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ABSTRACT
Conversational agents are rich in content today. However, they

are entirely oblivious to users’ situational context, limiting their

ability to adapt their response and interaction style. To this end, we

explore the design space for a context augmented conversational

agent, including analysis of input segment dynamics and computa-

tional alternatives. Building on these, we propose a solution that

redesigns the input segment intelligently for ambient context recog-

nition, achieved in a two-step inference pipeline. We first separate

the non-speech segment from acoustic signals and then use a neural

network to infer diverse ambient contexts. To build the network,

we curated a public audio dataset through crowdsourcing. Our

experimental results demonstrate that the proposed network can

distinguish between 9 ambient contexts with an average F1 score of
0.80 with a computational latency of 3 milliseconds. We also build a

compressed neural network for on-device processing, optimised for

both accuracy and latency. Finally, we present a concrete manifes-

tation of our solution in designing a context-aware conversational

agent and demonstrate use cases.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
Conversational agents

1
are now pervasive, integrated into mobile

phones, smart speakers, and even in cars. Remarkable advancement

of machine learning is causing a seismic shift, in that conversational

agents are now able to understand human speech and transform

text into speech in a similar way to humans [36] in everyday liv-

ing spaces (even on-the-go). Naturally, this created interminable

possibilities, uncovering novel, productive and useful experiences

with conversational agents for accessing and interacting with digi-

tal services in many and diverse applications including HCI [27],

customer experience [30], conversational commerce [31], medicine

[38, 39], entertainment [21], education [29], and social work [6].

For long, context-aware computing research has attempted to un-

derstand situational awareness from acoustic signals, e.g., surround-

ing events [23, 25] and human speech emotion [13]. Unfortunately,

the implications of this research in our everyday experience are

still limited. None of the commercial-grade conversational agents

(Alexa, Siri, Google, Cortana, etc.) today can react and adapt to

users’ situational context. We argue that simple adjustments of the

interaction style of the agents’ responses can increase users’ conver-

sational experience with these agents. For instance, ambient context

information retrieved from audio signals can be used to respond to

users in a more calming or alarming manner, in a quieter or louder

fashion. It is also possible to adapt the agents’ responses based on

a user’s acoustic context. When the agents are asked to provide a

recipe, they can provide a full recipe when a user is cooking at a

kitchen or an ingredient list when a user is in a grocery store. Such

non-speech contextual information would provide important cues

to enable conversational agents to provide more customised and

fulfilling experiences across different environments.

The development of conversational agent systems to understand

users’ acoustic environments in real-time has proven challenging.

Identifying a proper moment for inferring acoustic context in-the-

wild in uncontrolled environments is an incredibly difficult problem.

The moment the should be long enough for the accurate recognition

of ambient contexts, but also short enough to provide responsive

responses.With the study, we discover an opportunity of a 1-second-

long pause naturallymade between awakeupword and a user query.

However, although numerous audio datasets are available, most of

them are not suitable for ambient context analysis. Moreover, the

latency requirement of these systems for faster responses makes it

extremely hard to deploy such systems in the real-world.

1
Here, conversational agents refer to voice assistants such as Alexa, Siri, Cortana, etc.

https://doi.org/10.1145/3379503.3403535
https://doi.org/10.1145/3379503.3403535


MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Park et al.

To this end, we first systematically explore the design space for a

context augmented conversational agent, including analysis of input

segment dynamics and computational alternatives. We identify an

opportunity for seamlessly recognising ambient contexts without

affecting user experience. Then, we present a light-weight purpose-

built deep neural network solution for ambient context analysis.

The proposed solution consists of an intelligently designed input

segment for capturing audio data, and a neural network model that

uses audio embedding generated by VGGish model [15]. For train-

ing this network, we leverage Google’s AudioSet that contains 5.8

thousands of hours of audio with 527 different event classes from

white noise to animal sounds. Despite its richness and diversity

of content, this dataset cannot be directly used for the purpose of

ambient audio analysis on a short-duration signal due to its poor

annotation granularity, i.e., 10 seconds. To address this caveat, we

adopt a crowdsourcing-based and quality-aware annotation strat-

egy and transform a subset (60K) of this dataset containing ambient

audio events with a duration of 1-second and accurate annotation.

