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ABSTRACT
The advent of tiny AI accelerators opens opportunities for
deep neural network deployment at the extreme edge, offer-
ing reduced latency, lower power cost, and improved privacy
in on-device ML inference. Despite these advancements, chal-
lenges persist due to inherent limitations of these accelera-
tors, such as restricted onboard memory and single-device
focus. This paper introduces Synergy, a system that dynami-
cally composes tiny AI accelerators for multi-tenant models,
effectively addressing tinyML’s critical challenges for the in-
creasing demand for on-device AI. A key feature of Synergy
is its virtual computing space, providing a unified, virtualized
view of resources and enabling efficient task mapping to
physical devices. Synergy’s runtime orchestration module
ensures optimal inference across dynamic and heterogeneous
accelerators. Our evaluations with 7 baselines and 8 mod-
els demonstrate that Synergy improves throughput by an
average of 8.0× compared to baselines.

1 INTRODUCTION
The advent of tiny artificial intelligence (AI) accelerators,
such as the Analog MAX78000 [23], MAX78002 [26] and
Google Coral Micro [2], has brought deep neural network
(DNN) model inference closer to us than ever before. These
accelerators, designed for microcontrollers (MCUs) with
small form factors (e.g., MAX78000: 8mm×8mm), push the
boundaries of what tiny, resource-constrained devices can
achieve. Instead of relying on external resources such as
cloud servers, these accelerators enable on-device AI even
in small sensor devices themselves, thereby offering reduced
latency, lower power consumption, and enhanced privacy.
With the increasing prevalence of wearable devices, we can
expect a growing number of these tiny AI accelerators to be
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Figure 1: Tiny AI accelerator (MAX78000 [23]) and fu-
ture wearable computing with these accelerators.

deployed around the human body, leading to true on-body
AI for various applications, as shown in Figure 1.
Existing research efforts in this area, often referred to

as tinyML, focus on compressing DNN models for opera-
tion on MCUs [8, 18, 19, 32]. However, tinyML faces several
fundamental challenges. Due to the constraints of limited
onboard memory, AI models must often be compressed to
fit, potentially compromising their accuracy significantly.
For instance, the pruned VGG (32×32) model that fits into
the MCU memory achieves less than 60% top-1 accuracy [1],
which is more 30% accuracy drop after compression. Ad-
ditionally, even when models are specifically tailored for
these devices, the number of models that can be supported
is inherently limited, as existing tinyML frameworks such
as TensorFlow Lite Microcontrollers [39], are generally de-
signed to support only a single model on a single device.
While there have been active research efforts on model par-
titioning [12, 14, 15, 17, 42] to leverage distributed devices,
they mostly focus on a simple two-tier architecture (e.g., a
mobile and a cloud) for a single model only, and lack the
consideration of the unique characteristics of tiny AI acceler-
ators. As wearables become more ubiquitous, there emerges
an opportunity for collaboration to dynamically compose
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distributed AI accelerators on the body, thereby achieving
higher model accuracy and supporting multi-tenant models.
Building such a collaborative system on tiny AI accelera-

tors presents multiple technical challenges. First, dynam-
ically allocating computational tasks among AI accelera-
tors requires consideration of the real-time availability of
devices and model dependencies, which are often not pre-
dictable at the time of development. Second, it is impor-
tant to holistically manage all models running concurrently,
aiming for optimal system-wide performance due to their
inter-dependencies. Third, the heterogeneity of hardware ac-
celerators, each with its own architecture and computational
capabilities, complicates the collaboration decision.
In this paper, we present Synergy, a system to support

multi-tenant AI models through the dynamic composition
of tiny AI accelerators on the body. Synergy’s key inno-
vation is virtual computing space, which offers AI applica-
tions with a unified, virtualized view of available resources
while abstracting the underlying hardware specifics. This
feature allows developers to design application logic without
struggling with the dynamic and heterogeneous nature of
wearable device environments. For example, a conversation
agent application can simply define a pipeline as <any mi-
crophone, KeywordSpotting model, earbud>, and Synergy’s
runtime module dynamically distributes model execution
across available AI accelerators, matching sensors and desti-
nations to devices based on the requirements.

Synergy incorporates a holistic runtime orchestrationmod-
ule to guarantee the best-effort inference formultiple pipelines
over dynamic and heterogeneous AI accelerators. It creates
execution plans for each pipeline, mapping logical tasks to
available physical devices. Synergy also exploits options for
model splitting over distributed AI accelerators to support
large models or achieve optimal parallel executions. Then,
Synergy selects the optimal set of execution plans to max-
imize overall throughput. For holistic orchestration, Syn-
ergyhas two key features: (1) jointly considering resource
availability among execution plans and (2) planning end-to-
end pipelines with source and target devices. For execution
plan selection, we devise a simple yet effective method; based
on the observation that data communication is the key bot-
tleneck of the distribution execution, the selection prioritizes
data-intensive pipelines, minimizing model splitting.
We prototyped Synergy on two tiny AI accelerator plat-

forms, MAX78000 and MAX78002. We compare Synergy
with 7 baselines including state-of-the-art model partition-
ing techniques [12, 14, 15, 17, 42] and their adapted version
for multi-tenant and end-to-end pipeline. Our extensive eval-
uation with 8 models demonstrates that Synergy consistently
outperforms the baselines, with on average 8.0× throughput
gain across various scenarios. Furthermore, our in-depth ex-
periments show that Synergy effectively adapts to various
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Figure 2: The architecture of MAX78000/MAX78002.

runtime environment changes: (1) the number of devices, (2)
the number of pipelines, (3) heterogeneous device resources,
and (4) source and target devices.

