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ABSTRACT
The COVID-19 pandemic has seriously impacted education and
forced the whole education system to shift to online learning. Such
a transition has been readily made by virtue of today’s Internet
technology and infrastructure, but online learning also has limi-
tations compared to traditional face-to-face lectures. One of the
biggest hurdles is that it is challenging for teachers to instantly
keep track of students’ learning status. In this paper, we envision
earables as an opportunity to automatically estimate learner’s un-
derstanding of learning material for effective learning and teaching,
e.g., to pinpoint the part for which learners need to put more effort
to understand. To this end, we conduct a small-scale exploratory
study with 8 participants for 24 lectures in total and investigate
learner’s behavioral characteristics that indicate the level of under-
standing. We demonstrate that those behaviors can be captured
from a motion signal on earables. We discuss challenges that need
to be further addressed to realize our vision.
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1 INTRODUCTION
The COVID-19 pandemic has impacted every aspect of our lives.
Among others, education has been seriously affected. Schools in
a lot of countries had to close or reduce their face-to-face classes.
According to some reports [1, 2], more than 1 billion students
worldwide could not use their classrooms at the peak of the crisis.
Alternatively, schools are providing access to education using online
learning technology and numerous students are currently educated
remotely all over the world. The pandemic would accelerate the
educational innovation far beyond the advance of online learning
witnessed over the last decade, e.g., Coursera and Udacity.

While the transition to online learning has been readily made
by virtue of today’s Internet technology and infrastructure, online
learning also has limitations compared to traditional face-to-face
lectures. One of the biggest hurdles is that teachers could not in-
stantly keep track of students’ learning status. In pre-recorded video
lectures such as Coursera, teachers can neither observe how stu-
dents engage in lectures, e.g., nonverbal and behavioral cues, nor
interact with them. In live lectures using online conferencing tools
such as Zoom, such observation and interaction can be possible if
students have a camera and a microphone, but it imposes significant
burdens on teachers, especially when there are a number of stu-
dents in a lecture. These limitations hinder teachers from adapting
their lecture materials or teaching methods when necessary. One
typical method is to give a quiz after/during a lecture, but it is also
burdensome to teachers due to the time and effort required.

In this paper, we envision earables (also known as smart earbuds)
as an opportunity to automatically estimate learner’s understanding
status of learning materials. Such functionality would enable effec-
tive learning and teaching even in online lectures, e.g., to pinpoint
the part for which learners need to put more effort to understand.
From an explorative study, we uncover that a learner’s postures
and head motions can be a clue to represent their understanding
of lectures. We present the capability and feasibility of identifying
learners’ understanding levels based on such behavioral patterns.
Then, we discuss opportunities and challenges for realizing the
automatic estimation of understanding in the wild.

2 RELATEDWORK
Previous studies have demonstrated the capability of detecting on-
line learners’ diverse status (e.g., inattention, engagement, frustra-
tion, mind wandering) based on their behavioral patterns [3, 7, 13–
15]. For example, Mota et al. presented a technique to recognize
naturally occurring postures of learners and detect their interest
level based on pressure sensors mounted on a chair [13]. Pham
et al. proposed a multimodal approach to infer learners’ affective
and cognitive states such as boredom, confusion, and frustration
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Figure 1: Bloom’s Taxonomy (the image by the Vanderbilt
University Center for Teaching / CC-BY 1)

by analyzing facial expressions and PPG signals captured from the
front and back cameras of a smartphone [14]. Robal et al. presented
an IntelliEye system that tracks face and mouth use of online learn-
ers to detect in-attention state [15]. It also provides alerts to them
when they are in-attentive to return learners’ attention to a lecture
video. Grafsgaard et al. proposed to predict the engagement and
frustration of students during computer-mediated tutoring based
on fined-grained facial movements [7]. Bosch et al. proposed an
automatic mind wandering detector by analyzing a set of facial
features from face videos of students [3].

These works commonly imply that online learners’ behaviors
during the lecture carry meaningful information about their learn-
ing status. However, they mostly rely on physiological sensors
and/or computer vision, thereby significantly limiting their practi-
cality in real-life situations, due to the need for using additional,
dedicated devices and privacy concerns. We investigate how learn-
ers’ behaviors, more specifically postures and motion gestures, can
be interpreted to represent their understanding while taking an
online lecture. For example, a student might often tilt her head or
look at a monitor vacantly when she does not understand what she
listens to. Similarly, some students might nod their head when they
well follow what is taught. Our initial idea and preliminary study
was presented in [9].

