
Scalable Power Impact Prediction of Mobile
Sensing Applications at Pre-Installation Time

Chulhong Min , Youngki Lee, Chungkuk Yoo , Inseok Hwang ,

Younghyun Ju, Junehwa Song, and Seungwoo Kang ,Member, IEEE

Abstract—Today’s smartphone application (hereinafter ‘app’) markets do not provide information on power consumption of apps,

which is essential for users. Continuous sensing apps make this problem more severe because significant power is consumed without

the users’ awareness. We propose PowerForecaster to break through such an exhaustive cycle. It provides users with personalized

estimation of sensing apps’ power cost at pre-installation time. It is challenging to provide such estimation in advance because the

actual power cost of a sensing app varies depending on user behavior such as physical activities and phone use patterns. To address

this, we develop a novel power emulator as a core component of PowerForecaster. It achieves accurate, personalized power

estimation by reproducing users’ behaviors and emulating the target app’s power use. We optimize the system to make the power

emulation fast and its trace collection energy efficient. We further address the problem of dealing with large-scale emulation requests

from worldwide deployment. We develop a novel selective emulation approach to minimize the server-side resource cost. We

performed extensive experiments and the experimental results show that PowerForecaster achieves the power estimation accuracy of

93.4 percent and saves on 60 percent of the emulator instance usage.

Index Terms—Energy management, mobile applications, smart devices, system architecture

Ç

1 INTRODUCTION

USERS select desirable mobile apps by considering
diverse information provided by smartphone app mar-

kets, such as app features, screenshots, and user comments.
However, a key piece of information is still missing, which
is power consumption by an app. Users can determine the
app’s power cost empirically only after they install and use
it for a long period of time. Based on such experiential per-
ception, users make a decision whether they keep using the
app or not. However, such experiential power control is no
longer effective for continuous sensing apps [1], [2]. Users
cannot be explicitly aware of those apps’ power cost as the
apps consume the power continuously in the background.
A pedometer app, Accupedo [3], for example, uses up to
200 mW of power additionally depending on situations and
could cause an early shutdown of the smartphone.

What if users could see the estimated power cost of a
sensing app on the app market prior to its installation?
If so, the app market could relieve users of a significant
burden from exhaustive trial and error and help them
make a judicious decision to choose a certain app. Also,
if users accept the expected power cost of the selected
app, they might not be bothered even when the battery
is rapidly running low.

Realizing such a function for continuous sensing apps is
not straightforward. A simple way is that app developers
share the average power cost of the apps for common use
cases. However, we uncovered that such a developer-driven
report could be inaccurate for many individual users. The
main reason is that the power cost of a sensing app is largely
different depending on users’ behaviors such as physical
activities, phone use, and other environmental factors [4],
[5], [6], [7]. The error could increase when various optimiza-
tion techniques are applied to the sensing app, e.g., activat-
ing power-hungry GPS based on energy-efficient IMU.

In this paper, we present PowerForecaster. It provides an
instant, personalized power cost of a sensing app prior to the
installation, capable of being integrated into mobile app mar-
kets. Fig. 1 depicts the mockup screenshots of services that
would be enabled by PowerForecaster. Our system provides
a number of unique user experiences. First, PowerForecaster
offers the power impact of sensing apps at pre-installation
time. By doing so, it removes users’ hassle of installing, using,
and uninstalling apps one after another. They usually repeat
this process until they find energy-efficient apps. Second,
PowerForecaster estimates highly personalized power use by
reflecting an individual user’s patterns of activity and phone

� C. Min is with the Nokia Bell Labs, Cambridge CB3 0FA, United Kingdom.
E-mail: chulhong.min@nokia-bell-labs.com.

� Y. Lee is with the Department of Computer Science and Engineering, Seoul
National University, Gwanak-gu, Seoul 08826, Republic of Korea.
E-mail: youngkilee@snu.ac.kr.

� C. Yoo and I. Hwang are with IBM Research, Austin, TX 78758. E-
mail: ckyoo@ibm.com, ihwang@us.ibm.com.

� Y. Ju is with the Hyundai Motor Company, Seocho-gu, Seoul 06797,
Republic of Korea. E-mail: younghyun.ju@hyundai.com.

� J. Song is with the School of Computing, KAIST, Daejeon 34141, Republic
of Korea. E-mail: junesong@nclab.kaist.ac.kr.

� S. Kang is with the School of Computer Science and Engineering, KOREA-
TECH, Cheonan-si, Chungcheongnam-do 31253, Republic of Korea.
E-mail: swkang@koreatech.ac.kr.

Manuscript received 11 Apr. 2018; revised 5 Mar. 2019; accepted 21 Mar.
2019. Date of publication 9 Apr. 2019; date of current version 5 May 2020.
(Corresponding author: Seungwoo Kang.)
Digital Object Identifier no. 10.1109/TMC.2019.2909897

1448 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0002-5197-9840
https://orcid.org/0000-0001-9921-8285
https://orcid.org/0000-0001-9921-8285
https://orcid.org/0000-0001-9921-8285
https://orcid.org/0000-0001-9921-8285
https://orcid.org/0000-0001-9921-8285
https://orcid.org/0000-0001-7370-3944
https://orcid.org/0000-0001-7370-3944
https://orcid.org/0000-0001-7370-3944
https://orcid.org/0000-0001-7370-3944
https://orcid.org/0000-0001-7370-3944
https://orcid.org/0000-0001-5278-2911
https://orcid.org/0000-0001-5278-2911
https://orcid.org/0000-0001-5278-2911
https://orcid.org/0000-0001-5278-2911
https://orcid.org/0000-0001-5278-2911
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

use. It ensures higher accuracy of power estimation. Third, a
wide variety of sensing apps are supportedwithout requiring
any modification of the app logic nor requiring further infor-
mation from developers. Last, it achieves scalable processing
to support a worldwide deployment.