2 BACKGROUND & MOTIVATION
2.1 Tiny AI Accelerators
In recent years, AI hardware accelerators have transitioned
frommobile and embedded devices toMCU devices. These ac-
celerators, distinguished by their tiny form factors and ultra-
low power efficiency, such asMAX78000 [23],MAX78002 [26],
Google Coral Micro [2], Arm Ethos-U65 [7] and GreenWaves
GAP-8/GAP-9 [9], are expected to be incorporated into wear-
able devices, marking the dawn of true on-body AI. The in-
tegration of such accelerators into wearables represents a
significant move towards distributed, on-device AI that op-
erates independently from cloud computing infrastructure,
thereby ensuring enhanced user privacy and minimal la-
tency. Although a number of tiny-scale accelerators have
been proposed recently, only a few products are commer-
cially available and provide comprehensive access and con-
trol over their underlying operations. In this paper, we have
selected the MAX78000/MAX78002, developed by Analog
Devices in 2020, as our primary platform. These accelera-
tors are not only readily available but also offer open-source
tools and documentation, facilitating in-depth analysis and
modification of the internal operations.
The architecture of MAX78000 and MAX78002 are illus-

trated in Figure 2. These devices comprise two primary pro-
cessing modules: a dual-core MCU and a convolutional neu-
ral network (CNN) accelerator. The MCU features an Arm
Cortex-M4 processor operating at a maximum frequency of
100 MHz for MAX78000 and 120 MHz for MAX78002. Both
are equipped with a CNN accelerator with 64 convolutional
parallel processors, specially designed for running neural
networks at ultra-low-power in parallel. Each processor has
a pooling engine, input cache, and convolution engine sup-
porting simultaneous processing up to a 3 by 3 kernel.
Benchmark of MAX78000: Recent benchmark study [24]
quantitatively illustrates the MAX78000’s superior perfor-
mance in terms of latency and energy consumption. As
shown in Figure 3, the MAX78000 significantly outperforms
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Figure 3: Performance comparison between AI acceler-
ator (MAX78000) andMCUs (MAX32650 and STM32F7).

conventional microcontroller, MAX32650 with Cortex-M4
at 120 MHz [22] and high-performance controller, STM32F7
with Cortex-M7 at 216 MHz [36] in key AI tasks. Latency for
keyword spotting (KWS) is reduced to 2.0 ms compared to
350 ms and 123 ms for MAX32650 and STM32F7, respectively.
Energy efficiency is similarly enhanced, withMAX78000 con-
sumingmerely 0.40 mJ for face detection (FaceID), in contrast
to 42.1 mJ and 464 mJ consumed byMAX32650 and STM32F7.

2.2 Practical Limitations
Limited memory size of AI accelerators: One of the pri-
mary limitations of tiny AI accelerators is the constraint
imposed by the memory size. For example, MAX78000 and
MAX78002 have 442 KB and 2 MB of weight memory, respec-
tively. This limited memory capacity becomes a significant
barrier when deploying state-of-the-art neural networks that
require large memory footprints. For example, even tradi-
tional models such as VGG16 [35] can require up to 100 MB,
exceeding the tiny accelerator’s memory capacity by two
orders of magnitude. This gap forces to reduce the model
size at the expense of accuracy and generalizability of the
model. In many cases, to fit NNs into the limited memory
of an MCU, the model must be substantially compressed,
resulting in significant accuracy loss (e.g., less than 60% top-
1 accuracy of VGG (32×32) or over-specialization (e.g., the
ability to detect only a few object classes).
Lack of support for multi-model, distributed inference:
Another limitation of these accelerators is the lack of sys-
tem support for multi-tenancy models and collaborative in-
ferences over distributed devices. This implies that today’s
tiny AI accelerators do not efficiently handle the execution
of multiple AI models concurrently on a single accelerator.
Moreover, current tiny ML models do not fully exploit the
potential of distributed accelerators. The ability to conduct
collaborative inferences, where computational tasks are intel-
ligently divided and processed across multiple accelerators,
is hardley explored.
Why not offloading? A possible solution to address these
limitations is to offload AI model execution to the cloud or
nearby edge devices. However, this approach may not be
viable for proactive AI applications, which often require con-
tinuous or frequent execution of AI models. Offloading to
a cloud server involves transmitting sensitive data, which

raises significant privacy concerns. Additionally, wearables
frequently lack cellular connectivity, making this option less
feasible. An alternative could be to use smartphones as of-
floading targets. However, this reliance on smartphones for
executing AI models does not ensure seamless service, as
continuous connectivity to the smartphone cannot be guaran-
teed (e.g., exercising without smartphones, battery outages,
etc.). Furthermore, continuous transmission of raw sensor
data for multiple applications to a smartphone could lead to
communication and energy bottlenecks, affecting not only
the wearables but also the smartphones.

2.3 Collaboration of Tiny AI Accelerators
To address these challenges, the concept of AI accelerator
collaboration emerges as a promising solution. As wearables
become increasingly ubiquitous, it is likely that multiple
such devices, each equipped with its own AI accelerator,
will be worn on the body as illustrated in Figure 1. This
scenario opens up the possibility of distributing AI tasks
across these accelerators, harnessing their collective compu-
tational power. This distributed and collaborative approach
has the potential to overcome the memory and processing
constraints of individual devices, enabling more complex,
accurate, and multi-tenant AI models.
However, realizing effective collaboration among these

distributed accelerators brings multiple challenges. First, in
a multi-device context, there is inherent variability in the
set of available resources. This variability arises from differ-
ences in the types and number of wearable devices each user
possesses, leading to a dynamic and heterogeneous pool of
accelerators. Such diversity requires a highly adaptable sys-
tem capable of efficiently managing a wide range of on-body
computing environments, each with its own computational
demand and capabilities. Second, in a multi-model context,
the optimal distribution ofmodels across various accelerators
is not only a function of the individual model’s requirements
but also interdependent across all models. This necessitates a
holistic orchestration strategy that can intelligently allocate
resources and balance workloads, taking into consideration
the collective needs and interactions of all models.

3 SYNERGY DESIGN
3.1 Virtual Computing Space
To address the challenges introduced in §2.3, a significant
shift in programming and computing is needed. We propose
the creation of a virtual computing space, an abstract layer
offering a unified, virtualized view of distributed computa-
tional resources across wearable devices with AI accelerators.
This space hides the heterogeneity and dynamic nature of
physical devices, providing a consistent computational envi-
ronment for AI models and a device-agnostic programming
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abstraction (§4.2). AI tasks are deployed in this virtual space,
where underlying orchestration maps virtual resources to
physical ones based on real-time availability and device capa-
bilities (§5). This ensures efficient resource use, operational
continuity despite fluctuating device availability, and seam-
less scaling as devices join or leave the system.