On top of the trained model, we prototype an ambient context-

augmented conversational agent as a concrete manifestation of our

solution and showcase several use cases.

Building on this data, our model achieves an F1 score of 0.80 and
an inference latency of 3 ms on NVidia DGX Station and 360 ms on

Raspberry Pi 3+. We further train a distilled network optimised for

both recognition accuracy and latency and achieve an F1-score of
0.73 with inference latency of 1 ms on NVidia DGX Station and 10

ms on Raspberry Pi 3+. Combining these and the rest of our results,

we show that it is possible to infer ambient audio context (e.g.,

crowd sound, background chatter sound, and footstep sound) at a

fraction of the time required for traditional conversational agents,

thus allowing their incorporation without compromising agents’

responsiveness.

The main contributions of this work are as follows:

• We demonstrate that it is possible to infer ambient acoustic con-

texts under extreme latency requirements using a light-weight

deep neural network. This ability uncovers a unique opportunity

for conversational agents to augment their contextual awareness

and adapt behaviour.

• We offer a well-curated dataset suitable for ambient acoustic

context analysis. The refined temporal granularity of this dataset

enables most popular audio models to be more fine-tuned, whose

input signatures are often above one second. As such, it opens

up brand-new avenues for the audio-based interactive system

design.

• We present a concrete manifestation of our solution in designing

a context-aware conversational agent and demonstrate use cases

on top of the prototype system.

In what follows, we present the overall design space and de-

scribe the dataset and its construction method. Next, we provide

an in-depth technical view of our context models. We present the

evaluation of the system and a prototype application. Then, we

revisit the related past research before concluding the paper.

2 DESIGN CHALLENGES
Augmenting conversational agents with ambient contexts for con-

textual adaptation puts forward a set of challenges. Some are with

Figure 1: Different alternatives for designing input segments
for ambient context recognition.

data, some are with underlying systems, and some are with user ex-

perience. In this section, we reflect on these challenges and present

our design decisions that underpin this work.

2.1 Data Challenges
Modelling acoustic ambience from unconstrained audio signal in-

herently depends on quantity, quality and diversity of data. These

characteristics are particularly critical for representation learning

techniques, such as a deep neural network. Besides, the quality of

models depends on specific properties, including temporal gran-

ularity of labels for time-varying audio signals, and the balance

of classes in the data. For conversational agents to be aware of

users’ ambient contexts, these facets essentially translate into the

challenge of constructing a dataset containing rich and balanced

ambient context events with labels of fine temporal granularity. In

Section 3.1, we discuss a dataset that we have designed taking these

considerations into account.

2.2 System and User Experience Challenges

Augmenting ambient contexts demands systematic and care-

ful refinements of data processing and presentation. Conventional

pipeline for a conversational agent is purposefully designed for

automatic speech recognition, language processing, and informa-

tion delivery over voice [4, 7, 12, 14, 44]. Moreover, user experience

depends heavily on the responsiveness of the agent, and as such ac-

curate and low-latency recognition and response have always been

the critical design priority in the development of conversational

agents. Naturally, ambient context recognition adds complexity to

this pipeline, and in particular, this augmentation must not come

at the expense of the degradation of primary functional attributes.

To this end, we observe three key challenges regarding the system

and user experience:

Input segment placement: Understanding contexts from an

audio segment requires analysis of the background acoustics. This

analysis can be performed on the original speech segment spoken

by a user (i.e., voice command) or can be intelligently placed be-

fore or after the user’s speech. These alternatives are illustrated in

Figure 1. Analysis of ambient contexts in the presence of speech

(Case 1) is naturally computationally heavy and challenging to the

inference model due to the mixed signal. On the other hand, such

context analysis in the absence of speech offers a comparatively
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cleaner signal (Case 2 or 3). These observations suggest that we

can extend the input recording sequence to intelligently include

a short recording segment that might be enough to capture audio

signals for context analysis accurately. This inclusion could happen

before a user query (Case 2) or at the end of a user query (Case

3). The latter, however, inherently increases the response latency,

thereby degrading user experience significantly. Given that modern

conversational agents are triggered with a wake-up keyword and

provide visual and vocal feedback, it is natural to extract the input

segment during the pause that a user makes to wait for the notifi-

cation and speak the query (Case 2); for example, Alexa responds

to wake-up keywords with a visual notification. We omit the case

when the agent continuously performs ambient context recognition

in the background because it introduces severe privacy concerns

and incurs nontrivial system cost for battery-powered devices.