To enable the aforementioned unique features, wepropose
a trace-driven emulation approach. First, it pre-collects sensor
anddevice usage traces from a user’s phone. The traces repre-
sent user’s physical activities and phone use patterns, respec-
tively. Second, it estimates the expected power use of a target
app based on a user behavior-aware power emulatorwith the col-
lected traces. The target app is executed on the emulator by
replaying the sensor trace. While executing the app, the emu-
lator tracks changes in the power states of hardware compo-
nents used by the app. At the same time, the hardware use of
other apps is also tracked by replaying the device usage trace.
This is to accurately estimate net power increase by the target
app. A sensing app often shares hardware with other apps as
it runs in the background and it should be accounted for
properly. After the emulation, each power state by hardware
use is converted into a power number and total power con-
sumption is obtained by aggregating the power numbers. In
this way, PowerForecaster achieves the accurate estimation
of the power impact of a sensing app, by considering user
behavior in the power emulation.

To make our approach feasible, we address a number of
technical challenges. Most importantly, we design our own
Android power emulatorwith significant extension to the origi-
nalAndroid emulator. The key of extension is to support vari-
ous sensors, trace replay, and power tracking in the
emulation process. The Android emulator [8] does not track
power states of hardware components or emulate common
sensor devices. Moreover, it does not support feeding pre-
collected sensor traces as input for emulation. This precludes
the possibility of emulating a sensing app over users’ real
traces. Other existing emulators such as [9] also do not sup-
port power emulation of sensing apps.

We optimize PowerForecaster to make its emulation fast
and its trace collection power efficient. First, reliable power
estimation requires to use long traces, but this makes emula-
tion very time-consuming. The emulation by default takes as
much time as the length of original traces. Emulation in
advance is not a viable alternative due to huge combina-
tions of users, sensing apps, and their version updates.

PowerForecaster achieves fast emulation by two techniques:
(1) fast-forwarding replays in a way to capture changes in
power states only and (2) parallelizing replays on a number
of emulator instances. Our evaluation shows that emulation
with 18-hour long traces is completedwithin half of aminute,
with a small estimation error (6-7 percent). Second, collecting
sensor traces on a user’s phone incurs nontrivial power over-
head. PowerForecaster minimizes necessary data collection
while keeping estimation accuracy high by applying a bal-
anced duty-cycling policy based on our empirical experien-
ces. Users do not need to repetitively collect sensor traces.
Instead, once the traces are collected, they are reused for vari-
ous sensing apps.

We further address the problem of dealingwith large-scale
emulation requests fromworldwide deployment, which is an
important issue not covered in our previous paper [5]. Con-
sidering the number of mobile users and sensing apps, the
amount of server resources required to process worldwide
requests would be tremendous. To this end, we devise a
novel selective emulation approach, namely similar segment
skipping to significantly reduce the server-side cost for power
emulation. The key idea is from our empirical observation
thatmobile sensing apps take user behavior as an input of the
internal logic and their power consumption is mostly deter-
mined by how the logic behaves. Upon a user’s request, our
method sorts out the parts of data traces expected to show the
highly similar power consumption for a target app and
avoids performing power emulation for those parts. Our
evaluation shows that it saves on average 60 percent of the
emulator instance usage for three sensing apps.

The contributions of this paper are summarized as
follows.

� First,we develop an accurate power estimation system
based on behavior-aware power emulation for sen-
sing apps, which is the first-of-its-kind system provid-
ing user-specific power estimation at pre-installation
time.

� Second, we present a set of system optimization for
fast power emulation and energy-efficient trace col-
lection to make our system practical.

� Third,we present a novel selective emulation approach
to minimize the server-side resource use needed to
process a large number of emulation requests.

� Last, we evaluate the performance and overhead of
the system through extensive experiments.

This paper is organized as follows. Section 2 discusses the
related work. Section 3 presents the motivating study to
show the impact of user behavior on the power consumption
of sensing apps. Sections 4 presents the design of PowerFore-
caster. Section 5 presents data collection and Section 6 details
the user behavior-aware power emulation. Section 7 dis-
cusses server-side resource optimization. Section 8 presents
our experimental results and Section 9 provides discussion
on limitations and future works. Finally, Section 10 concludes
the paper.

2 RELATED WORK

Mobile Sensing Apps and Energy Optimization. A new class of
mobile apps, so-called mobile sensing apps, have emerged

Fig. 1. Power impact at pre-installation time.

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1449

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

during the last decade [1]. Themobile computing community
have proposed lots of mobile sensing apps [1], [2], [10], [11].
Much effort has been put towards multiple dimensions, such
as improving recognition accuracy and optimizing power
consumption involved in continuous sensing. Another nota-
ble dimension was on proposing common platforms to pro-
vide system support formobile sensing apps [12], [13], [14].

Power Profiling and Modeling. Power profiles and models
constitute important baselines for energy optimization.
Extensive efforts have been put to build accurate power
models of mobile apps and phone H/W [15], [16], [17], [18],
[19], [20], [21]. We adopt those models for accurate power
estimation. Similar to our emulation-based approach, Watt-
sOn provides a developer tool to emulate apps’ power use
in development environments [16]. Unlike our work, it tar-
gets interactive foreground apps and thus focuses on power
emulation for display, CPU, and network. We, however,
address the power impact of background sensing apps.

Energy Diagnosis of Running Apps. Another important
application of mobile apps’ power estimation is to diagnose
abnormal battery-drain problems due to bugs and miscon-
figured apps [22], [23], [24], [25], [26]. They help users spot
the causes of abnormal battery drain and take counterac-
tions. We complement these works with forecasting the
expected power impact of sensing apps, helping users make
an informed decision in advance.