3.2 System Overview
We propose Synergy, designed to support the best-effort in-
ference of multiple models by dynamically composing tiny
AI accelerators over distributed wearable devices. Synergy
takes the execution pipeline of an AI model as input and pro-
vides model results as output. The system is distinguished
by two key features. First, Synergy creates a virtual com-
puting space to facilitate seamless service across dynamic
device environments, offering a unified view of distributed
resources and providing device-agnostic programming ab-
stractions (§4.2). Second, given pipelines, Synergy explores
various task distribution options, including sensor/actuator
mapping and model splitting, across available resources. It
then strategically maps virtual resources to physical ones,
aiming to maximize system-wide performance.

3.3 Design Principles
Device-agnostic pipeline programming: Traditional ML
frameworks were mostly designed to run the model on the
device where the model is running. However, in a dynamic
computing environment, it becomes nearly impossible for
developers to specify particular hardware resources to run
the model. To address this, Synergy offers device-agnostic
programming abstraction, decoupling the execution logic
from the physical hardware resources.
Support formulti-tenancy:Multi-tenancy is critical for en-
hancing the utility and adaptability of resource-constrained
wearables across diverse applications. To overcome the chal-
lenge of limited memory and processing power in MCU-
equipped wearables, Synergy constructs a collaborative run-
time by dynamically composing distributed AI accelerators
and enables the execution of various AI models.
Providing best-effort performance: Synergy is designed
to offer best-effort inferences rather than strictly meeting
each application’s specific requirements. This approach is
essential given the inherent resource limitations of wearable
devices, which differs from the cloud computing with abun-
dant resources available. Synergy prioritizes providing the
best-effort performance within available resources.

3.4 System Scope
Maximizing overall throughput: To support the execution
of multiple models across distributed devices, various system-
wide objectives can be considered, such as maximizing the
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Figure 4: Synergy architecture.

total throughput of models, minimizing the total latency
of models, and minimizing the overall energy consumption
of devices. It is also possible to balance these metrics for
fairness, such as maximizing the minimum throughput of
models. In this paper, we focus on maximizing the total
throughput of models as it is a widely used quality-of-service
(QoS) metric for AI applications. Also, this objective also
generally leads to the reduction of the inference latency and
energy cost, discussed in §5.3 and §7.2.
Moderator-initiated orchestration: In our current imple-
mentation, an external moderator such as a smartphone is
needed due to the limited capabilities of MCUs. For instance,
MCUs often lack programming capabilities to compile pre-
trained models to run on themselves (details in §5.5). The
moderator is responsible for discovering and managing re-
sources, making orchestration decisions, segmenting AI mod-
els, and deploying them to devices. This process is necessary
only when there is a change in the models or device con-
figuration. Once set up, runtime model inference operates
independently on wearable devices, without further reliance
on the moderator. We envision a shift towards a more de-
centralized approach, where these capabilities are embedded
in powerful wearable devices. Such a development would
facilitate self-sufficiency in wearable AI systems, reducing
the need for external devices.

4 SYNERGY
4.1 System Architecture
Figure 4 illustrates the architecture of Synergy, which is de-
signed to facilitate the dynamic deployment of models across
AI accelerators. The moderator has two key roles: construct-
ing a virtual computing space and performing runtime or-
chestration. It monitors nearby devices and their resources to
create andmaintain a unified, abstract view of the distributed

4



resources. It allows model execution logic to be specified in
a format of a pipeline, without mapping physical resources
through device-agnostic programming abstractions. The run-
time orchestrator is in charge of making distribution deci-
sions dynamically for the registered pipelines. It assesses the
available physical resources, generates potential distribution
candidates (including sensor/interface mapping and model
splitting across various AI accelerators) (§5.1 and §5.2), and
selects the most efficient option based on estimated cost (§5.3
and §5.4). Following this selection, the runtime orchestrator
splits the model pipeline across the distributed AI acceler-
ators and dispatches tasks to the devices (§5.5). Once these
tasks are deployed, the end-to-end pipelines operate collabo-
ratively on the wearables, independent of the moderator.

4.2 Programming Abstraction

Synergy introduces a paradigm shift in programming ab-
straction for distributed wearable environments. Unlike con-
ventional model serving platforms such as Tensorflow Serv-
ing [38], which primarily focus on the execution of AImodels,
our system empowers applications to specify comprehensive
end-to-end pipelines. In addition to the model execution,
applications can specify the entire pipeline, starting from
data acquisition (sensing) to the data destination (where the
model output is processed). This feature enables applica-
tions to implement output-processing logic independently
to underlying AI accelerators.

Given the dynamic and heterogeneous nature of wearable
environments, developers cannot predetermine which spe-
cific devices will be used at development time. To address
this, we decouple the specification of pipeline logic from the
physical hardware. For model execution, applications simply
specify the model to be executed; Synergy then dynamically
assigns this execution over available AI accelerators, in a
way of maximizing throughput. Moreover, Synergy supports
distributed execution of models when it proves beneficial,
splitting the model across distributed AI accelerators to lever-
age their collective computational power.

For sensing operations, our system dynamically maps the
appropriate sensor device to the operation based on the ap-
plication’s requirements. These requirements can include
sensor type, resolution, position, and other relevant crite-
ria. The target devices for model outputs can be similarly
described, with requirements such as interface type, physi-
cal location, etc. Currently, Synergy supports two types of
requirements, (designated device and sensor type) for source
devices and (designated device or interface type) for target
devices. Similarly, target devices can be specified as a desig-
nated device or interface type.
We provide two primary system functions: add(pipeline)

and remove(pipeline). A pipeline is described using three

parameters: sensing requirement, model, and target require-
ment. For example, a pipeline for conversational agents can
be described as (microphone, KeywordSpotting, earbud) for
keyword spotting, and for life-logging applications, it could
be (camera on glasses, MobileNet, storage).

5 RUNTIME ORCHESTRATION

Synergy performs runtime holistic orchestration when
Synergy receives a pipeline request from an application or
detects changes in the availability of devices. Figure 5 shows
the high-level operational flow, which comprises four stages.
Execution plan generation (§5.1): Synergy generates exe-
cution plan candiates for each pipeline based on the resources
currently available. Here, an execution plan details which
tasks in the pipeline run on which devices. This enables Syn-
ergy to leverage a wide variety of resource use options and
achieve the best-effort performance.
Runnable Joint Plan Generation (§5.2): Synergy creates
joint plan candidates as a Directed Acyclic Graph (DAG) by
combining execution plan candidates from different pipelines.
Joint Plan Selection (§5.3): By estimating the throughput
of each joint plan (§5.4), Synergy selects the best joint plan,
expected to deliver the highest throughput.
Task Deployment (§5.5): Synergy allocates a set of tasks
to distributed devices according to the chosen joint plan.
This includes setting up data sources or destinations if data
exchange between devices is required. Subsequently, each
wearable device executes the assigned tasks according to the
assigned schedule.