Input segment duration: Several past studies reported the dy-

namics of delay and user experience concerning user interaction

with conversational agents [40]. A variety of factors contribute to

these dynamics, including perceived humanness of the agents, user

satisfaction, system operation delay, etc. Building on this research,

our premise is that the input segment designed for ambient context

analysis needs to be minimal without compromising user expe-

rience. At the same time, this segment needs to contain enough

information to understand the ambient context reliably. We empiri-

cally observed that a one-second delay is enough to capture audio

for ambient context with negligible impact on user experience (See

Section 2.3.)

Input segment processing: This aspect begs two questions - 1)
the placement alternative of the processing, and 2) its implications

both on computation and user experience. On the former, while the

natural choice is to push the computation for the ambient context

recognition to the cloud where agents execute the speech recogni-

tion and following operations, increasingly we are observing the

emergence of on-device modelling of audio data [11, 22]. Naturally,

the on-device approach, i.e., recognising ambient contexts on the

conversational agent device, offers faster execution and lower la-

tency; however, the adaptation of the actual response is limited to

its interaction style. On the other hand, cloud processing incurs

additional latency due to transport and remote processing, but it

offers a better opportunity for adapting not only interaction style

but also the content of the interaction. It is important to note that

our design choice of taking the input segment between the wake-up

word and user query as in Case 2 naturally resolves the latency

issue. On user experience, it is evident that the on-device approach

preserves user privacy significantly better than cloud processing ap-

proach. As most conversational agents execute speech recognition

and consequent actions in the cloud, in this work, we have taken

the remote processing route for ambient context recognition as if it

offers maximum flexibility for content adaptation. However, we also

show that we can port our technique easily to an on-device setting,

especially with the distillation method (explained in Section 5.3.1)

we have adopted in our solution.

2.3 Opportunity for Sensing Ambient Context

We quantify the opportunity for ambient context recognition

between a wake-up keyword and a query (Case 2), i.e., how long

(a) Weak labels (b) Weak labels

Figure 2: Example of weak labels and strong labels.

Events Sub-events Clips

Crowd Crowd (1,218); Chatter (158); 1,603

Hubbub (227)

Applause Applause (360); Clapping (240) 600

Laughter Laughter 530

Typing/Clicking Typing (315); Clicking (88) 403

Door Door (113); Knock (180) 293

Silence Silence 251

Television Television 239

Walk Walk 220

Speech Speech (28,671); Female speech (136); 29,051

Male speech (124); Conversation (120)

Others Non-target; unidentifiable events 24,081

Table 1: Distribution of audio segments after cleaning.

will the pause between a wake-up word and a user query be in real-

life situations. For the study, we recruited 10 participants (4 females,

6 males, 24 – 32 years old), who are already using conversational

agents at their homes on a daily basis.We asked them to use Amazon

Alexa to naturally input 5 different commands (weather, time, funny

joke, playing music, and set a timer). We recorded their interactions

and measured the interval between the wake-up word (“Alexa”)

and the query. From 50 commands in total, the interval was 1.29

seconds on average (SD: 0.36, min: 0.81 max: 2.19). Assuming a

Gaussian distribution with the above mean and standard deviation,

we expect that there will be longer than 1-second intervals for 80%

of the time.

3 AMBIENT ACOUSTIC DATA
3.1 Dataset
To train a model for the recognition of acoustic contexts, we lever-

age the AudioSet [10] released by Google in 2017. It is a large-scale

set of 10-second-long audio segments and associated labels ex-

tracted from 2.1 million YouTube videos. In total, it contains 5.8

thousand hours of audio and 527 classes annotated by human ex-

perts.

