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ABSTRACT
Video cameras are becoming ubiquitous in our daily lives. With
the recent advancement of Artificial Intelligence (AI), live video
analytics are enabling various useful services, including traffic mon-
itoring and campus surveillance. However, current video analytics
systems are highly limited in leveraging the enormous opportu-
nities of the deployed cameras due to (i) centralized processing
architecture (i.e., cameras are treated as dumb streaming-only sen-
sors), (ii) hard-coded analytics capabilities from tightly coupled
hardware and software, (iii) isolated and fragmented camera de-
ployment from different service providers, and (iv) independent
processing of camera streams without any collaboration. In this
paper, we envision a full-fledged system for software-defined video
analytics with cross-camera collaboration that overcomes the afore-
mentioned limitations. We illustrate its detailed system architecture,
carefully analyze the key system requirements with representative
app scenarios, and derive potential research issues along with a
summary of the status quo of existing works.
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1 INTRODUCTION
In recent years, video cameras are pervasively deployed at scale in
our daily lives. Organizations are increasingly deploying camera
systems to analyze live video streams for various purposes, includ-
ing traffic monitoring, campus surveillance, and criminal chasing.
With the recent advancement in AI and computer vision, live video
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analytics has enabled the automation of real-time monitoring tasks
and is becoming a game changer everywhere.
Limitations of Existing Solutions.While extensive efforts have
been recently made to facilitate the deployment of video analyt-
ics, the capabilities of existing solutions are still highly limited.
First, they mostly treat cameras as dumb video streamers and
perform the whole vision processing tasks in central edge/cloud
servers [8, 16, 21], thereby causing severe resource waste, raising
massive privacy concerns, and limiting the scalability. Second, ex-
isting systems have hard-coded analytics capabilities due to tightly
coupled hardware (deployed cameras) and software (AI models
and processing pipelines). Once an analytics service is deployed,
it is difficult to dynamically adapt its capability (e.g., replacing AI
models and service logics) or change the functionality of the whole
system (e.g., adding new analytics). Third, analytics solutions and
systems are closed, meaning that they are exclusively available only
to their stakeholders. We can observe different service providers
deploying their cameras separately even in the same place without
any collaboration, causing a huge cost waste as a society. Fourth,
although multiple cameras are deployed in the same place for the
same analytics, each camera stream is mostly processed indepen-
dently without collaboration among them [19]. Thus the analytics
often misses opportunities to benefit from spatio-temporal redun-
dancies between proximate cameras [7].
OurVision.We envision software-defined video analytics with cross-
camera collaboration with the following key features:

• Support for Software-Defined Video Analytics. By decou-
pling analytics logics (including AI models) from deployed cameras,
it aims at supporting dynamic composition and execution of any an-
alytics service on demand, without modifying the hardware. Such
flexibility also enables camera networks to simultaneously run
multiple analytics services from different service providers.

• Abstraction for Cross-Camera Collaboration. Even with
the enormous advances made in computer vision, the analytics
capability of a single camera is inherently limited due to complex
scene contents. In such a case, it is expected to have a higher qual-
ity of service by having the collaboration of proximate cameras.
Considering an unprecedented increase in camera deployment, the
workload for collaborative analytics will be prevalent. The system
aims at providing the abstraction for cross-camera collaboration,
thereby facilitating the development of various video analytics
services. Such an abstraction also gives the system visibility and
fine-grained control for resource management.

• System-Wide Holistic Orchestration.When multiple ana-
lytics services are running concurrently, resource contention and
performance degradation are inevitable. This problem becomes
even more severe when the services are performed at edges (smart
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(a) Traffic surveillance. (b) Customer monitoring.

Figure 1: Example workloads for multi-app video analytics.

cameras or nearby edge servers) with limited processing capabilities.
To this end, we aim at providing system-wide holistic orchestration
that exploits the full resource capacity of the deployment environ-
ment and offers the maximum quality of service to users.

