeline of ColloSSL on the heterogeneous datasets {X′
𝑖 }𝐷𝑖=1 using the same experiment protocol as

previous experiments.

Our findings are shown in Table 7. For comparison, we also present the results when no additional sensor error

is added to the dataset. Overall, we observe that ColloSSL is able to handle sensor heterogeneity and outperforms

the fully-supervised and multi-task SSL baselines. Interestingly, we found that introducing ‘low heterogeneity’ to

the unlabeled data improves the performance of ColloSSL and the other baselines. This finding can be explained

by prior work which has shown that data augmentation based training of deep neural networks helps in learning

better more generalizable features [33, 38].
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Table 7. Performance (macro 𝐹1 scores) for two anchor devices in the RealWorld dataset under different levels of sensor

heterogeneity. ‘None’ denotes the case where no additional sensor error is added to the dataset.

None Low High

Anchor

Supervised

single

Multi-task

SSL

ColloSSL

Supervised

single

Multi-task

SSL

ColloSSL

Supervised

single

Multi-task

SSL

ColloSSL

forearm 0.732 0.738 0.774 0.744 0.762 0.786 0.73 0.74 0.761
shin 0.781 0.785 0.806 0.806 0.811 0.8337 0.773 0.782 0.80
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Fig. 7. Assessing the classification performance of ColloSSL across different unavailability of devices in TSMDS setting. Note

that unavailability of each device (x-axis) is decided independently of each other. Please refer to § 7.5 for more details.

7.5 Robustness to Missing Devices

In real-world scenarios, it is often the case that all the devices are not available all the time, e.g., the device runs

out of battery, or a user takes off their earbuds during a conversation. This would result in having missing signal

data from some devices in the TSMDS setting. We explore this missing data problem for ColloSSL and conduct an

experiment with RealWorld dataset. While preparing the data for this experiment, we assume that the anchor

device, for which we would like to learn a prediction model, is always available. For the remaining 𝑁 devices, we

set the unavailability of each device with the probability, 𝑝𝑢= {0.1, 0.2, 0.3, 0.4, 0.5}. For example, if 𝑝𝑢 is set to 0.1,

all devices will be available in the same time window with the probability of (1 − 0.1)𝑁 . More specifically, when

a device is set to unavailable in a given time window, we replace its sensor data with zeros.

Fig 7 shows the 𝐹1-macro values with varying availability probability values. The results show that ColloSSL

is robust against the changing availability of devices and we observe at most a 1% performance drop in our

experiments due to device unavailability. This result can be explained by the design of device selection and

weighted loss function in ColloSSL. Firstly, missing devices (i.e., devices with 0 data) will have a high MMD

with the anchor device, and ColloSSL is likely to assign them as negative devices. Secondly, the contribution of

these missing devices will be significantly down-weighted in the multi-view loss function as negative devices

with high MMD distances get assigned smaller weights in training. Surprisingly, we also observe that ColloSSL

with missing devices sometimes provides slightly higher performances than the case with full device availability.

Admittedly, we do not have a good explanation for this behavior; we surmise that the neural network considers

missing data as a form of noise, which might lead to an implicit training regularization that boosts performance.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 17. Publication date: March 2022.



17:24 • Jain and Tang, et al.

Table 8. Comparison of classification performance (average of macro 𝐹1 scores) for different time synchronization errors.

Anchor device Time Synchronization error

(RealWorld) 0s 0.01s 0.1s 0.5s 0.75s 1.5s 2.25s 3s

waist 0.806 0.804 0.800 0.808 0.811 0.805 0.802 0.812

shin 0.806 0.809 0.809 0.805 0.807 0.813 0.811 0.815

Table 9. Comparison of classification performance (average and standard deviation of macro 𝐹1 scores) between ColloSSL

and ColloSSL-unseen in the RealWorld dataset.

Device for testing ColloSSL ColloSSL-unseen

upper arm 0.772 (0.042) 0.764 (0.063)

waist 0.806 (0.070) 0.792 (0.072)

7.6 Robustness to Temporal Misalignment

In §3.1, we assume that data from multiple devices in the TSMDS setting are collected in a time-aligned manner.

To investigate how robust ColloSSL is to temporal misalignment between devices, we conduct an experiment

with the RealWorld dataset by deliberately injecting time synchronization errors. More specifically, we shift the

timestamps of all devices in the RealWorld dataset by 0.01, 0.1, 0.5, 0.75, 1.5, 2.25, and 3 seconds, except the anchor

device.

Table 8 shows the 𝐹1-macro values for two anchor devices, waist and shin. The results show that, for realistic,

moderate time-sync errors (≤ 0.5 seconds), there is no significant change in the performance of ColloSSL, i.e.,

within ±0.006 of the 𝐹1-macro value. Even with high misalignment casees (> 0.5 seconds), the change in the

𝐹1-macro score is about ±0.01. We conjecture that this result is caused by a) the temporal locality of human

behaviors, and b) the ability of the feature extractor 𝑓 (.) to ignore moderate synchronization errors.