Human Battery Interaction. Literature on human-battery
interaction onmobile devices reports battery-charging behav-
ior [27], [28], user perception of battery interface [28], [29],
user behavior changes upon battery awareness [30], and user-
interactive charging [31]. Their focus mainly remains in con-
ventional mobile apps, rather than newly rising issues with
continuous sensing apps. As an early attempt, our previous
work [4] studied users’ concerns about running continuous
sensing apps, which exhibit varying battery drain patterns
depending on user behavior. We found that continuous sens-
ing apps often embarrasses users as their battery usage largely
deviates from what they understand based on their experien-
ces with conventional mobile apps. It proposed a novel tool to
provide more realistic battery drain information by taking
account of user behavior factors while running sensing apps.
Unlike this work, PowerForecaster focuses on providing
power impact of sensing apps at pre-installation time and
thereby helps usersmake a better-informed decision.

Mobile App Testing. Several automated testing frameworks
for mobile apps have been proposed [32], [33], [34]. They use
a monkey tool to generate streams of UI events on target apps
running on an emulator and analyze runtime properties such
as app crashes and page contents. Our system differs in two
aspects. First, for the execution of sensing apps, we replay

sensor data streams and sensor status, which are the major
input of sensing apps. Second, we emulate the power state of
sensor devices for the power impact estimation.

3 MOTIVATION

Continuous sensing apps may cause inconsistent battery con-
sumption among users, and thereby making users distrust
the developer’s estimates of power consumption. It is mainly
from diversity in individual user behaviors, especially their
physical activities and phone use. Users’ different activities
trigger different branches of logic in the same sensing app.
For example, many apps adopt conditional sensing pipelines
for power optimization; they use low and high power sensors
selectively depending on the user context [10], [35], [36]. How
often and long the user’s activities trigger the conditions has a
significant impact on actual power use. Different phone use
patterns also affect net power increase of a sensing app as it shares
hardware resources with other apps while running in the
background [37]. For instance, a sensing app can obtain
already-triggered wakelocks at almost zero cost, a major
power consumer otherwise.

We quantify the impact of user behavior on battery use
with data traces from 27 people over two example sensing
apps.

Data Traces. We collected sensor and phone usage traces
from 27 participants for three weeks (14 undergraduates,
7 company employees in their 20s-50s, 5 graduates in their
20s-30s, and 1 homemaker in her 50s). We deployed a data-
logging appon their phones. The app collects data for 12 hours
a day (from 10AM to 10 PM), but actual collection time varied
due to battery depletion.We analyzed data collected for more
than 8 hours a day.

Applications. We consider two sensing apps inspired by
previous works: (1) MyPath, a location tracker [38] and (2)
ChatMon, a conversation monitor [36]. MyPath records the
GPS trace of a user every 10 seconds. GPS sensing is triggered
only when the user is moving which is recognized by low
power accelerometer sensing. ChatMon uses sound sensing
and processing tomonitor speakers and conversation turns. It
triggers sound sensing only when its user is close to someone
else, which is detected by Bluetooth scans every 2minutes.

Effect of Physical Activities.We first looked into the effect of
physical activities. Fig. 2a shows the cumulative distribution
of GPS activation time ratio of MyPath. The ratio is computed
as the ratio of GPS activation time to total execution time. The
average ratio per user ranges from 5.7 to 20.2 percent (mean:
12 percent, SD: 3.2 percent). Assuming that MyPath runs
12 hours a day, the top user activates GPS 1.5 hoursmore than
the bottom. Similarly, we show the ratio of sound sensing acti-
vation time of ChatMon, which monitors conversations with
the top 5 frequently encountered people. Fig. 2b shows the
cumulative distribution of sound sensing activation time
ratio. The average ratio varied from 4.8 to 67.1 percent (mean:
34.9 percent, SD: 18.2 percent). The top user would activate
3.5 more hours of sound sensing than the average user,
assuming that ChatMon runs 12 hours a day. This would
cause a huge difference in the power use of users’ phones.

Effect of Phone Uses. We further examined the effect of
resource sharingwith ChatMon.We analyzed the net increase
in CPU activation time caused by wakelocks ChatMon

Fig. 2. CDF of activation time ratio.

1450 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

acquired. Here, we briefly discuss two different cases that
show such sharing effect. First, two users, P6 and P13, showed
similar activation time for sound sensing, but different net
increase inCPUactivation time. For both users, sound sensing
was activated for 29 percent of the total duration. However,
P6’s CPU was solely activated by ChatMon for 15 percent of
the total duration, while 22 percent was activated for P13.
This difference results from that P6 used his phone for other
purposes for longer time than P13 did, so P6’s CPU was acti-
vated more already by other apps. Second, for the other case,
P8, P15, and P16 exhibited similar sound sensing activation
time, about 40 percent. However, they showed fairly different
net increase in CPU activation time: 30, 40, and 33 percent,
respectively. This demonstrates that different phone use
behaviors would affect net power consumption of a sensing
app differently due to the sharing effect.

4 POWERFORECASTER DESIGN

4.1 Design Goals

Installation-Free. PowerForecaster relieves tiresome trials of
repeated installation caused by sensing apps’ unknown bat-
tery use. To this end, it needs to provide estimated power
consumption to users before they install and use the apps.

Accuracy. Power estimation should be accurate and
reflect what users will face when they actually use the apps.
It needs to be tailored to reflect users’ different behaviors.

Latency. Estimation should be completed in a short time
to serve requests from users on the fly.