However, it is not straightforward to build a responsive audio

model to recognise an ambient event with 1-second audio clip

using the AudioSet data due to its poor annotation granularity,

i.e., events are weakly labelled to the 10-second clip as shown in

Figure 2a. While acoustic events occur intermittently and shortly

within a 10-second-long audio clip, which is natural considering

the characteristics of acoustic events, they are associated with the

whole segment without temporal information. Thus, segmenting

a 10-second clip into ten 1-second ones and labelling all 1-second

clips as the original label would not work.
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Figure 3: Amazon Mechanical Turk Interface. Annotation
instructions, audio waveform, and descriptions for each re-
sponse option are designed to help annotators perform the
task correctly.

To this end, we present a new dataset which is refined based on

the AudioSet with strong labelling, i.e., annotating the event with

a 1-second resolution, as shown in Figure 2b. To the best of our

knowledge, our dataset is a first-kind-of-dataset of acoustic events

with the 1-second temporal resolution. We initially select 17 target

events (13 ambient contexts and 4 speech events) out of 527 classes,

which are relevant to indoor environments where conversational

agents are usually deployed (See the sub-events column in Table 1

for the details); we added the speech events for the comparative

study. Then, we group 13 ambient sub-events into 9 events based

on the ontology provided by the AudioSet, a hierarchy of audio

collections, and map the events to semantic contexts, e.g., television

to living room, crowd to social situation, typing/clicking to work.

We leverage such semantic for the adaptation of the response and

interaction style of conversational agents.

3.2 Data Collection Methodology
We segment 10-second-long audio clips into 1-second-long ones

and employ a crowdsource approach to correctly annotate each

1-second segment. We use the AmazonMechanical Turk as a crowd-

sourcing platform. Figure 3 shows the user interface of the task.

In the audio player at the bottom-left section, Turkers can easily

play, pause, and stop the audio clip. We also provide 0.5 seconds

of audio before and after the target 1-second to provide contextual

information of the clip. Response options are obtained from the

classes belong to the original 10-second-long clip and ‘None of the

above’ is added. To avoid ambiguity from Turkers, we also provide

a definition of each event label.

To assure the quality of responses, we recruited three Turkers

for each 1-second clip and selected the label that reaches a majority

agreement. For rewards, we provided $0.01 per task and additional

$0.01 when all Turkers reach unanimous agreement to encourage

them to accurately perform the task. 59,287 tasks were done by

Turkers in 5 days; for each task, the average time taken was 14.2

seconds (min= 3, max= 59). As a result, 53.6% of clips are agreed by

all three Turkers and 43.0% of them are agreed by two. Only 3.4%

of clips have a disagreement with all Turkers and are excluded. In

total, we have around 57,000 valid segments.

Figure 4: Network architecture for understanding acoustic
ambient contexts. Mel-log spectrogram is converted into
128-dimensional embedding by VGGish audio encoder. The
embeddging is then fed into 5 fully-connected layers.

We release the refined dataset
2
. Target audio files from AudioSet

are split into 1-second clip and each 1-second clip has its corre-

sponding labels obtained from crowd workers. The structure and

filename convention follows AudioSet’s in which each audio file

has its own directory named by ID. In each directory, audio file

and label are stored. Since we segment the original 10-second clips

into 1-second ones, we have around 10 audio files with labels in

each directory. We also include a binary npy file that has log-mel

spectrogram, audio embedding generaged by VGGish encoder [15],

and labels for all audio files. In addition, we release the inteface code

(Figure 3) and example data for Machanical Turk to help researchers

easily build a new dataset using crowdsourcing.

Note that our main purpose is to demonstrate the end-to-end

process of building augmented conversational agent. A different set

of target events can be selected and used in this pipeline for differ-

ent purposes. For example, to target home environment, domestic

sound events such as flushing, water running, and door bell can be

selected as target events. One can select the sound events of their

interests from AudioSet. Then, they can upload audio annotation

task using the released Mechanical Turk interface and get their

own curated dataset for the specific purpose.