5.1 Execution Plan Generation

For each pipeline, we generate execution plan candidates.
Each execution plan determines (a) where to put source and
target tasks and (b) where to split the model on which de-
vices, resulting in a set of tasks mapped to each of the devices.
For model execution, the system explores various combina-
tions of splitting layers over different AI accelerators. For
source and target tasks, it performs device mapping based on
matching the application’s requirements with the device’s
capabilities. This end-to-end pipeline planning considering
source and target is crucial to reduce device-to-device com-
munication. Suppose there are two devices, a smart watch
(𝑑1) with a microphone and AI accelerator and a smart ring
(𝑑2) with a haptic interface and AI accelerator. If a pipeline
is described as (microphone, KeywordSpotting (KWS), haptic)
and the KWSmodel has 9 layers, one execution plan example
would be [(microphone→ 𝑑1)→ (𝐾𝑊𝑆0:4→ 𝑑1)→ (𝐾𝑊𝑆4:9

→ 𝑑2)→ (haptic→ 𝑑2)], where 𝐾𝑊𝑆𝑖:𝑗 refers to the execu-
tion of the model from layer 𝑖 to 𝑗 . The edge between nodes
represents data exchange. If the devices in the source and
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Figure – Operation Flow
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Figure 5: Operational flow of Synergy.

destination nodes with an edge are different, we add the data
transmission and reception tasks. Similarly, we add the task
of data loading to and unloading from the input memory of
an AI accelerator when the model task is involved.

5.2 Runnable Joint Plan Generation

The next step is to generate a set of runnable joint exe-
cution plans. The joint execution plan can be simply cre-
ated by combining execution plan candidates from different
pipelines. We combine execution plans to give Synergy vis-
ibility over resource competition and dependency across
pipelines. It also contributes to identifying the operation-
sharing opportunities between pipelines. When duplicate
nodes are found, Synergy merges them and allows sharing
of the operation output with the subsequent nodes.

Here, one important task is to filter out unsupportable joint
plans when AI accelerators currently available do not have
sufficient capability. More specifically, we consider three key
constraints pertaining to MAXIM AI accelerators: (1) the
weight memory, (2) the bias memory, and (3) the maximum
number of layers. If a set of model tasks is assigned to an AI
accelerator, we consider it if the total weight memory, bias
memory, and number of layers of assigned model tasks are
below the capacity of the AI accelerator. If all AI accelerators
used in a joint plan are supportable, we consider the joint
plan to be runnable.

To demonstrate the importance of (1) jointly considering
resource availability in the previous paragraph and (2) end-to-
end pipeline planning with source and target devices (§5.1),
we conducted an experiment where two pipelines (KWS [16]
and EfficientNetV2 [37]) are deployed on two MAX78000
devices. We consider two variants of Synergy: (1) Synergy
without joint resource consideration (Synergy w/o Joint),
which identifies an optimal candidate for each pipeline in-
dividually and integrates them into a final execution plan.
(2) Synergy excluding source and target considerations (Syn-
ergy w/o Src&Tgt), which focuses solely on model splitting
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Figure 6: Comparison of Synergy with (1) Synergy with-
out joint resource consideration and (2) Synergy with-
out source and target consideration.

jointly and assigns source and target devices after combin-
ing the candidates. Figure 6 depicts the execution plans and
tasks allocated to each device. Notably, Synergy w/o Joint
encountered an out-of-resource (OOR) error on 𝑑1 as both
𝑝1 and 𝑝2 assigned the large chunk of each model. This as-
pect highlights the necessity of accounting for joint resource
constraints. On the other hand, Synergy w/o Src&Tgt exhib-
ited reduced throughput and increased latency compared to
Synergy. It made the same decision as Synergy for the model
splitting; however, source and target nodes are assigned to
different devices from the ones where the relevant model
execution is running, leading to unnecessary communica-
tion overhead. This result demonstrates the importance of
considering source and target devices in the planning phase
to mitigate device-to-device communication costs.
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Algorithm 1 Synergy Multi-Pipeline Execution Planning
Input: List of pipelines 𝑃 , List of devices 𝐷 , Metric𝑚
Output: Best joint execution plan 𝐸∗
1: 𝑃 ← SortByDataSize(𝑃), 𝐸∗ ← ∅
2: for each pipeline 𝑝 ∈ 𝑃 do
3: 𝐸𝑝 ← ExecutionPlanGeneration(𝑝, 𝐷) ⊲ §5.1
4: 𝐸′𝑝 ← JointPlanGeneration(𝐸𝑝 , 𝐸∗) ⊲ §5.2
5: if 𝑚 == 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 then
6: 𝐸∗ ← argmax𝑒𝑖 ∈𝐸′𝑝 Throughput(𝐸∗, 𝑒𝑖 ) ⊲ §5.4
7: else if 𝑚 == 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 then
8: 𝐸∗ ← argmin𝑒𝑖 ∈𝐸′𝑝 Latency(𝐸∗, 𝑒𝑖 ) ⊲ §5.4
9: end if
10: end for
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Figure 7: Layer-wise latency analysis for UNet. The y-
axis is in the logarithmic scale.