7.7 Generalizability of the Feature Extractor

We further investigate the generalizability of ColloSSL: whether the feature extractor 𝑓 (.) trained using ColloSSL

is transferable to new devices, i.e., the ones that do not participate in pre-training of 𝑓 (.). To this end, we pre-train
ColloSSL-unseen on unlabeled data from all devices except one ‘unseen’ device. The pre-trained model is then

fine-tuned and evaluated on the unseen device. For example, in the RealWorld dataset – if ’head’ is chosen as the

unseen device, we pre-train the feature extractor on rest of the devices to obtain ColloSSL-unseen. Then, we

fine-tune ColloSSL-unseen with labeled data of ’head’, and report the classification performance using test data

of ’head’.

Table 9 compares the classification performance between ColloSSL and ColloSSL-unseen when the model is

evaluated at upper arm- and waist-worn devices in the RealWorld dataset. The results show that ColloSSL-unseen

shows comparable performance to ColloSSL, even though the data of the unseen device is not used for pre-training

the feature extractor. The decrease of 𝐹1 score is less than 1% in both cases. This gives us an early indication that

the feature extractor, 𝑓 (.), trained using ColloSSL is transferable across devices and can be useful for finetuning

on unseen devices. More specifically, when a new, unseen device is added to the TSMDS setting, we can reuse the

pre-trained 𝑓 (.) and just fine-tune it using a small amount of labeled data from the new device.

8 DISCUSSION AND LIMITATIONS

In this section, we discuss the limitations of our approach, elaborate on some of the practical deployment concerns

associated with our method, and highlight avenues for future research on this topic.
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Training Cost of ColloSSL. Training a model using ColloSSL naturally takes more time when compared to

fully-supervised learning, because of the need for pre-trainig on unlabeled data. However, since model training

is currently done offline (e.g., on a server), it has no adverse implications for system resources on mobile or

wearable devices. Further, ColloSSL does not impose any additional costs for data collection; in the TSMDS

setting, multiple devices (e.g., smartphone, smartwatch) are anyway collecting sensor data related to a user’s

activity, and ColloSSL simply uses this unlabeled data to train a more accurate HAR model.

Runtime System Cost. Although ColloSSL uses data from multiple devices to train the HAR model, it is

important to note that the trained model using ColloSSL only operates on a single device at runtime, similarly to

any conventional HAR model. Hence, we expect that the system costs of ColloSSL, such as inference latency and

energy consumption on mobile and wearable devices, are the same as an HAR model trained using supervised

learning.

ColloSSL as a general framework for learning in TSMDS settings. Although we focus on applying ColloSSL

to HAR with motion data, the TSMDS setting is common to other sensor modalities (e.g., audio, vision) as shown

in Figure 1. To apply ColloSSL to other TSMDS settings, the technical solutions (device selection, contrastive

sampling, and group contrastive loss) need to be redesigned to reflect the characteristics of sensory signals, user

behavior, and environments. However, we believe the key idea of ColloSSL is still valid, which is to leverage

natural transformations in the unlabeled datasets from multiple devices to generate a supervisory signal for

training. In future work, we plan to explore technical solutions to extend ColloSSL to audio- and vision- based

TSMDS settings.

We now discuss several limitations of our current approach.

Data Privacy. ColloSSL is designed as a collaborative learning framework, in that it requires raw data from

multiple devices to train the HAR model. In practice, the sensor devices owned by a user may be from different

device manufacturers, who may not be willing to offload the raw sensor data to a centralized cloud server due to

privacy and commercial reasons. We envision two potential solutions to this issue: firstly, model training can be

done on a trusted edge device such as a home router and it ensures that a user’s data never leaves their premises.

Alternatively, federated self-supervised learning approaches [52] can be explored wherein the feature extractor is

trained locally on each device and only the gradients of the feature extractor are shared to a central server for

aggregation.

Extension to newer SSL algorithms. This work focuses on using a contrastive learning paradigm with positive

and negative samples for self-supervised learning. However, recently novel SSL methods have been proposed

which do not require negative samples [10, 17] and outperform contrastive learning methods such as SimCLR. As

a future work, we plan to explore such methods for self-supervised learning in TSMDS settings.

9 CONCLUSION

We presented Collaborative Self-Supervised Learning (ColloSSL), a new method to leverage unlabeled inertial

data collected from multiple body-worn devices to learn a good representation of the data. In doing so, we

exploited an important characteristic of the TSMDS setting that the time-aligned data from different devices can

be considered as natural transformations of each other. Based on this observation, we presented a contrastive

learning pipeline which intelligently gathers positive and negative samples from multiple devices, and contrasts

them against a sample from the anchor device to generate a supervisory signal from unlabeled data.

Our key findings are that ColloSSL outperforms both fully-supervised and semi-supervised learning techniques

in majority of the experiment settings. Secondly, ColloSSL is data-efficient and can outperform the fully-supervised
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baselines using one-tenth of the labeled data in most settings. We also showed that ColloSSL can learn well-

separable features from the data, and threw light on how it makes its predictions by visualizing saliency maps.

Even though our focus in this paper was on the task of human-activity recognition with inertial sensors, our idea

of Collaborative Self-Supervised Learning and our proposed framework are general, and they can be applied to

other sensing modalities and applications in future work.
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