3 APPROACH TO UNDERSTANDING
ESTIMATION

3.1 Modelling Understanding
Measuring howwell students learn and understand lectures is essen-
tial for teachers to provide effective teaching. Bloom’s Taxonomy
is a widely-adopted educational framework, which was developed
to assist teachers to plan classes and design valid assessment strate-
gies [4, 10]. The revised version of Bloom’s Taxonomy introduces
six levels of cognitive learning; remembering, understanding, apply-
ing, analyzing, evaluating, and creating [10]. As shown in Figure 1,
each level represents different cognitive skills and learning behav-
iors from the most basic to the more complex levels. For example,
remembering is related to retrieving, recalling, and recognizing
factual information and relevant knowledge, and understanding is
1https://www.flickr.com/photos/vandycft/29428436431

Table 1: Questionnaire for the level of understanding.
1 I could tell the important keywords/concept of the lecture
2 I could briefly explain the important keywords/concept of the

lecture
3 I could tell what I newly learned
4 I could explain the summary of the lecture content
5 I could explain the lecture content so that others can understand it

related to interpreting, summarizing, and explaining main ideas and
concepts of learning material. Moving up the levels, they refer to
higher cognitive thoughts and skills. In this study, we adopt the first
two levels of Bloom’s Taxonomy, remembering and understanding+,
to model online student’s understanding∗ of learning material 2.

3.2 Quantifying Understanding Level
To quantify the level of learner’s understanding, we design a ques-
tionnaire by adopting Bloom’s Taxonomy. We note that teachers
are often encouraged to use different types of questions in class and
on assignments and tests based on Bloom’s Taxonomy to stimulate
and assess students’ cognitive thinking. Example questions that
can be used are as follows.

• How would you define ... ?
• What was the main idea ... ?
• Can you write a brief outline ... ?
• Can you provide an example of ... ?

Inspired by these, we design the questionnaire with five statements
as shown in Table 1. We construct the first two statements in the
table for the concept of remembering and the rest three for the
concept of understanding+. For each statement, respondents are
asked to rate how much they agree with the statement using a
5-point Likert scale (1 to 5) (5 - “strongly agree”, 4 – “agree”, 3 –
“neutral”, 2 – “disagree”, 1 – “strongly disagree”).

We use Likert scale answers that can be easily collected and
quantified regardless of lecture types and contents. Asking detailed
answers specific to the lecture content might be better to assess
respondent’s understanding level more accurately, but it imposes
much burden on respondents to answer and assessors. Investigating
the effect of different types of questions will be our future work.

As a granularity of understanding level estimation, we target a
lecture slide as a unit, i.e., estimating the student’s understanding
level for each lecture slide. A slide often conveys a single topic and
content, and thus it is naturally expected by teachers to be mapped
the level of learner’s understanding. Other lecture units, e.g., an
explanation of a specific term in the slide or a whole lecture, can
also be considered for different purposes. We leave it future work.

3.3 Why Motion Sensing on Earables?
A key decision to be made for the design of a sensing solution is
to determine devices and sensors to be used. Many existing meth-
ods often rely on computer vision using a user-facing camera to
detect learner’s behaviors, thereby significantly limiting their appli-
cability in real-life situations and raising privacy concerns. Unlike
them, we focus on motion signals (accelerometer and gyroscope)

2Understanding+ refers to the specific level of Bloom’s Taxonomy. We use
understanding∗ as the term representing both remembering and understanding of
the taxonomy. In the rest of the paper, understanding refers to understanding∗ , unless
otherwise noted.
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on earable devices. Our choice offers several benefits. First, accord-
ing to our study in the following section, postures and gestures
relevant to understanding are mostly made around the head and
upper body, which could be captured by earable devices. Second,
processing motion signal is computationally efficient and privacy
preserving compared to other methods, especially computer vi-
sion. Last but not least, earables are widely used when students
take online lectures and inertial measurement unit (IMU) for mo-
tion signal is already employed on most smart earbuds. Thus, an
earbud-integrated motion-sensing solution would be easily adopted
without requiring additional devices.