4 RECOGNISING AMBIENT CONTEXTS
4.1 Recognition Model
We present the design and implementation of the ambient con-

text recognition model. It consists of two main components, VG-

Gish audio encoder and a neural network classifier as shown in

Figure 4. Since the state-of-art models [9, 35] for speech activity

detection show high accuracy in distinguishing between speech

and non-speech sound, in our system, we employ the speech activ-

ity detection model to first filter non-speech sound to the context

recognition model.

Audio encoder: For audio encoding, we use the VGGishmodel [15]

that generates a 128-dimensional embedding as a feature extrac-

tor. Audio clips are resampled to 16 kHz mono and converted into

log-mel spectrogram by computing Short-Time Fourier Transform

with a window size of 25 ms, a window hop of 10 ms, and periodic

Hann window and mapping it to 64 mel bins to cover 125-7500 Hz.

The VGG model is modified to fit the dimension of the spectrogram

(96x64) and has four conv/maxpool layers, and 128-wide fully con-

nected layer. The modified VGG model, so called VGGish model,

outputs 128-dimensional embeddings for 1-second audio clip.

2
https://www.esense.io/datasets/ambientacousticcontext/index.html

https://www.esense.io/datasets/ambientacousticcontext/index.html
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Classifiers Precision Recall F1 score

Baseline 0.692 0.589 0.636

Our model 0.796 0.804 0.800

Table 2: Classification performance.
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Figure 5: Confusion matrix of the target events.

Classifier:We then build a classifier that takes a 128-dimensional

embedding as input to detect an ambient event happening in the

audio clip. Because the input dimension is relative low, i.e., 1x128,

we design a neural network that has five fully connected layers,

input layer in the beginning, and output layer at the end, with

batch normalisation and LeakyReLu (α = 0.01) between each layer.

To prevent from over-fitting, we add two dropout layer (p = 0.2)

between 2nd and 3rd layer, and 3rd and 4th layer, and apply early

stopping when validation loss reaches minimum point to prevent

the model from overfitting. During the training, learning rate of

0.001 and batch size of 256 are used.

4.2 Recognition Performance
Experimental setup: We present the recognition performance of

ambient contexts. We first filter out speech events from the dataset

in Table 1 and split the complementary set (i.e., non-speech events)

into the train, validation, and test set with a ratio of 70%/15%/15%.

We used validation set for early stopping and hyper-parameter

searching. The test set is only used for the final performance evalu-

ation. Since the number of events labelled other is extremely larger

than the number of other events, we randomly choose 500 clips for

other event. As a baseline, we consider a single-integrated classifier
that distinguishes all acoustic events (including ‘speech’) at once

(i.e., a model tries to classify sound events using the input audio

segments for both speech and other ambient contexts). Similarly, we

split the whole dataset into the train and test set with the same ratio.

We further evaluate the performance of the compressed model on

the non-speech events to compare latency and accuracy to original

model’s performance.

Classifier performance: The experimental results validate our

design choice of extracting the input segment between the wake-up

word and user query (i.e., Case 2 in Figure 1). Table 2 shows its

overall performance. With a given non-speech audio segment, our

Figure 6: Prototype conversational agent with earables.

model distinguishes between 9 ambient contexts with an average

F1 score of 0.800. However, when the speech event is mixed to the

ambient context and needed to be additionally distinguished, F1
score decreases to 0.636.

Figure 5 shows the normalised confusion matrix of our model.

Overall, the model shows reasonable performance across all events.

However, as expected, the precision and recall for the other events
is lower than those for the rest of events. This is mainly because the

other events consist of a number of miscellaneous types of acoustic

events, thereby not having its own unique signal characteristic. We

can also observe that the events of applause, crowd, and laughter

are relatively more confused than across other events because they

are all made from human voice.

5 PROTOTYPE
We present a concrete manifestation of the model in a prototype

conversational agent that dynamically adjusts its conversation style

and content in response to users context gathered through ambient

sound signatures. On top of the system, we showcase several use

cases.

5.1 Conversational Agent
The prototype system is composed of the following components as

illustrated in Figure 6:

• Conversation Builder: This component enables a user to in-

teract with the agent using a predefined dialogue base. For this

prototype, we have used Dialogflow [1] populated with a set of

situation-specific dialogues.