The rest of the paper is organized as follows. In Section 2, we
first detail the overall system architecture for software-defined
video analytics (Section 2.1), illustrate representative app scenarios
(Section 2.2), and analyze the key system requirements (Section 2.3).
Based on our analysis, we enumerate research issues and status
quo of existing works in Section 3. Finally, we conclude the paper
in Section 4 with our future research plans.

2 SOFTWARE-DEFINED VIDEO ANALYTICS
WITH CROSS-CAMERA COLLABORATION

We envision the architecture of emerging software-defined video
analytics with cross-camera collaboration, depict representative
app1 scenarios, and analyze the core system requirements.

2.1 System Components
Emerging software-defined video analytics system will be com-
prised of the following components.
Smart Cameras. The target environment (e.g., campus, shopping
mall, traffic intersections) will be covered by densely deployed smart
cameras, each with its own processing capabilities ranging from
embedded CPUs (e.g., Raspberry Pi) to GPU (e.g., NVIDIA Jetson
TX2) and NPU/TPUs (e.g., Google Coral Edge TPU). The cameras
may also be dynamically configurable (e.g., viewing angle can be
rotated [9], zoomed in or out) so as to collaborate with each other
(detailed collaboration scenarios in Section 2.2).
Edge/Cloud Server. An edge/cloud server resides between app
developers and smart cameras. It plays two key roles in our system.
First, it receives multiple app request queries from app developers
and dynamically controls cameras for video capture, streaming, and
processing. Second, it intelligently schedules concurrent workloads
across smart cameras and its GPU resources (e.g., 4–8 NVIDIA Titan
X GPUs), and returns the processed results back to users.
App Developers. The app developers who want to utilize smart
cameras deliver app request queries to the edge/cloud server. Each
query includes the following: (i) target camera(s), (ii) workload (i.e.,
processing pipelines and specific AI models), and (iii) processing
interval and application Service Level Objectives (SLOs) (e.g., input
video resolution, target latency and accuracy).

1Here, an app refers to a video analytics service on camera networks.

(a) Redundant ROI filtering. (b) Multi-camera fusion.

Figure 2: Examples of cross-camera collaboration.

2.2 Example Scenarios
Wedepict the following two example scenarios thatmotivate software-
defined video analytics with cross-camera collaboration.
Traffic Surveillance in Urban City.A city planner wants to mon-
itor the traffic flow in the city to develop a road construction plan.
He requests a query to run the car detector (e.g., [15]) on each
camera every minute, and obtains the aggregated results from the
server. Meanwhile, a police officer who wants to track a suspect’s
vehicle also requests a query to identify the target vehicle (e.g., by
vehicle detector and license plate recognizer). Upon receiving the
request, the system locates the target vehicle. As multiple cameras
can capture the target vehicle simultaneously (e.g., multiple cam-
eras at the intersection), the system identifies and filters out the
overlapping ROIs to minimize overall processing latency.
User Monitoring Shopping Mall. A restaurant owner in a shop-
ping mall wants to analyze the customer demographics (e.g., age
and gender) to determine which menu to sell. Meanwhile, a police
officer who wants to detect and track any theft event in the mall
requests a query to run a person detection and activity recognition
pipeline. In case the theft is detected, the system runs the person
re-identifier to track the suspect. As the burglar may not be accu-
rately detected from a single camera (e.g., due to viewing angles,
occlusion, or motion blur), the system fuses the analysis results of
multiple neighboring camera streams to improve accuracy.

2.3 System Requirements
From the above example scenarios, we extract the following key
system requirements that need to be considered to realize our vision.
Multi-App Concurrent Execution. The system needs to process
multiple concurrent app requests of which number and combina-
tion change over time. The system should continuously monitor
the concurrent requests and flexibly schedule their execution in a
holistic manner to satisfy the SLOs specified by the users.
Camera Selection and Pipeline Adaptation. Each video analyt-
ics app workload is composed of multi-stage AI models as shown in
Figure 1 (e.g., person detection on the entire frame, activity recogni-
tion for each person detected). Naive execution of the full pipeline
on the entire video streams incurs significant latency and resource
wastage. The system needs to efficiently identify which camera(s)
to process (e.g., ones that contain the objects of interest) and adapt
the processing pipelines (e.g., duty cycle, DNN complexity) depend-
ing on the scene content (e.g., object size and pose) and available
resources to optimize resource-accuracy tradeoff.