Coverage. PowerForecaster aims at providing power esti-
mation without modifying app binaries; any requirement to
change the app would remarkably reduce its utility.

Overhead. PowerForecaster should minimize the over-
head on users’ mobile phones, especially for collecting their
sensor traces and device usage traces required for power
emulation.

Scalability. PowerForecaster should be scalable to deal
with large-scale emulation requests.

4.2 Power Emulation Approach

We propose a user behavior-aware power emulation approach.
Its key idea is to reproduce the real execution environment
of a target app and track its power use while replaying it
over pre-collected traces of sensor and device usages. It has
three advantages: (1) It accounts for major user-dependent
factors such as physical activities and phone usage, which
significantly affect the power consumption of a target app.

(2) It estimates the app’s power use without any knowledge
on its internal logic or prior power profiling. The emulator
tracks hardware use of the app by executing its executable
without analyzing its source code. (3) It considers the shared
use of hardware components with other already installed
and used mobile apps on a user’s phone by reproducing
their resource use.

There have been other approaches to estimatemobile apps’
power use. However, it is difficult to apply them to our target
environment where we need accurate power estimation for
sensing apps.Development-time estimation, directmeasurement
with a powermeter or model-based schemes [15], [16], hardly
reflects individual user behavior that considerably affects
sensing apps’ power use. Another potential approach, collabo-
rative power estimation, shares the power impact of sensing
apps obtained fromuserswho are already using the apps. The
estimated power usage from users with similar behaviors is
provided to a new user; a similar concept is proposed in [22]
for energy diagnosis. However, this requires a large user pool
to find similar users due to a lot of combinations of behavioral
factors affecting power use. We believe PowerForecaster can
complement this approach, as it works based on personal
traceswithout depending on a large number of users.

4.3 System Overview

PowerForecaster takes the executable of a target sensing app
as an input and provides a personalized estimation of the
target app’s net power increase (mW) as an output. Later,
the power numbers can be processed in various ways for
user-friendly presentation (See Section 8.3 for example).
Fig. 3 shows the architecture of PowerForecaster. It is com-
prised of two major components, a mobile-side trace collec-
tor and a cloud-side power emulator. Prior to power
estimation requests, the mobile-side collector collects user
behavior traces in advance. The traces are uploaded to and
managed in the cloud server. Upon a user request, the power
emulator estimates power impact of a target app with the
pre-collected traces.

Mobile-Side. The mobile-side component collects user
behavior traces in the background (See Section 5). The sensor
trace collector records sensor data that captures users’ physi-
cal activities. The device usage trace collector logs the usage of
hardware components by existing apps, which are poten-
tially shareable with a new sensing app. The collected traces
are uploaded to a cloud server only when the phone is on
Wi-Fi and charging not to interfere with its usual use. They
are used for various sensing apps later. The collection sched-
uler manages the schedule of the data collection for energy
efficiency (Section 6.5).

Cloud-Side. Upon a power estimation request, the user
behavior-aware power emulator runs the target app’s executable
while replaying the sensor and device usage traces to repro-
duce the execution environment (Sections 6.1 and 6.2). At the
same time, it monitors the hardware usage of the app. As a
result, the emulator obtains detailed hardware usage statis-
tics including which, when, and how long hardware compo-
nents are used. The power impact estimator computes the net
power increase due to the app based on the cumulative statis-
tics (Section 6.3). The optimization managermanages the emu-
lation schedules to achieve the optimization in terms of the
emulation delay (Section 6.4) and server resources (Section 7).

Fig. 3. PowerForecaster architecture.

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1451

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

4.4 System Scope and Limitations

Target Apps. Our target apps are sensing apps that continu-
ously run in the background, such as Google Fit [39] and
Accupedo [3]. Specifically, we focus on their autonomous
sensing services that repetitively perform sensing tasks con-
trolled by built-in sensing logic and programmatically detect-
able external events. We do not target conventional apps and
sensing apps’ UI activities, which are explicitly run and quit
by users. The rationale behind this choice is that, for conven-
tional apps, users have controllability on how long they use
the apps and thereby on the apps’ power consumption to
some extent. For sensing apps, continuous sensing tasks are a
major cause of power drain. UI activities consume relatively
less power as they are likely to run for a short time compared
to thewhole operation time of sensing apps.

Tracked Hardware Components. We currently consider hard-
ware components commonly used by sensing apps for power
estimation. They include inertial sensors, GPS, Bluetooth
and Wi-Fi scans, microphone, and CPU. (See Section 6.3
for details.) We have not yet considered other components
such as display and network as those are used less commonly
in sensing apps and hardly have an impact on the overall
power use. Section 8 shows that our prototype estimates
the power use of various sensing apps with an average error
of 6.6 percent, considering the aforementioned components.
Our system can be further extended to include additional
components by leveraging power models proposed in
[16], [17].

Selection of User Traces. Accurate power estimation in
PowerForecaster requires collecting user behavior traces that
well reflect a user’s common daily behavior. Of course, there
could be daily variations of user behaviors, but literature has
shown that user behaviors have patterns [40], [41], [42]. Our
ultimate goal is to accurately predict the future power impact
of a target app by considering routines and patterns of user
behaviors. In this work, however, we focus on developing a
power emulation system that precisely estimates net power

increase of an app given proper user behavior traces. For the
current PowerForecaster prototype, we assume that mobile-
side user trace collection is performed for a couple of days.
We leave capturing users’ behavioral patterns from a long
period of user traces as futurework.

Scalability to Heterogeneous Phones. It is well known that
building power models specific to individual phone models
is needed to accurately track apps’ power use. This raises a
scalability issue because a variety of phone models are
released in today’s markets. As the core technique of our
power emulation is based on pre-built power models, the
same issue will arise when our system is widely deployed.
Note that our current prototype incorporates power models
for Nexus S and Nexus 5.