• ConversationAdapter: This component is responsible for guid-

ing the adaptation strategy for the agent’s response correspond-

ing to a user’s ambient context, taking into account the output

of the context builder and a data-driven rule engine. We have

devised a set of simple adaptation rules as a proof-of-concept to

adapt agent responses by changing the tone, volume, response de-

lay and content (See Section 5.2). These rules are not exhaustive

rather a simple demonstration of the application of our solution.

• Text-to-Speech Builder: This component is responsible for syn-

thesising the agent’s response in a voice that accurately reflects

a user’s situation using IBM Bluemix Voice service [2]. This syn-

thesis process interplays various voice attributes, e.g., pitch, rate,

breathiness, glottal tension etc. to transform agents voice accord-

ing to the rule of the conversation adapter.

These components and the end-to-end system are realised with

an eSense earable [19] (the source of sensory signals and playback)
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and an Android smartphone (service platform). For the conversa-

tional adapter, we considered two platforms, NVidia DGX with

Tesla V100 and Raspberry Pi 3+, each of which represents cloud

and on-device processing, respectively, as mentioned in Section 2.2.

5.2 Use Cases
We illustrate use case scenarios to show how ambient context

understanding enhances the interaction with conversational agents.

Then, we present the adaptation rules we applied for.

Privacy-preserving response: People often check notifica-

tions or read messages using conversational agent, especially when

users’ hands are occupied. However, notifications and messages

often contain private sensitive information and are not suitable to

broadcast when other people are around. Conversational agents

with ambient context understanding can read aloud the notifica-

tions when there is no one around; if it detects there are other

people, it can ask back to the user to confirm to reading aloud the

notification.

Adaptive content: Imagine a user wants to find a recipe for

lasagna. The information that she needs will be different depending

on her current situation. For example, when she is outside her home,

she needs an ingredient list for grocery shopping. When she is at

kitchen, she needs directions for cooking lasagna. A conversational

agent, recognising her current context, can provide ingredients-

focused information if she is outside or directions-focused infor-

mation if she is at home. In another example, a user wants to play

music using conversational agent. If the agent detects that crowd

is around, it can play upbeat music and make the volume high. On

the other hand, if the agent detects no one’s around, it can play his

usual playlist with usual volume setting.

Interaction with environment: Users’ command to conversa-

tional agents can conflict with the current environment. For ex-

ample, a user can ask to play music while TV is turned on. If the

agent does as user’s command, the outcome might not be the most

desirable since the sound from TV and music clashes. The agent

with ambient context understanding can detect whether TV is on.

It can ask the user to turn off the TV or it can turn off the TV if the

TV is connected to the agent.

5.3 Implementation
5.3.1 Model Compression. The above encoder and classifier con-

figuration is optimized to yield high accuracy, but requires larger

memory footprint and higher latency. While this configuration is

purposely built for the cloud, it is not ideal for preserving users’

privacy, especially when sensitive audio data are transferred to the

cloud. On-device processing can preserve users’ privacy by keeping

the sensitive data within the device. However, limited computation

power on an embedded device often result in increased inference

time and poor user experience.

As a possible solution for the optimisation of on-device pro-

cessing, we present the knowledge distillation-based [16] model

compression in which two neural networks are involved, called

teacher and student networks. Its intuition is to train a smaller-size

network that mimics the outputs generated by the original network.

We use the autoencoder and classifier configuration as our teacher
network. We adopt cnn-low-latency [34] as our student model,

since it takes audio as an input and shows reasonable performance

Algorithm 1: Rule adaptation based on ambient context

Function main():
context = classify(audio

ambient
)

query = speech_to_text(audio
speech

)

if is_privacy_sensitive(query) && context == CROWD
then

Ask user whether to perform

wait_for_confirmation()

if not confirmed then
return

response, volume = query_to_response(query, context)

play_audio(response, volume)