5.3 Joint Plan Selection
Since a pipeline’s execution plan could compete the resources
of AI accelerators with other pipelines’ plans and have per-
formance dependency with each other, it is important to con-
sider pipelines’ execution plans altogether (as a joint plan) to
achieve the best performance. However, consideration of all
possible combinations between pipelines and devices would
require intractable computational overhead. To address this,
we devise a simple yet effective orchestration algorithm. Al-
gorithm 1 shows a high-level description. Its key idea is to
make a selection decision sequentially pipeline by pipeline.
For instance, the decision for the execution plan of the sec-
ond pipeline is made by considering the remaining resources
of AI accelerators after the first pipeline’s assignment, and
so forth.
Understanding layer-wise latency: To devise an effec-
tive planning algorithm, it is essential to understand the
composition of latency at each layer. Figure 7 illustrates the
layer-wise inference latency, memory latency, communica-
tion latency, and output data size for UNet [31]. We found
two important characteristics. First, compared to the infer-
ence latency (1.5 ms), both the memory latency (10.6 ms) and
communication latency (6869.1 ms) are significant, which are
7× and 4579× higher, respectively. This latency gap between

inference and communication is a notable characteristic of
AI accelerators specially designed for fast inference. Second,
the output size varies across different layers, with the lowest
layer latency of 4426.2 ms and the highest of 161864.5 ms, in-
dicating a 36× difference. These findings collectively suggest
that the primary bottleneck in running a pipeline across mul-
tiple AI accelerators lies in the data communication latency.
Consequently, an efficient execution plan should strategically
select split points to minimize the total data transmission
size. It is important to note that minimizing data communi-
cation cost also contributes to minimizing the overall energy
cost, as communication latency is much higher than infer-
ence latency. In addition, Wi-Fi itself draws higher power
than model inference on AI accelerators; 25 mW∼56 mW
during the model inference on MAX78000 [30] and 215 mW
for Tx and 60 mW for Rx on ESP8266 [28], which is the Wi-Fi
module used in our prototype.
Pipeline ordering: As we make a decision sequentially, the
order of pipelines to investigate plays a key role to determine
the system-wide performance. Based on our observation in
layer-wise analysis (Figure 7), we found that data commu-
nication to share intermediate outputs between devices is
the key bottleneck of the execution. To this end, we sort the
pipelines in descending order based on their data intensity to
ensure that models with higher data intensity occupy device
resources first for better decisions. Specifically, given the
input size Insize and output size Outsize

𝑙
for each layer 𝑙 ∈ 𝐿,

we define the data intensity of the model as its average data
size, (Insize +∑𝑙 Out

size
𝑙
)/(𝐿 + 1).

Holistic approach for plan selection:The selectionmethod
takes a list of pipelines and available devices as input and pro-
vides a joint plan as output. For each pipeline in the sorted
pipeline list, it first generates runnable candidate plans based
on the previous decision. Then, the algorithm computes the
target metric for each candidate plan and selects the best plan.
This selection considers the joint resource constraints im-
posed by the previously selected plan for the current pipeline.
This holistic approach ensures that the overall system ef-
ficiency is optimized, rather than focusing on individual
pipeline performance. Finally, the algorithm returns the best
joint execution plan (a set of selected plans), which maps all
tasks to the devices for running pipelines.

5.4 Selection Policy
As introduced in §3.4, in this paper, we target maximizing
the overall throughput of pipelines as an objective. How-
ever, we can also easily adopt different system policies (e.g.,
minimizing the latency or minimizing the energy consump-
tion) by defining a different cost function. We present the
latency estimation of a task, which acts as a primitive unit
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for the cost function, and then explain how we model the
throughput function using the task latency.

5.4.1 Task Latency. To estimate the throughput of a joint
plan, it is important to estimate the latency of each task in
the execution plan. The execution plan can have six types of
tasks: (1) sensing, (2) data reception from other devices, (3)
data loading to AI accelerator memory, (4) model inference
for a given range of layers, (5) data unloading from AI accel-
erator memory, (6) data transmission to other devices. We
explain how to estimate the latency for each task.
Sensing (1): We measure sensing latency for camera and
audio inputs during the profiling phase, which is then used
for latency computation. Memory (3,5): We model mem-
ory latency by quantifying the time taken for memory copy
operations between the microcontroller’s memory and the
accelerator’s memory. Inference (4): The inference latency
is estimated by considering the number of clock cycles in
conjunction with the accelerator’s clock frequency. Note that
we can calculate the number of required clock cycles with
the operations of layers and the parallel processors within
AI accelerators. For example, the number of clock cycles
required for CNN layers in MAX78000 devices can be calcu-
lated as follows: (Incol+Outcol ·Outch) ·Inrow ·

⌈
Inch

𝑁

⌉
, where

In is input data, Out is output data, col is the column, row
is the row, ch is the channel, and 𝑁 is the number of parallel
processors, respectively. Inch are executed in parallel by the
𝑁 number of parallel processors in accelerators. Kernel sizes
are not considered here, as each processor has a kernel ac-
celerator within it. Communication (2,6): We account for
the latencies involved in UART and Wi-Fi communications
between different devices. The details of our networking im-
plementation for UART and Wi-Fi are described in Section 6.

The latency numbers of the above four tasks are calibrated
for our target devices. We validated that the error rate of this
latency estimation (excluding data transmission) is less than
around 1% (e.g., 11 µs gap between the estimated and mea-
sured latency for the inference of ConvNet5 on MAX78000).
Since wireless transmission latency fluctuates, we take an
average and update it periodically.

5.4.2 Throughput Estimation. Aswe combine execution plans,
we assume that the execution cycle is complete if all pipelines
are finished. That is, we consider the number of execution
cycles per second as throughput (i.e., the sum of inferences
of all pipelines per second). Specifically, given a joint plan,
we calculate the throughput by assuming all tasks in parallel
across independent computation units, such as microcon-
troller (MCU), AI accelerator, and Wi-Fi module, to reflect
how the tasks operate at runtime.

MAX78000
Feather Board

ESP8266
(Wi-Fi)

MAX78000
(8mm × 8mm)

MAX78002
EV Kit

MAX78002
(12mm × 12mm)

Figure 8: Hardware setup.

5.5 Task Deployment

Once a joint plan is selected, model splitting is needed
to allow parts of the model to be executed on different AI
accelerators. To this end, we synthesize the partial model
for a given range of layers for a designated AI accelerator.
Synthesizing is the process of generating device-specific code
from pre-trained models in servers. This involves analyzing
the pre-trained model and mapping inputs, weights, and
outputs to memory and processor appropriately. In this study,
we generate C codes from pre-trained PyTorch models for
deployment on MAX78000 and MAX78002 AI devices. Then,
Synergy constructs a DAG for each device by combining
tasks assigned to the very device. It also adds external device
as a source or a destination (as shown in Figure 5) if data
exchange between different devices is needed.