To be optimistic, popular smartphone models take con-
siderable market share worldwide. Top-5 popular iPhone
models and top-20 Android ones take 72 percent1 and
23.3 percent2 of iPhone and Android market share, respec-
tively. We believe that power modeling for those popular
models will be feasible (even if manual measurements need
to be involved). This possibly makes wide deployment of
PowerForecaster feasible in practice, dealing with heteroge-
neous phones. We can consider other approaches for less
commonmodels. For instance, most hardware chipset manu-
facturers provide power profiles of different hardware states,
and those profiles can be utilized for our system. In case such
information is not available or the power consumption is not
stable across the same phone models [15], [18], we can lever-
age prior works to automatically self-construct powermodels
of unknown phones [18], [19]; these works achieve an accu-
racy of 90-95 percent. Once power models are available, they
can be easily incorporated into our system as we modularize
it in away to include newpowermodels.

5 USER BEHAVIOR DATA COLLECTION

Below we detail the user behavior data collected by the trace
collector.

Sensor Trace. The sensor trace collector collects three types
of information concerning the sensor data that could be rele-
vant to users’ physical behaviors. First, it records time-
stamped sensor data samples from frequently used target
sensors. Second, it records Android system events related to
the sensors, e.g., gps_event_started, to ensure correct replays
of sensing apps with internal triggers from such events.
Last, it hooks and logs the system calls and callbacks to/
from the Android framework/kernel, in order to reproduce
power states in sensor devices as if they were from users’
real situations. For example, the time to activate GPS largely
depends on whether a user is outdoors or not. Table 1
shows sensor data, events, and system calls that we collect.

Device Usage Trace. For accurate power emulation, it is
essential to consider shared use of resources [5], [37]. Emu-
lating every app concurrently running with a target sensing
app would accurately trace the shared use of various
hardware components. However, it will seriously burden
the cloud-side emulators. Foreground apps add another

TABLE 1
Sensor Data, System Calls, and Events

Sensor
Type

Sensor
Data

Related Sys-
tem Call

Related System Event

GPS longitude,
latitude,
altitude,
speed,
bearing

gps_start(),
gps_stop(), ...

GPS_EVENT_STARTED,
GPS_EVENT_STOPPED

Bluetooth name,
address,
bond state,
type,
UUIDs,
RSSI

startDiscov-
eryNative(),
stopDisco-
veryNative(),
...

ACTION_FOUND,
ACTION_DISCOVERY
_STARTED/_FINISHED

Wi-Fi BSSID,
SSID,
capabilities,
frequency,
level

scan(),
wifi_ctrl_recv()

SCAN_RESULTS
_AVAILABLE_ACTION

Other sen-
sors (Ac-
cel, Gyro,
...)

values enableSen-
sor(), disable
Sensor()

1. https://www.statista.com/statistics/606147/iphone-model-
device-market-share-worldwide/

2. https://www.appbrain.com/stats/top-android-phones

1452 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

https://www.statista.com/statistics/606147/iphone-model-device-market-share-worldwide/
https://www.statista.com/statistics/606147/iphone-model-device-market-share-worldwide/
https://www.appbrain.com/stats/top-android-phones

challenge of logging and replaying interactive user inputs.
For light-weight yet accurate estimation of sharing effects, we
record only the device usages of existing apps, so that the shared
use of hardware among concurrent apps is efficiently
accountedwithout directly executing the apps.

To this end, the device usage trace collector records the
apps’ requests to various hardware components, e.g., wake-
locks for CPU, with timestamps. The emulator replays those
requests while emulating the sensing app to identify the
hardware components being shared by the target sensing
app and other apps. Android exposes a narrow set of APIs
for apps to request access to hardware components. The col-
lector logs such API calls and their parameters. Table 2
shows what our prototype collects in more detail.

6 USER BEHAVIOR-AWARE POWER EMULATION

Existing mobile emulators [8], [9] are limited for the
power emulation of sensing apps. First, they are primarily
designed for the testing and debugging of functional opera-
tions of mobile apps and lack testing non-functional perfor-
mance requirements of apps such as power usage. Second,
they cannot reproduce sensing and subsequent processing
affected by users’ behavior, which is a key aspect of evaluat-
ing the power use of sensing apps.

To address the problems, we design and develop a user
behavior-aware power emulator as shown in Fig. 4. We built it
by extending the Android emulator significantly. It operates
through the following three steps.

Pre-Emulation Stage. A new power emulation request goes
to the emulator manager. It first initiates emulator instances

while obtaining sensor and device usage traces from the trace
manager along with the executable of the target app; note that
multiple instances are created to accelerate emulation (See
Section 6.4 for details). Each instance then installs the app,
receives a part of user traces, and adjusts its system clock to
synchronize the time with the traces. In this step, the emulator
manager highly optimizes resource use of the emulator by
skipping emulation of user traces with minimal impact on
the power usage of the app (See Section 7).

Power-Emulation Stage. The emulator instance executes
the target app. Upon the app’s requests on sensor data, the
sensor emulator mimics the operation of sensors based on the
pre-collected sensor traces (Section 6.1). Also, the device
usage replayer reproduces other apps’ device use based on
the device usage trace (Section 6.2) to emulate concurrent
execution of the target app with other apps. During the exe-
cution, the hardware usage monitor tracks system calls to use
hardware components, e.g., sensors and CPU, and gener-
ates hardware usage statistics.