Function query_to_response(query, context):
if is_asking_information(query) then

response = information based on context

else if is_activating_devices(query) then
if other_devices_running then

Ask user whether to turn off other devices

wait_for_confirmation()

if confirmed then
response = perform_task(query)

else
response = perform_task(query)

volume = current_noise_level(context)

return response, volume

Classifiers Latency (ms) Latency (ms) F1-score

(Nvidia DGX) (Raspberry Pi 3+)

Original model 3.4 (SD: 0.30) 364.3 (SD: 8.30) 0.80

Compressed model 1.2 (SD: 0.44) 10.3 (SD: 3.97) 0.73

Table 3: Performance of teacher and student models.

in keyword spotting. cnn-low-latency consists of one convolu-

tion layer, two fully connected layers, and softmax as an activation

function.

5.3.2 Rule Adaptation. We present our implementation of the rule

adaptation. As described in the example in Algorithm 1, the agent

checks whether the query is privacy sensitive; if so, the agent

confirms with users whether to proceed. Based on the use cases

described in Section 5.2, the agent then provides information based

on user’s context, interact with other devices to provide better

quality of service, or perform tasks normally if there is no context

specific requirement.

5.4 Micro benchmark
Compressed classifier performance: Table 3 shows the infer-

ence latency on two platforms, NVidia DGX with Tesla V100 and

Raspberry Pi 3+, and accuracy of the teacher (i.e., original) and stu-

dent (i.e., compressed) network. Surprisingly, the latency decreases

3.4 ms (original) to 1.2 ms (compressed), i.e., almost 3x reduction.

In Raspberry Pi 3+, the difference becomes even larger. The in-

ference time of the original network is 364.3 ms, whereas that of
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the compressed network is 10.3 ms. As the models run on CPU in

Raspberry Pi 3+, the performance gain from the compression is

more outstanding than in GPU. The accuracy decreases by 0.066,

from 0.800 (original) to 0.734 (compressed), but considering the

latency benefit, we believe the model compression can be a reason-

able solution to enable on-device processing of the ambient context

recognition.

Adaptation latency: We measure the adaptation latency, i.e.,

the time to be taken to apply for the adaptation rule. Since the

number of rules is relatively lower, in the range between 3 and 5,

the latency was negligible on both platforms, i.e., under 1 ms.

6 DISCUSSION
As an initial attempt to realise ambient context-augmented conver-

sational agents, in this work, we primarily aimed at systematically

exploring the design space of such agents and proposing a light-

weight purpose-built deep neural network solution for ambient

context analysis. Below, we discuss the implications and limitations

of our work.

Applicability in other scenarios: This work leverages a short
pause for detecting ambient acoustic context, naturally made be-

tween a user’s wakeup word and query. It opens up a new opportu-

nity for ambient context sensing in various conversation scenar-

ios. For example, beyond a simple question and answer, Google’s

Duplex
3
and Meena [3] can perform naturalistic open-domain

conversation with users. Hwang et al. envisioned interpersonal

assistants that monitor ongoing human-to-human conversations

and offer useful services just-in-time [17]. We can easily expect

that those agents can utilise ambient acoustic contexts to improve

user experiences in a similar way to the use cases we presented in

Section 5.2. Considering that there would exist multiple, natural

pauses between speech turns, they can achieve more accurate and

robust recognition results.

Optimising model performance: In this paper, we did not

tackle the model performance, i.e., recognition accuracy of ambient

acoustic contexts, as a main problem. However, achieving higher

accuracy would be essential to guarantee high degree of user experi-

ences and make our system to be accepted by users. We discuss two

possible solutions. First, we can adopt other public audio datasets,

e.g., FreeSound
4
and DCASE challenge

5
, for enriching the training

data. These datasets also have similar limitations to AudioSet, poor

annotation granularity and weak labelling, but we expect that they

can be easily converted with a crowdsourcing approach using the

tool we release. Second, we can further augment the train set by

combining various sound effects [24] and noise signals [25]. We

leave it as future work.

Real-life deployment: To deeply investigate our prototype in

real-life situations, we plan to deploy the agents and application we

implemented and conduct a user study. We expect to evaluate the

overall performance of our proposed model in real-world settings.