4 BEHAVIORAL CUES FOR UNDERSTANDING
ESTIMATION

4.1 DATA COLLECTION
For an in-depth study, we exploit a dataset including 8 partici-
pants and 24 online lectures in total. The participants (4 males
and 4 females) were recruited from a university campus, and they
were undergraduate students in Computer Science and Engineer-
ing. Their ages were between 23-26 (mean: 24.13, SD: 0.99). Each
participant was compensated with a gift card equivalent to USD
18. The study was approved by the Institutional Review Board of
KOREATECH (No. 20022502).

Table 2 shows the online lectures we used for the study. We
choose four lectures on the course of Artificial Intelligence Basic,
provided by K-MOOC, a Korean MOOC established in 2015. All the
participants have a general interest in the topic of AI, but did not
take lectures with the same content as the lectures in our study.

Each participant was invited to the lab for data collection. We
explained the purpose and procedure of the study and obtained
informed consent. Based on each participant’s prior knowledge and
level on AI and ML, we chose three different lectures that cover a
range of difficulty levels. During the lecture, the participants were
asked to wear the eSense earbuds [8, 12] for sensor data collection.
They were also provided with printed lecture materials and a pen
to make them feel that they take lectures as usual.

During the lecture, we collected three types of data from the
participants: (1) 3-axis accelerometer and 3-axis gyroscope data
sampled at 32 Hz from eSense to analyze their behaviors while
taking online lectures, (2) a video stream using a participant-facing
webcam as ground truth of their behaviors, and (3) questionnaire
(Table 1) answers on every slide as ground truth of their understand-
ing. The participants completed the questionnaire after finishing
each lecture. Between lectures, they took a break of 5 minutes. From
the responses to the questionnaire, we obtain a final understand-
ing score between 5 and 25 for a lecture slide, by summing all the
scores from five answers, with 25 indicating the highest possible
understanding score.

4.2 Natural Behaviors during Online Lectures
We extract a set of behaviors that learners naturally make during
online lectures. For the analysis, the researchers transcribed and
coded the recorded videos with observable, repetitive behaviors that
the participants performed while they were watching the lectures.

Figure 2 shows the list of behaviors we observed in the videos
(See the left side of the figure); we excluded infrequently observed

behaviors. We group them into three categories; posture, body/head
motion, and facial motion. As expected, learners’ macroscopic, whole-
body movements were quite limited during online lectures, mostly
sitting and watching the video. However, interestingly, a variety
of their microscopic movements were observed, especially around
the head and upper body. From this behavioral characteristic, we
believe that our choice of earbuds as a sensing device has a great
potential to capture learners’ behaviors on online lectures.

4.3 Understanding-relevant Behaviors
As a next step, we identify key behaviors that can be used as clues
to estimate understanding level. To understand the impact of our
observed behaviors, we assess the statistical association between
a) the statistic of observed behaviors and b) the reported scores of
understanding in the questionnaire. For the statistic of the observed
behaviors, we annotate the start and end time of behavior events
and compute the statistical features on every slide. For the behav-
iors that last for a certain time duration, we measure the duration
of every segments of behaviors and normalize it by dividing by
the slide duration. Note that we additionally compute the total,
average and standard deviation for the posture behaviors that last
longer than 1 second. For the behaviors involving a brief motion,
we count the number of events in every slide and also normalize
it with the slide duration. We use Spearman’s rank correlation for
the correlation analysis, which is used to assess the relationship
between two variables measured on at least an ordinal scale [11].

Figure 2 shows the correlation coefficients of the behavior sta-
tistics and the reported understanding scores (See the right side).
The results show two important findings. First, there are several
behavioral patterns that imply a moderate relationship to the level
of understanding, e.g., over 0.3 or under -0.3. This implies the po-
tential of estimating a learner’s understanding from the observation
of behavioral patterns. Interestingly, after the survey, we heard
from our participants some comments that support our analysis.
For example, P7 reported that he frequently looked at the lecture
material when he could not understand well. Accordingly, he fre-
quently lowered and raised the head. Such patterns are observed
through the coefficient analysis, e.g., the negative correlation of the
count of briefly gazing at a monitor, lowering the head, and raising
the head. P6 mentioned that he often did neck rolls and changed his
sitting posture when he could not understand well. These behav-
ioral patterns are revealed in the negative correlation of the count
of moving the neck and briefly moving the body.