Post-Emulation Stage. The power impact estimator computes
the net increase in power consumption by the target app
using the hardware usage statistics (Section 6.3). We adopt
a system call-based approach to estimate the power con-
sumption – i.e., using power profiles obtained by offline
profiling [17]. We support the following hardware compo-
nents used by sensing apps: CPU, GPS, accelerometer, gyro-
scope, magnetometer, microphone, and Bluetooth/Wi-Fi scans.

6.1 Sensor Emulation

The sensor emulator is unique in that it reflects user’s physical
behaviors, which significantly affect the power consumption
of sensing apps. It feeds the user’s real sensor traces to the tar-
get app at an accurate timing and rate as the app requests. It
also emulates the hardware states of the corresponding sensor
devices to accurately account for power estimation.

Prior sensor simulation tools [43], [44] do not serve our
purpose. SensorSimulator [43] provides a custom library
that relays pre-collected sensor data from a host PC to a
mobile emulator. However, it requires modification of the
app. ReRan [44] records and replays input events such as
touch events and sensor data during the execution of an
app for testing and debugging. While it does not require
any modification of the app, the app has to be executed dur-
ing sensor data collection, which cannot be used at pre-
installation time. More importantly, both of the simulators
do not emulate the power state of sensor devices.

Our sensor emulator is located between the Android
framework and the kernel, which facilitates to mimic real

TABLE 2
Representative Resource Request APIs

Resource
Type

Request APIs Parameters

CPU acquire() / release()
on WakeLock

timeout, ref. count

setRepeating() / cancel()
on AlarmManager

alarm type, trigger time,
trigger interval

GPS requestLocationUpdates() /
removeLocationUpdates()
on LocationManager

provider, minDelay,
minDistance, criteria

Bluetooth startDiscovery() /
stopDiscovery()
on BluetoothAdapter

Other sensors
(Accel,
Gyro, ...)

registerListener() /
unregisterListener()
on SensorManager

sensor type,
sampling rate

Fig. 4. Architecture of user behavior-aware power emulator.

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1453

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

sensor devices’ operation and states. It provides apps with
pre-collected sensor data and replays sensor-related system
events for app operations. Also, it tracks the changes in
expected power states based on the sensor-related system
call and callback logs to and from the kernel.

Accelerometer, Gyroscope, etc. The sensor emulator hooks
sensor activation and deactivation requests from the
Android SensorManager to the kernel. To handle an activa-
tion request, it searches for sensor data corresponding to
the request time from the collected trace and pushes them
into the sensing app. Also, the sensor emulator performs a
sampling of data in the sensor trace if necessary to meet the
rate requirement of the sensing app.

GPS. The sensor emulator hooks GPS requests from the
Android LocationManager to the kernel. Upon a request, it
searches for GPS data corresponding to the request time and
sends the data after the activation time recorded in the GPS
traces. It is important to consider the activation time in a
user’s real situation since it varies depending on the user
environment (e.g., indoors and outdoors) even with the same
request. It affects both the sensing app’s execution and the
power consumption of the GPS device. At times, there could
be no GPS data exactly matching the request time since the
GPS request interval of the app can be different from that
used for the trace collection. The sensor emulator interpolates
GPS data from two adjacent logs and uses them.

Bluetooth and Wi-Fi Scan. The sensor emulator intercepts
scan requests from the Android BluetoothAdaptor and Wifi-
Manager. Upon the request, it retrieves scan logs with a
timestamp closest to the request time from the collected
trace and forwards them to the app. To ensure the app’s
proper operation, it broadcasts relevant events, e.g.,
bluetooth-discovery-finished, scan-results-available-action, which
are recorded in the trace along with scan results.

6.2 Device Usage Replay

The device usage replayer reproduces a user’s phone use
behavior to reflect the power-sharing effect. The replayer
runs as an Android service simultaneously with the target
app. It uses the pre-collected device usage trace containing
a list of time-stamped elements, (timestamp, API function,
parameter values) as in Table 2. Based on the timestamp, the
replayer calls the API with the parameter values.

Since API calls to access hardware components often
operate as a pair, e.g., acquire()/release(), both calls should be
included in the trace for accurate power estimation. How-
ever, one of the pair could be omitted at times because of
duty-cycled data collection (Section 6.5) or the segmentation
of device usage traces for parallel execution (Section 6.4).
Before replaying the trace, the tracemanager fills in themiss-
ing calls. For example, if there is only one release() in the given
trace, it adds acquire() and sets its timestamp to the beginning
of the trace.

6.3 Estimation of Power Impact

The hardware usage monitor collects the hardware usage statis-
tics during emulation, i.e., a collection of system calls and
their timestamps. Sensor-related system calls are captured in
the sensor emulator (See Table 1). We also account for power
use of the CPU; the hardware usage monitor intercepts wake-
lock requests, acquire_wake_lock() and release_wake_lock(), from

the Android PowerManager to the kernel. Upon a request to
acquire a wakelock, it also records CPU utilization of the tar-
get sensing app from /proc/statuntil a release request.We scale
the CPU utilization to compensate for the different CPU per-
formances between the server and the smartphone as in [16].

After the emulation, the power impact estimator computes
the net power increase by the target app, netPapp based on the
hardware usage statistics.We compute netPapp as follows:

netPapp ¼ PD
with app � PD

without app;

where D is the set of hardware components that app uses
and PD

with app and PD
without app are the power consumption of

Dwith and without app, respectively.
The power consumed by the hardware components is

estimated with a system call-based power estimation [17].
We built a finite state machine (FSM)-based power model
for each component based on associated system calls. Then,
we constructed an FSM for the entire device considering the
sharing effect of system calls. The FSM-based power model
facilitates to consider tail power state of hardware compo-
nents and the sharing effect across system calls [17]. To
make the power model, we profile the power states of the
components for each system call using a power meter.
PD
with app is computed based on the FSM models and hard-

ware usage statistics made during the emulation. PD
without app

is done similarly based on the hardware usage statistics
after replaying the device usage trace only.