Also, by comparing user perception between conventional and

context-augmented agents, we expect to unveil interesting aspects

of conversational agents, such as usability of context augmented

3
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

4
https://annotator.freesound.org/

5
http://dcase.community/

agent, user tolerance to possible failure (wrong suggestions), and

presence of uncanny valley.

7 RELATEDWORK
7.1 Acoustic Event Classification
There have been many research efforts on understanding activities

and ambient contexts from audio signals. The AmbientSense appli-

cation [32] processes audio signal from smartphones and showed

reasonable performance on classifying 23 context of daily life.

SoundSense [26] detects multiple speech, music and ambient sound

categories based on mobile platforms. Rossi et al. [33] showed po-

tential of using MFCC features on Gaussian Mixture Model (GMM)

to recognize contexts using Freesound dataset, which is a popular

public dataset that contains 120,000 annotated audio clips. In re-

cent years, deep neural network has been adopted in audio sensing.

Lane et al. presented DeepEar [22] that classifies high-level activi-

ties using a lightweight deep neural network. Since Google released

AudioSet [10] that contains 5.8 thousand hours of audio extracted

from YouTube videos with 527 sound events, numerous efforts have

been introduced to build deep learning model for audio understand-

ing. Hershey et al. [15] presented a CNN architecture for large scale

audio classification on AudioSet, achieving mean precision of 0.381

on over 400 sound events using ResNet-50. Kong et al. [20] and Yu

et al. [42] employed various attention model based techniques to

improve the classification accuracy. Lupta et al. [23] and Liang et

al. [25] fine-tuned the existing pre-trained model [15] for various

domestic events using augmented data. In fine-tuning stage, they

augmented the existing AudioSet with various sound effects or ran-

dom noise for more robust training set. These efforts has focused

on building an accurate model to recognise various acoustic events

from feature-based machine learning to deep neural network. In

this work, we target the augmentation of conversational agents

as a main problem and identify its unique design requirements

for the recognition of ambient contexts, i.e., recognising ambient

contexts with 1-second audio signal. To this end, we offer a partial

AudioSet dataset well-curated through crowdsourcing and present

a purposefully-built recognition model of ambient acoustic events

by adopting the existing audio sensing techniques.

7.2 Conversational Agents with Context
Research community has studied on various aspects of conver-

sational agents as increasing number of text-based chatbots and

smart devices with voice interface has been adopted in everyday

life. Cohen et al. [8] pointed out that recognizing users attention

is an important factor to improve current conversational agents.

Some [28, 43] focuses on understanding user needs and evaluat-

ing user satisfaction. Yang et al. [41] has studied user’s affective

experiences with the conversational agents. Also, as argued in

Section 2, most of the attempts on building conversational agents

have been focused on building the pipeline for automatic speech

recognition, language processing, and information delivery over

voice [4, 7, 12, 14, 44]. Ongoing efforts to build contextual chat-

bots [18, 37, 45] focus on retrieving and understanding various con-

texts from text-based conversations. However, augmenting acoustic

ambient contexts to adapt the response and interaction style has

not been explored much in the research community, even though

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://annotator.freesound.org/
http://dcase.community/
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conversational agents’ input can be both user’s voice and contex-

tual information [5]. In this work, we argue that the recognition

of ambient acoustic contexts will play an important role to aug-

ment ambient contexts to the conversational agents and propose

design challenges and the core component, the ambient context

recognition.

8 CONCLUSION
In this work, we systematically explored the design space for a

context augmented conversational agent, including analysis of in-

put segment dynamics and computational alternatives. To build

the system, we offered a well-curated dataset suitable for ambient

acoustic context analysis, by refining the AudioSet, a large-scale

audio dataset through crowdsourcing. Then, we devised a light-

weight purpose-built deep neural network solution that consists of

an intelligently designed input segment for capturing audio data for

ambient contexts and a neural network model that uses audio em-

bedding generated by VGGish model [15]. Our experimental results

shows that the proposed network can distinguish between 9 differ-

ent ambient contexts with an average F1 score of 0.80 and a com-

putational latency of 3 milliseconds. We also presented a concrete

manifestation of our solution in designing a context-augmented

conversational agent with kinetic earables.
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