Second, the relationship between behavioral patterns and the
level of understanding differs depending on the individual, showing
the need for personalized estimation. For example, five behaviors,
i.e., keeping looking down a desk, keeping gazing at a monitor, briefly
gazing at a monitor, lowering the head, and nodding, show corre-
lation coefficients larger than 0.3 or smaller than –0.3 for P7, but
they do not for P4. P4 has only one behavior, moving the neck, that
shows a correlation coefficient larger than 0.3.

4.4 Feasibility of Understanding Estimation
To study the feasibility of understanding level estimation, we build
regression models to predict the understanding score using the
aforementioned behavioral features. Since the impact of behavioral
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Table 2: Online lectures used in data collection.
Course Topics Duration # of slides # of participants

Artificial Intelligence Basic
Introduction to Reinforcement Learning 34 min. 13 8

Markov Process 22 min. 10 8
Markov Decision Process 39 min. 13 7

Heuristic Search 22 min. 17 1

Figure 2: Behavior list and correlation coefficients of behavior features and understanding score (* indicates p-value < 0.05)

Figure 3: Prediction error for overall understanding scores

patterns is different depending on the individual, we train a separate
regression model for each participant. We adopt linear regression.
To train the model, we use the features with top-3 correlation
coefficient values for each participant. We apply leave-one-slide-
out cross validation.

Figure 3 shows the prediction errors with two metrics, Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). Our
estimation model achieves 3.04 of the average MAE and 3.77 of
the average RMSE across the participants; the target value is the
total understanding level score and its range is from 5 to 25. For
comparison, we use a baseline that takes an average understanding
score as a prediction. The average MAE and RMSE of the baseline
are 3.35 and 3.96, respectively. Our model shows the better estima-
tion results for both metrics. We additionally compare the results
of SVM regression with different types of kernels, i.e., linear and
RBF, using top-3 features. They show slightly larger errors for both
metrics, around 3.2 and 4 of MAE and RMSE, respectively.

We can also observe the variation of prediction errors depending
on the participant. For example, P1, P3 and P7 show around 2 of

MAE while P2 and P8 show 3.9 and 6.2 of MAE, respectively. We
find that those who show relatively high errors have the smaller
number of features with larger coefficient values. Also, their range
of understanding scores is relatively larger across the lecture slides
than others. We discuss this issue in the following section.

5 OPPORTUNITIES AND CHALLENGES
Our explorative study shows that the automatic estimation of
learner’s understanding is promising from identifying understanding-
relevant behaviors and mapping them to the understanding score.
In this section, we discuss opportunities and challenges for realizing
the automatic estimation of understanding in the wild.

5.1 Behavior Detection using Earables
A key for the automatic estimation of understanding is to detect
understanding-relevant behaviors at runtime. Here, we explore
detection techniques for these behaviors using earable devices and
their performance.

As an initial attempt, we choose five behaviors as primitive
contexts for automatic estimation of learner’s understanding level:
two postures (looking down a desk and gazing at a monitor) and
three motion gestures (lowering the head, raising the head, and
nodding). These behaviors show a meaningful relationship with the
understanding score, i.e., correlation coefficients larger than 0.3 or
smaller than -0.3 in many participants and also observed relatively
more frequently than other behaviors throughout the lectures. Note
that, by detecting two postures, we can derive all of the posture
category features in Figure 2.
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(a) IMU axes of left earbud (b) Looking down a desk

(c) Gazing at a monitor (d) Lowering the head

(e) Raising the head (f) Nodding

Figure 4: Motion signal of different postures and gestures

Detection technique: Postures and gestures have distinctive
characteristics of motion signal patterns. Figure 4 shows the ac-
celerometer and gyroscope data for some examples. While signals
show little change over time while a user is taking a posture (e.g.,
Figure 4b and 4c), the fluctuation of signals can be easily observed in
motion gestures (e.g., Figure 4d, 4e, and 4f). Inspired by such a find-
ing, we devise a two-stage sensing pipeline to detect understanding-
relevant behaviors. In the first stage, the pipeline quantifies the
degree of movement and identifies whether a given signal segment
is from a posture or a gesture. Then, in the second stage, it employs
two machine learning models, one for posture detection and the
other for gesture detection, and selectively uses them based on the
output of the first stage. For each task, posture or gesture detection,
a single model is built for all the users.

Movement detection: We take one-second gyroscope samples
as input and quantifies the movement by calculating the signal
variation. More specifically, we compute the magnitude value of
every 3-axis gyroscope sample and calculate the variance of 32
values. The higher variance represents the higher degree of move-
ment. Then, we distinguish between a posture and a gesture using
a threshold that we empirically set using our dataset.