475



Vision Paper: Towards Software-Defined Video Analytics
with Cross-Camera Collaboration AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

Table 1: Summary of research issues and status quo of prior video analytics work.

Research issue Keyword Related work Multi-camera? Multi-app? Collaboration?

Query abstraction Abstraction for activity recognition Caesar [13] O X X

Fine-granule
multi-app resource sharing

Computation caching and reuse Starfish [11] X O X

Shared backbone batching Nexus [16] O O X

Multi-camera
pipeline joint adaptation

Pipeline adaptation DIVA [17], Reducto [10], EagleEye [18] X X X

Single camera duty cycling MARLIN [1], DeepMon [6] X X X

Cross-camera duty cycling Spatula [7], Pasandi et al. [14] O X O

Multi-app cross-camera
collaboration scheduling

Cross-camera redundancy optimization CrossROI [4] O X O

Multi-camera view adaptation/selection/fusion MoVi [2], CMCAOT [9] O X O

Workload-adaptive
resource scheduling

Video quality adaptation DDS [3], Liu et al. [12], AWStream [20] X X X

Distributed edge scheduling Distream [19], VideoEdge [5] O X X

Server cluster scheduling VideoStorm [21], Chameleon [8], Nexus [16] O O X

Workload Scheduling on Heterogeneous Edges. To maximize
the system-wide performance, the system should fully exploit the
computing resources of smart cameras and an edge/cloud server.
To this end, it is important to balance multi-app workloads across
cameras and servers flexibly and dynamically, considering their
heterogeneous computing capabilities. Furthermore, the scheduling
overhead (e.g., network latency and energy consumption for stream-
ing high-resolution videos) under dynamic resource availability
(e.g., network bandwidth fluctuation) needs to be considered.
Cross-CameraCollaboration. In dense deployment settings, mul-
tiple cameras can have overlapping coverage. The system should
accurately identify and support cross-camera collaboration to max-
imize system performance. Figure 2 shows the examples of cross-
camera collaboration: filtering out redundant ROIs to reduce pro-
cessing latency in traffic surveillance scenario (Figure 2(a)), fusing
multiple video stream processing results to improve the detection
accuracy of a burglar in a shopping mall user monitoring scenario
(Figure 2(b)). Cross-camera collaboration becomes more important
when the cameras’ viewing angle and zoom factor can be dynami-
cally configured for different app purposes (e.g., jointly rotating the
viewing angles to accurately track the target at different views [9]).

3 VISION, CHALLENGES AND STATUS QUO
We envision a software-defined video analytics platform (Figure 3),
and enumerate research issues and summarize prior works (Table 1).

3.1 Query Abstraction and Translation
Software-defined video analytics platform should support abstrac-
tions for developers to specify diverse app requests. Most of the
existing works, however, have been focused on single-shot object
detection tasks [5, 8, 19] and lacks considerations for such abstrac-
tion. Caesar [13] proposed an initial design on abstraction for multi-
camera activity recognition apps. We aim at designing abstractions
for more diverse video analytics queries (e.g., multi-object tracking)
and environments (e.g., multiple cameras with overlapping views).