6.4 Acceleration of Emulation

A key challenge of emulation-based power estimation is
long execution time. Unlike typical apps, sensing apps oper-
ate closely tied to real-time clocks. They are governed by
sampling rates, sensing intervals, and time window for data
processing. Na€ıve emulation would take the same duration
of sensor traces to replay. Powerful hardware may not nec-
essarily reduce the emulation time for our workloads, e.g.,
reading accelerometer at 100 Hz for 5 sec.

To address the challenge, we leverage unique character-
istics of continuous sensing apps and develop three acceler-
ation mechanisms: parallel execution, idle time skipping, and
progressive estimation. Continuous sensing apps operate by
repeating cycles. While the operations could be stateful
within a cycle, they might be stateless in between. This
implies the potential to parallelize the emulation process.
Also, sensing apps wake up the device as little as possible
to save energy; active periods are much shorter than idle
periods. Accupedo wakes up every 10 sec to detect the users
movement with 20-ms accelerometer data and sleeps again
if no movement. We can safely skip such long idle time to
accelerate the emulation. More details on the acceleration
techniques can be found in [5].

6.5 Energy-Efficient Trace Collection

The trace collector collects sensor and device usage traces for
future power estimation requests. A challenge is to collect
the sensor traces, desirably at high sampling rates, at a low
power cost. We applied a widely used duty-cycling tech-
nique to reduce the power cost of the trace collector. The
question is how far we can increase the cycle with a minimal
decrease in accuracy. Fig. 5 shows the estimation errors with

1454 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

respect to those without duty cycling and respective power
overheads for various duty-cycles. We used two 18-hour-
long traces of MyPath obtained from the real deployment
experiments in Section 8.3 and set the active data collection
duration to 2 min for a period; during the active collection,
the sensor data is recorded based on the configuration of a
full sensor set (Table 5). Based on the results, we use a 24-min
duty-cycle period, i.e., the ratio of 1/12, where the power
cost starts to saturate and the error is still below 10 percent
even with the deviation. Such duty cycling is possible since
user’s mobility, location and encounter tend to have tempo-
ral locality [40], [41], [42].

7 SERVER-SIDE RESOURCE USE OPTIMIZATION

Server-side cost for handling a power forecasting request
from a single user would not be significant. Our analysis
shows that completing a request for a given user and a sens-
ing app takes about 30 sec on average with a total of 45 emu-
lator instances running parallel on two physical servers
when the acceleration techniques are applied [5].

However, if we consider the potential scale for worldwide
deployment, the amount of required server resourcewould be
tremendous. Based on the number of app downloads from the
Play Store in 2015, we estimate that the worldwide workload
requires 7,800 physical servers under the assumption that
users would compare three similar apps before installing one,
i.e., a total of four power forecasting requests per installation
[5]. We believe much more servers will be needed to provide
PowerForecaster as a commercial service.Mobile appmarkets
are still growing (the number of Android app downloads
increased from 50 billion in 2015 to 90 billion in 20163) and
diverse sensing apps keep proliferating including healthmon-
itoring, personal assistant and so on. Also, it is preferred to
provide the information about more number of similar apps
at once for better user experience. Considering these premises,
an efficientway to process large-scale requests is essential.

7.1 Basic Idea

The basic idea for saving server-side cost is to reduce the num-
ber of data segments that we need for power emulation,
which is directlymapped to the number of required emulator
instances. As discussed, PowerForecaster divides a trace into
multiple segments and parallelizes their power emulation for
responsive services. The possibility of the reduction is based

on our observation that the segments from the same user
behavior exhibit quite similar power consumption. It is rea-
sonable considering that mobile sensing apps take user
behavior as an input of the internal logic, e.g., movement
monitoring for a pedometer, and the power consumption is
mainly determined by how the logic of the app works. If we
know which segments would yield similar power consump-
tion before performing the power emulation process, we can
skip those segments in emulation, thereby reducing the
server-side resource use significantly.

Fig. 6 shows the estimated net increase of power consump-
tion for 30 two-minute segments labelled by corresponding
user behaviors. This example shows the case of Scenario-3
running an Accupedo app (in Section 8). As shown in the
figure, the segments associated with the same behaviors of a
user show similar net power increase. This supports the intui-
tion that the number of emulator instances can be reduced
without compromising the accuracy, as long as only a part of
segments relevant to distinct user behaviors is emulated. We
expect that the effect of the reduction will be non-trivial with
the traces collected in real-life situations. While people do
many different activities every day, their behaviors tend to
remain the same for a certain duration, e.g., taking a lecture
for an hour, roaming around in a shoppingmall, having lunch
in a cafeteria, etc.

A key question is how to group segments associated with
the same user behaviors given the user behavior traces. If
we know the contexts affecting the power consumption of
an app and the sensing pipeline used in the app, grouping
segments without the app execution might be possible by
analyzing sensor data and the pipeline. In our environment,
however, we use app binaries as system inputs, and thus
their internal logic is not known. Besides, such an analysis
would not be straightforward.

7.2 Similar Segment Skipping

It is challenging to figure out related segments in terms of
their power consumption without the actual execution of a
target app and avoid unnecessary emulation. First, the power
impact of the segments is different depending on the app
logic. For example, some changes in acceleration values (or
theirmagnitude) can result in a significant difference of power
cost for an app that triggers GPS by user’s movement. On the
contrary, the same changemay hardly increase the power use
if the app continuously activates accelerometer, but has no
subsequent processing. Second, the device usage trace should

Fig. 5. Effect of duty-cycling; bars represent standard deviation.