(a) Result with stratified 5-fold CV

(b) Result with leave-one-subject-out CV

Figure 5: Recognition performance

Machine learning models: One of the challenges in distin-
guishing between gazing at monitor and looking down a desk is that
learners mostly remain stationary when they make these behaviors.
Accordingly, we can easily expect that traditional activity pipelines
for smartphones [16] would not work well because they are mostly
designed to utilize the magnitude stream as input to address the
arbitrary position of smartphones. On the contrary, the relative
direction of the earbuds to a person’s head is mostly fixed. Thus, we
can leverage the absolute orientation of a device. We empirically
found that X-axis and Z-axis show a strong discrimination power
to identify understanding-relevant behaviors.

We segment accelerometer and gyroscope data streams into
one second-frame. Then, we extract time and frequency-domain
features [5] from X and Z streams separately without taking the
magnitude and gather the features for the classification.We use PCA
to reduce the dimensionality of the features and Support Vector
Machine (SVM) as a classifier; we fine-tuned hyper-parameters
using our dataset. Two machine learning models have the same
architecture, but different target labels. The posture model is to
separate looking down a desk and gazing at a monitor, and the
gesture model is to separate lowering the head, raising the head,
nodding, and others. We do not include the others label in the
posture model because other postures are hardly observed in our
data collection setup. However, we believe our model can be easily
extended to cover other postures if needed.

Results and implications:We investigate the recognition per-
formance of our detection technique. We conduct a stratified 5-fold
cross-validation and report the F1 score as a performance metric.
The experimental results show that our machine learning mod-
els detect understanding-relevant behaviors accurately. Figure 5a
show the F1 score of posture and gesture models, respectively. The
posture model shows 0.96 of F1 score for both postures, looking
down a desk and gazing at a monitor. It validates our choice of
using axis-specific streams as input, instead of the magnitude. The
gesture model also shows reasonable performance. The F1 scores
of two gestures, lowering and raising the head, are 0.92 and 0.90,
respectively. However, the F1 scores of nodding and others are rel-
atively lower, 0.76 for both. This was mainly because the gesture
model sometimes confuses the events of nodding and others.

Figure 4: Motion signal of different postures and gestures

Detection technique: Postures and gestures have distinctive
characteristics of motion signal patterns. Figure 4 shows the ac-
celerometer and gyroscope data for some examples. While signals
show little change over time while a user is taking a posture (e.g.,
Figure 4b and 4c), the fluctuation of signals can be easily observed in
motion gestures (e.g., Figure 4d, 4e, and 4f). Inspired by such a find-
ing, we devise a two-stage sensing pipeline to detect understanding-
relevant behaviors. In the first stage, the pipeline quantifies the
degree of movement and identifies whether a given signal segment
is from a posture or a gesture. Then, in the second stage, it employs
two machine learning models, one for posture detection and the
other for gesture detection, and selectively uses them based on the
output of the first stage. For each task, posture or gesture detection,
a single model is built for all the users.

Movement detection: We take one-second gyroscope samples
as input and quantifies the movement by calculating the signal
variation. More specifically, we compute the magnitude value of
every 3-axis gyroscope sample and calculate the variance of 32

(a) Result with stratified 5-fold CV

(b) Result with leave-one-subject-out CV

Figure 5: Recognition performance

values. The higher variance represents the higher degree of move-
ment. Then, we distinguish between a posture and a gesture using
a threshold that we empirically set using our dataset.

Machine learning models: One of the challenges in distin-
guishing between gazing at monitor and looking down a desk is that
learners mostly remain stationary when they make these behaviors.
Accordingly, we can easily expect that traditional activity pipelines
for smartphones [16] would not work well because they are mostly
designed to utilize the magnitude stream as input to address the
arbitrary position of smartphones. On the contrary, the relative
direction of the earbuds to a person’s head is mostly fixed. Thus, we
can leverage the absolute orientation of a device. We empirically
found that X-axis and Z-axis show a strong discrimination power
to identify understanding-relevant behaviors.