6 PROTOTYPE IMPLEMENTATION

We prototyped Synergy on the off-the-shelf MAX78000
feather board [25] and MAX78002 Evaluation Kit [27], which
are a development platform for the MAX78000 [23] and
MAX78002 [26], respectively, as shown in Figure 8. Both
platforms have a variety of peripherals such as a camera, a
microphone, LED, and push buttons to help quick proof-of-
concepts and software development on top of MAX78000
and MAX78002. Note that although the development plat-
form is bulky for the wearable form factor, the actual size of
the accelerators is tiny (e.g., 8mm×8mm for MAX78000 and
12mm×12mm for MAX78002).

For wireless communication, we interfaced MAX78000/
MAX78002 with an ESP8266 Wi-Fi module [6]. The interface
between AI accelerators and ESP8266 transfers data via serial
communication over UART configured at a 115200 baud rate.
To ensure that the communication process viaWi-Fi does not
disrupt the data transmissions with MAX78000/MAX78002,
we have employed a round-robin scheduling algorithm on
ESP8266. This mechanism is designed to alternate the data
flow: transmitting data to the wireless communication chan-
nel for outward transmission and redirecting to the serial
communication channel upon receiving data from the Wi-Fi

8



Table 1: Models used in this study. Sizes are all in bytes.
Models # Layers Sensing Model Size Input Size Avg. Out Size

ConvNet5 5 Image 71158 28×28×1 14031
KWS 9 Audio 169472 128×128×1 7976
SimpleNet 14 Image 166448 32×32×3 9237
WideNet 14 Image 313700 32×32×3 10091
ResSimpleNet 17 Image 381792 32×32×3 11217
UNet 19 Image 279084 48×48×48 74547
EfficientNetV2 29 Image 627220 32×32×3 66468
MobileNetV2 56 Image 821164 32×32×3 296318

interface. Also, since typical TCP/IP stack is too resource-
intensive for MCUs, we implement lightweight internet pro-
tocol (lwIP), which is a small independent implementation
of TCP/IP protocol suite at under 40 kB memory with only
essential functionalities.
The software system of Synergy is implemented on a

FreeRTOS with C language. We abstract sensor reading, in-
ference, and networking functionality as individual tasks,
and each task is scheduled on top of the FreeRTOS scheduler.

7 EVALUATION
7.1 Evaluation Settings
7.1.1 Models. In our experiment, we use eight different
models: ConvNet5, KWS [16], SimpleNet [10], ResSimpleNet [11],
WideNet [10], UNet [31], EfficientNetV2 [37], andMobileNetV2 [34].
We quantized these models with 8-bit integers and synthe-
sized them for compatibility with MAX78000 andMAX78002.
Note that the synthesized EfficientNetV2 and MobileNetV2
fit to a singleMAX78002, but do not fit into a singleMAX78000
device due to resource constraints.

7.1.2 Baselines. To the best of our knowledge, there are
no existing studies that address model splitting in multi-
pipeline scenarios across multiple devices. Therefore, we
devised several baselines based on different rationales and
adapted state-of-the-art splitting algorithms to evaluate their
effectiveness in our environments. We consider 7 baselines.
The first 4 are heuristic baselines that consider the resource
usage of other pipelines when selecting the joint plan. The
last 3 are based on state-of-the-art algorithms.
MinDev: This heuristic aims to avoid model splitting across
devices as much as possible. The rationale is that using fewer
devices would reduce communication overhead between
devices, thereby increasing throughput. For each pipeline, it
selects an execution plan that uses the minimum number of
devices to run its model, considering the resource usage of
previously selected plans, similar to Synergy.
MaxDev: In contrast, MaxDev focuses on maximizing model
splitting over distributed AI accelerators, with the rationale
that more devices could enhance task parallelization, thereby
improving throughput. The overall operation is similar to
MinDev but selects an execution plan that splits the model
to all available devices.

PriMinDev: Prioritized MinDev (PriMinDev) enhances Min-
Dev by prioritizing splitting points and device assignment
order. For each pipeline, it selects an execution plan that min-
imizes intermediate output sizes from devices, while using
the fewest possible devices. When selecting the device, it
prioritizes MAX78002 over MAX78000 to reduce splitting.
PriMaxDev: Similar to PriMinDev, Prioritized MaxDev (Pri-
MaxDev) also emphasizes optimal splitting points and device
assignment order. The key difference is to consider execution
plans that involve all devices.
IndModel: Inspired by state-of-the-art model partitioning
algorithms [12, 14, 15, 17, 42], IndModel selects the best-split
execution plan based on metric estimations, but without con-
sidering holistic planning. IndModel independently selects
the optimal execution plan for each pipeline and forms the
final joint plan by aggregating the selected plans.
JointModel: IndModel may lead to out-of-resource (OOR)
errors if the cumulative plan exceeds available resources.
To prevent this, JointModel, a multi-tenant version of state-
of-the-art algorithms, conducts a holistic assessment. It pri-
marily focuses on optimally splitting multiple models, con-
sidering resource usage across pipelines and aligning with
Synergy’s decision-making process.

All aforementioned six baselines focus on optimal model
distribution over AI accelerators and map source and target
devices post-model splitting. If multiple candidates exist for
source and target devices, these baselines choose the ones
that minimize the total number of source and target devices.
IndBest: IndModel advances state-of-the-art partitioning
algorithms (IndModel) by incorporating source and target
devices alongside model splitting. Each pipeline indepen-
dently selects the execution plan expected to yield the highest
throughput by considering end-to-end latency, from sens-
ing to output delivery. However, it does not account for the
resource usage of other pipelines.