3.2 Multi-App-Aware Pipeline Adaptation
Fine-Granule Multi-App Resource Sharing. Video analytics
pipelines commonly start by detecting and recognizing objects of

Figure 3: Software-defined video analytics architecture.
interest in the scene. Therefore, it will be highly likely that multiple
app requests share common processing blocks. For example, in the
customer monitoring scenario in Section 2.2, both a customer demo-
graphics analyzing app and a burglar detection app require a person
detection stage. To improve the overall performance by resource
sharing, the system should closely analyze the pipeline of each
video analytics app query, identify redundancy at a fine-grained
operation level, and share computing resources (e.g., via caching or
batching). For example, Starfish [11] considers caching and reusing
common image processing blocks across multiple continuous vi-
sion apps running on a single mobile camera. We can consider
extending the idea to multi-camera settings with overlapping ROIs.
Nexus [16] batches the DNN inference queries at the server with a
common backbone network to maximize throughput [16]. We can
also consider extending the idea to schedule batching at distributed
smart cameras considering the networking overhead.
Multi-Camera Pipeline Joint Adaptation. In processing multi-
ple apps, the system should efficiently identify the target camera
streams and corresponding pipelines (e.g., duty cycle and DNN
model) in a joint manner. Existing works, however, have mostly
been designed for and limited to single-camera, single-app envi-
ronments. MARLIN [1] tracks the scene content changes to adapt
the duty cycle or reuse cached results. EagleEye [18] adapts the
face identification pipeline complexity depending on the captured
face content (i.e., pose and resolution) and expected resource usage.
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DIVA [17] and Reducto [10] take the hierarchical filtering approach
to select the necessary frames to process using lightweight filters
(e.g., edge detection). Recently, Spatula [7] leverages the spatio-
temporal correlation of multiple neighboring cameras to jointly
adapt their duty cycle, but only assumes a single target tracking
scenario. We believe new research efforts should be made to realize
the joint adaptation of concurrent multi-camera pipelines.
Cross-Camera Collaboration Scheduling Finally, the system
should flexibly schedule the cross-camera collaboration policy to
maximize the SLOs of multiple apps. Several works have proposed
various cross-camera collaboration policies, but are limited to single-
app scenarios with static policies (e.g., filtering out overlapping
ROIs to minimize resource usage [4], choosing the camera that
best captures the target to maximize accuracy [2]). Depending on
the latency/accuracy target and resource availability, the system
should dynamically adapt the collaboration policies to satisfy the
SLOs ofmultiple app requests. Furthermore, in case that cameras are
dynamically configurable, the system should also handle conflicting
requests (e.g., two different queries may request the camera to rotate
in opposite angles) across multiple app queries.

3.3 Workload-Adaptive Resource Scheduling
The workload complexity of video analytics apps highly fluctuates
over time and camera location depending on the scene content [19]
(e.g., the workload complexity of customer demographics analysis
heavily depends on the number of people in the current frame). The
system should continuously monitor and flexibly balance the work-
loads across heterogeneous smart cameras and servers. However,
most of the existing video analytics systems [8, 16, 21] have as-
sumed the centralized processing architecture (i.e., it receives video
streams from cameras and processes all processing operations on
the server-side) and focused on server cluster computing resource
scheduling. Recently, Distream [19] has aimed at workload-adaptive
resource scheduling in distributed smart camera environments, but
lacks considerations for network transmission overhead (both be-
tween cameras and between cameras and a server) as well as concur-
rent multi-app workload scheduling. A number of works [3, 12, 20]
focused on video stream quality adaptation for network bandwidth
optimization, but are limited to single-app, single-camera scenar-
ios. Multi-app workload-adaptive, holistic resource scheduling on
heterogeneous edges remains an unsolved challenge.

4 CONCLUDING REMARKS
We envisioned a full-fledged system for software-defined video
analytics with cross-camera collaboration to overcome the limita-
tions of current camera deployment and video analytics systems,
analyzed its core system requirements, and enumerated research
issues in supporting them. For future work, we aim at designing
abstractions for the users to dynamically compose and execute
various collaborative analytics apps. Furthermore, we plan on de-
signing an end-to-end holistic resource orchestrator that utilizes
the computing capabilities of smart cameras to support concurrent
multi-app video analytics apps.
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