We segment accelerometer and gyroscope data streams into
one second-frame. Then, we extract time and frequency-domain
features [5] from X and Z streams separately without taking the
magnitude and gather the features for the classification.We use PCA
to reduce the dimensionality of the features and Support Vector
Machine (SVM) as a classifier; we fine-tuned hyper-parameters
using our dataset. Two machine learning models have the same
architecture, but different target labels. The posture model is to
separate looking down a desk and gazing at a monitor, and the
gesture model is to separate lowering the head, raising the head,
nodding, and others. We do not include the others label in the
posture model because other postures are hardly observed in our
data collection setup. However, we believe our model can be easily
extended to cover other postures if needed.

Results and implications:We investigate the recognition per-
formance of our detection technique. We conduct a stratified 5-fold
cross-validation and report the F1 score as a performance metric.
The experimental results show that our machine learning mod-
els detect understanding-relevant behaviors accurately. Figure 5a
show the F1 score of posture and gesture models, respectively. The
posture model shows 0.96 of F1 score for both postures, looking
down a desk and gazing at a monitor. It validates our choice of
using axis-specific streams as input, instead of the magnitude. The
gesture model also shows reasonable performance. The F1 scores
of two gestures, lowering and raising the head, are 0.92 and 0.90,
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respectively. However, the F1 scores of nodding and others are rel-
atively lower, 0.76 for both. This was mainly because the gesture
model sometimes confuses the events of nodding and others.

5.2 Variation of Behavioral Patterns
One of the challenges for deploying the automatic estimation of
understanding to end-users is the variety of behavioral patterns.
First, our participants have a different set of behaviors that show
a meaningful relationship with their understanding. For example,
while the average duration of the looking down a desk posture shows
a high correlation for P5, P6, and P7, but has little relationship for
P1, P2, and P4.

Second, the signal patterns of behaviors are also different depend-
ing on the participant. To investigate how our posture and gesture
models work on a new user, we measure their performance with
a leave-one-subject-out validation (Figure 5b). The results show
that the posture model still achieves high accuracy, i.e., 0.95 of F1
score. The gesture model also shows the reasonable performance
for lowering and raising the head, i.e., 0.91 and 0.90, respectively,
which are expected to have little variation across the participants.
However, the performance of nodding and others largely decreases,
i.e., 0.29 and 0.65 of F1 score. Observing the collected data, we could
see that the participants often did nodding and other behaviors
differently, e.g., in terms of direction, count, and strength.

These two findings imply the need for personalized models, i.e.,
detection model for behavior recognition and regression model for
estimating the understanding score. We believe we can develop
personalized models using a small amount of the end-user’s data
with online learning techniques. We leave it as future work.

5.3 Incorporating Additional Sensors
This study currently explores the feasibility of using behavioral
features from earables’ IMU to estimate students’ understanding.
It would be possible to incorporate additional sensors for more
accurate and robust estimation. Some previous works utilize phys-
iological sensors such as PPG and EDA to detect engagement or
attention state of students [6]. While they are different from our
target, understanding level, these might be related to each other,
considering that engagement in lectures might positively affect
the understanding of the lectures. We will further investigate the
potential of adopting sensor fusion techniques to use physiological
features from PPG and EDA sensors. A further in-depth study will
also be necessary to analyze the relationship between the under-
standing level and the engagement or attention state.

5.4 Application Landscape
We envision that the automatic estimation of learner’s understand-
ing will provide significant benefits in online lectures.

Our proposed technique could be used to assist teachers by
providing student’s understanding status. In many online lectures,
especially the pre-recorded video lectures, it is almost infeasible
for teachers to have detailed real-time feedback from students,
thereby making it difficult to modify and enhance their lectures;
even possible, the feedback is often at a high, coarse-grained level.
We envision that our solution can monitor student’s understanding

status, gather this information, and automatically spot parts in
online lectures which student perceive difficult to understand.

Our solution could also help students by calling their attention
when they do not understand the lecture content well. When our
solution detects such moments, it could send a notification message
to the students, e.g., “how about watching this part again if you
do not understand well?”. It might also be possible to provide the
students with a summary of difficult parts after the lecture in order
to help the student reflect on the lecture.

6 CONCLUSION
This work is our initial step towards a vision to utilize earables as an
opportunity to automatically estimate learner’s understanding on
online lectures. In this explorative study, we observe some behaviors
that could be used as clues to estimate the understanding level, and
investigate the feasibility of understanding estimation using these
behaviors. To realize the automatic estimation of understanding in
the wild, we have a range of challenges to address, which will be
future avenues of our work.
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