7.2 Overall Performance

We conducted our primary experiments using two types
of workloads: (1) multiple small pipelines, each capable of
running on a single device, and (2) a single large pipeline
that requires multiple devices. For the experiment, we de-
vise four workloads, two for each type: Workload 1 (Con-
vNet5, ResSimpleNet, UNet), Workload 2 (KWS, SimpleNet,
WideNet), Workload 3 (EfficientNetV2) and Workload 4 (Mo-
bileNetV2). By default, we use four MAX78000 devices, en-
suring an even distribution of source and target devices.
Figure 9 shows the throughput of different baselines on

four scenarios. The experimental results show that Synergy
consistently outperforms all baselines in various workloads
due to its holistic decision-making process, which includes
end-to-end pipeline metric estimations and joint resource
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Figure 9: Overall performance: total throughput of different workloads; higher is better.
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constraints. InWorkload 1, while IndModel (representative of
current model partitioning techniques) results in an OOR sit-
uation, Synergy achieves a total throughput of 4.20, which is
38.4 times higher than the next best (PriMinDev). In Scenario
2, IndModel still leads to OOR, yet IndBest, when incorpo-
rating source and target devices with model splitting, shows
comparable throughput to Synergy. In Workload 3 and 4,
Synergy continues to exhibit 1.4 times and 1.1 times higher
throughput than the next best (PrivMaxDev and IndModel),
respectively. Note that we do not report IndBest and Ind-
Model in Workload 3 and 4 because IndBest is the same as
Synergy and IndModel is the same as JointMode due to the
presence of only one pipeline. The results indicate two key
points. First, Synergy significantly boosts throughput when
there are more distribution options with multiple pipelines
and devices (Workload 1 and 2). Second, Synergy supports
large models even on top of resource-constrained MCU en-
vironments through the dynamic composition of distributed
AI accelerators (Workload 3 and 4).

We further analyze the performance characteristics of
the baselines. MinDev generally outperforms MaxDev, sug-
gesting that maximizing splitting layers is less effective due
to increased communication overhead. The performances
of PriMinDev and PriMaxDev improve with prioritization
strategies, highlighting the benefits of choosing split points
with minimal size of outputs. However, PriMaxDev outper-
forms PriMinDev in Workload 3 (EfficientNetV2), implying
that minimizing device usage can sometimes result in sub-
optimal split points due to resource limitations, leading to
decreased performance. This finding emphasizes the neces-
sity of a comprehensive approach in execution planning.
Interestingly, the individually best model partitioning plan
(IndModel) is not as effective as anticipated due to the ab-
sence of holistic execution planning. While IndBest, which
includes source and target mapping with model splitting,
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Figure 11: Impact of runtime environment changes: (a)
number of devices 8, (b) number of pipelines.

can match Synergy’s effectiveness, it leads to OOR situa-
tions in some cases, e.g., Workload 2. Although JointModel
reliably manages OOR cases by considering joint resource
constraints, it falls short of Synergy as it does not fully ac-
count for end-to-end communication costs, including source
and target device involvement.
Figure 10 shows the associated latency results. While

the primary goal was to maximize total throughput, signifi-
cant latency improvements were also observed. For instance,
in Workload 1, Synergy not only offers 38.4 times higher
throughput compared to PriMinDev but also reduces the
average latency of pipeline executions by 55.2 times. Sim-
ilarly, in Workload 3, Synergy achieves 1.39 times higher
throughput and 1.61 times lower latency than PriMaxDev.
In the subsequent experiments, we report only throughput
results as the overall trend is similar across the experiments.

7.3 In-Depth Analysis
7.3.1 Runtime Environment Changes. We investigate how
Synergy adapts to changes in the runtime environment. We
consider two scenarios: variations in (a) the number of de-
vices and (2) the number of pipelines.
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Number of devices: In this experiment, we explore Syn-
ergy’s scalability to the change of the number of MAX78000
devices. We increase the number of devices from two to five,
while running the same set of four pipelines with ConvNet5,
KWS, SimpleNet, and ResSimpleNet.
Figure 11 (a) shows that all baselines generally achieve

higher overall throughput with an increase in available ac-
celerators. This is a result of having more resources available
for executing plans more effectively. Interestingly, Synergy
significantly outperforms the baselines as the number of
devices increases. This is due to Synergy’s strategic consid-
eration of accelerator assignments, effectively minimizing
communication overhead between source and target devices.
Conversely, except for IndBest, the throughput gains for all
other baselines are not notable, even with additional devices.
Specifically, IndModel consistently faces OOR issues in all
scenarios. While IndBest achieves comparable throughput
in scenarios with sufficient accelerator resources (such as
when 4 or 5 devices are available), it also leads to OOR in
resource-constrained settings. Another interesting observa-
tion is that using more devices does not always lead to higher
throughput. In the case of Synergy, the throughput saturates
once the number of devices reaches 4. This is because, be-
yond optimal distribution, further splitting of models fails
to contribute to additional throughput gains.
Number of pipelines: We assess Synergy’s performance
with a varying number of pipelines. The number of pipelines
incrementally increased from one to six, following the se-
quence: UNet, ConvNet5, SimpleNet, KWS, ResSimpleNet,
and WideNet. We kept the device set as four MAX78000s.
To understand the effect of resource competition among
pipelines, we report the average throughput across pipelines,
i.e., the ratio of the number of completed pipelines per sec-
ond to the total number of pipelines. Figure 11 (b) reveals
a downward trend in average throughput as the number of
pipelines increases for all baselines, due to the competition
for accelerator resources among the models. Nevertheless,
Synergy consistently outperforms the baselines significantly.
Remarkably, even with six models, Synergy achieves an av-
erage throughput of 1.35, 30.1 times higher than the next
best (PriMinDev). IndBest achieves comparable performance
with a lower number of models but faces OOR issues when
the count reaches five pipelines.

7.3.2 Composing Heterogeneous Accelerators. To examine
Synergy’s effectiveness in heterogeneous accelerator resources,
we conducted an experiment where one of four MAX78000
deviceswas substitutedwithmore resource-capableMAX78002.
The workload is comprised of three pipelines: ConvNet5,
UNet, and EfficientNet.
Figure 12 shows the results in two different setups: one

with four MAX78000s and another with three MAX78000s
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Figure 13: Effect of source and target mappings.

and one MAX78002. The inclusion of a higher-resource de-
vice generally led to an improvement in throughput. Leverag-
ing its holistic planning approach, which takes into account
the resource capabilities of each device, Synergy surpasses
the baselines by efficiently utilizing the additional resources.
With four MAX78000s, Synergy achieves a total through-
put of 0.94, outperforming the next best (JointModel) by
a factor of 8.8. This throughput further increases to 3.33
when incorporating one MAX78002. Interestingly, while In-
dBest matches Synergy in scenarios with sufficient acceler-
ator resources, it falls behind by 6% in throughput. PriM-
inDev, which allocates all models exclusively to the single
MAX78002, results in a significantly lower throughput of
0.08 compared to Synergy. This discrepancy highlights the
importance of consideration for the communication over-
head associated with source and target devices.

7.3.3 Source and Target Mapping. To assess the effect of
source and target mapping, we conducted experiments across
three scenarios with varying configurations of source and
target devices: (1) "overlapped," where source and target de-
vices are identical across pipelines, (2) "distributed," where
source and target devices of pipelines are evenly allocated
among the devices, and (3) "any," where source and target
devices can be any device within the set. The "distributed"
setup is the same as Workload 1 from §7.2, while the "over-
lapped" and "any" scenarios only differ in their source and
target device mappings.

As shown in Figure 13, throughput is typically at its low-
est in the "overlapped" scenario, where a single device be-
coming a communication bottleneck limits parallelization
opportunities. In contrast, the "any" scenario exhibits the
highest throughput, benefiting from the distribution of com-
munication costs across various source and target devices.
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Specifically, Synergy achieves total throughputs of 3.67, 4.20,
and 16.80 in the "overlapped," "distributed," and "any" sce-
narios, respectively. These findings suggest that Synergy’s
performance exhibits insensitivity to source-target device
configurations due to its comprehensive execution planning,
which accounts for both source and target factors.

8 DISCUSSION
Expanding pipeline architecture: Currently, Synergy is
designed to support a straightforward pipeline architecture,
consisting of a single data source, one AI model, and a sin-
gle output target. However, real-world applications often
demand more complex configurations. For instance, sensor
fusion requires integrating multiple data sources for a more
holistic analysis, and complex information processing might
require the conditional chaining of multiple models. Looking
ahead, our future work aims to expand the system’s capabil-
ities to support these sophisticated pipeline architectures.
Energy cost investigation: In this study, our primary ob-
jective was to maximize throughput while not explicitly
addressing energy consumption, because we assume that
data communication accounts for a significant portion of
energy usage due to its high power draw and long duration
as reported in §5.3 Nevertheless, this offers only a limited
perspective on the power behavior of Synergy. Future re-
search will aim to provide an in-depth analysis of the energy
costs associated with tiny AI accelerators and peripherals on
MCUs.
Enhancing collaboration among AI accelerators: We
leverage collaboration among tiny AI accelerators by sup-
porting layer-wise model splitting, dividing a model along its
layers. Future plans include expanding collaboration strate-
gies to include channel-wise splitting [20, 21, 40], where
neural network models are segmented by channel within
the same layer for parallel processing across multiple accel-
erators. This approach enables Synergy to handle models
with larger inputs, overcoming current data memory limita-
tions. Additionally, combining layer-wise and channel-wise
splitting would offer more flexible and efficient collaboration.

9 RELATEDWORK
TinyML: TinyML represents a research field of machine
learning techniques, aiming to bring AI capabilities to the
most resource-constrained devices, such as MCUs. These de-
vices typically have tens to hundreds of kilobytes of SRAM,
and most of the research efforts in this domain have been
focused on minimizing model size. Existing studies have
focused primarily on three techniques: model pruning [19],
model quantization [32], and neural architecture search (NAS) [8,
18]. In contrast, our work focuses on supporting multiple
or large AI models without compromising the accuracy, by

dynamically composing distributed AI accelerators. How-
ever, the combined power of tiny AI accelerators might still
be insufficient to support unmodified, off-the-shelf large AI
models. We envision that Synergy can benefit from these
TinyML techniques to cover larger AI models.
Model partitioning: While there are very few attempts
for partitioning AI models over multiple MCU-equipped de-
vices, there have been active research efforts for a layer-wise
model partitioning over resource-limited embedded and mo-
bile devices. In common, these methods [12, 14, 15, 17, 42]
allocates few initial layer of a DNN on mobile/embedded
device and the latter in edge or cloud server. Intermediate
output from the initial layer execution is transmitted to the
powerful resources such as cloud or nearby edge device
where the subsequent part of the model is executed. They
adapt the splitting layer depending on network status and
server load. While Synergy also adopts vertical partitioning
for distributed inferences, there are three key differences in
terms of the techniques: (1) As target platforms, we focus
on multiple on-body AI accelerators and explore multiple
layer splitting options, while the existing studies mainly con-
sider only one splitting, e.g., between a mobile device and
a cloud. (2) We identify and address the resource compe-
tition and dependency issues when dealing with multiple
concurrent models. (3) While these studies focus only on the
model distribution mostly on a smartphone environment, we
identify that the data production (source) and consuming
(target) devices can also be dynamic in wearable environ-
ments and devise an orchestration technique that considers
these aspects holistically.
DNNworkload distribution:An application pipeline often
consists of a (conditional) sequence of multiple DNN models.
When multiple processing devices are available, several stud-
ies have been proposed to enhance the inference throughput
by distributing model processing into different devices and
parallelizing their execution [5, 13, 41]. Their key difference
with model partitioning methods is to treat a model as a
primitive execution unit and focus more on schedulingmodel
execution over distributed devices (without model splitting).
For example, a face classification task can be executed on
a different device following object detection on the initial
device, thereby leveraging distributed resources from mul-
tiple devices [13, 41]. Synergy shares the same high-level
objective of distributing multiple model workloads into mul-
tiple devices. However, our target environment is on-body
devices with AI accelerators, which brings resource chal-
lenges. To overcome the limited resources of these devices,
we adopt model partitioning on top of workload distribution
and devise a tailored solution for tiny AI accelerators.
Model serving systems: Several platforms, such as Ten-
sorFlow serving [38], Sagemaker [33], and Azure ML [29],
have been proposed to facilitate model inference serving by
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offering containerized environments for model execution in
diverse devices. Research platforms, such as Velox [3] and
Clipper [4], focus on low-latency prediction serving, together
with optimizing cloud server performance. However, in wear-
able computing, the main challenge lies in dynamically com-
posing distributed tiny AI accelerators. Our solution, the
virtual computing space, addresses this by mapping software
logic to physical resources and optimizing performance by
considering pipeline interdependencies and resource usage.

10 CONCLUSION
We presented Synergy, a novel system for the dynamic com-
position of tiny AI accelerators on the body. Synergy ad-
dressed the problem of dynamic and heterogeneous wearable
environments with the concept of virtual computing space,
which simplifies the integration of diverse AI applications
on wearable devices. Then, Synergy’s runtime dynamically
distributes model execution tasks into device resources avail-
able for the best-effort inference. Our extensive evaluation
showed that Synergy consistently shows higher throughput
than existing model partitioning techniques.
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