Fig. 6. Net power increase depending on the behavior of a user.

3. http://www.businessofapps.com/data/app-statistics/

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1455

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

http://www.businessofapps.com/data/app-statistics/

be considered simultaneously together with the sensor data
trace to take the power-sharing effect into account and derive
net power increase. Third, the user behavior traces including
sensor data and foreground app usage are composed of het-
erogeneous types of data. Table 3 shows an example of ele-
ment data types of the trace. For example, accelerometer data
are numerical data, i.e., a series of timestamped acceleration
values along the three axes, whereas wakelock data consists
of pairs of activation start time and end time. Also, the sam-
pling rates of the data are different from each other.

To address the problem, we develop a similar segment
skipping method. Its key idea is to build an app-specific simi-
larity function using pre-stored user behavior traces when a
new app is registered to the system (Section 7.2.1). Then,
upon a power forecasting request, the method clusters seg-
ments based on the similarity defined by the function, per-
forms power emulation with a subset of segments for each
cluster, and estimates the net power increase from the emu-
lation results (Section 7.2.2).

7.2.1 Building Power Similarity Function

Prior to Request

We develop a novel similarity function that takes the power
consumption of segments into consideration. This implies
that higher similarity scores are given to segments which
yield more similar power consumption. When a similarity
function for a specific app is once made, it can be generally
used for all users’ requests.

To deal with heterogeneous types of data in user behav-
ior traces, we use a different similarity measure for each
type of data, combine them into one measure, and perform
clustering with the combined measure. This is a common
approach for clustering heterogeneous data sets [45]. More
specifically, we define the similarity of an app between Segi
and Segj as follows:

SimðSegi; SegjÞ ¼
XN

k¼1

CkSimkðSegi:Tk; Segj:TkÞ þ CNþ1;

where Simk is the similarity for data type Tk, Segi.Tk is the
type Tk data of segment i, Ck is the coefficient for type Tk,
and CNþ1 is a constant. Below we present how to compute
the coefficients Ck and a constant CNþ1 as well as the simi-
larity for each data type, Simk.

Calculating Coefficient and Constant Values. It is important to
carefully determine coefficient values based on the power
impact of each data type on the given app. A simple way is
to compute the overall similarity value by the sumormultipli-
cation of the similarity values per data type regardless of their

power impact. From our observation, however, there are some
cases that the power consumption is different even though the
overall similarity of two different segments is high. This is
mainly because the different types of data affect the power
consumption of a sensing app differently. For example, con-
sider a case of an app using accelerometer and GPS. Given
two data segments, the power consumptionmay largely differ
from each other if the similarity of GPS usage is low even
though the similarity of accelerometer data is very high.

To reflect the power impact of each type of data, we define
the above-mentioned similarity function, SimðSegi; SegjÞ,
based on the similarity between the power values of two seg-

ments, i.e., 1� jPi�Pjj
maxðPi;PjÞ, where Pi is the power consumption

of Segi. This shows that the similarity will be close to 1 if two
segments yield similar power consumption and 0 otherwise.
Then, we apply a regression approach to determine the coeffi-
cient values.

The operation for deriving the coefficient values is as fol-
lows. First, we segment given user behavior traces. In our
implementation, we used one 18 hours-long trace, i.e., 540
two-minute segments, for the input of the regression; the
system can use more traces for better accuracy. Second, we
estimate the power consumption of those segments using
the power emulator. Third, we enumerate all possible pairs
of the segments, i.e., 540C2 and calculate the power similarity
values of those pairs, SimðSegi; SegjÞ. Fourth, we compute
the similarity values, Simk of each type of data for all pairs
of segments. Last, we calculate the coefficient and constant
values by applying the linear regression.

Similarity for Each Data Type (Simk). For the time-series
sensor data such as accelerometer and gyroscope, we use
multi-dimensional cosine similarity. For the activation data
like Wakeock and GPS activation, we first convert it to an
activation list and then apply a cosine similarity function.
The activation list is a list of bins; each bin represents a time
range with the same duration and contains the activation
ratio within a time range of the bin. In our current imple-
mentation, we set the bin size to one second. For example, if
the WakeLock is activated from 0.7 to 2.5 sec, the activation
list will be [0.3, 1, 0.5].

7.2.2 Efficient Power Estimation Upon a Request

Segment Clustering. Upon a user’s request, PowerForecaster
divides his/her own behavior trace into two-minute seg-
ments and performs clustering of the segments. For the clus-
tering algorithm, we use hierarchical clustering because
there is no apriori information about the number of clusters
required. We define the distance of two segments as the
reciprocal of their similarity, i.e., 1

SimðSegi;SegjÞ.

Overall Power Impact Estimation. After clustering, we ran-
domly choose a single segment per cluster and perform the
power emulation only for the selected segments. The overall
power impact of a trace is estimated by the sum of the esti-
mated power cost of the selected segments weighted by the
number of segments in their cluster.

8 EVALUATION

We implemented the PowerForecaster prototype, which
consists of two main components. For the mobile side

TABLE 3
Example of Element Data Type

Data Category Data Type Value Format

Sensor data
Accelerometer A time series of (x, y, z)
GPS activation A list of (start time, end time)
Bluetooth scan A list of (timestamp, found

device ids)

Device usage

Wakelock status A list of (acquire time,
release time)

GPS activation A list of (start time, end time)

1456 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

component, we developed the sensor trace collector as an
Android service. We also modified the Android system to
track device usage and existing apps’ hardware usage. For
the server side, we built the power emulator based on the
Android emulator. We also implemented the user trace
manager and power impact estimator in Java.

Overview. We conduct extensive experiments with the
PowerForecaster prototype in the following aspects. First, we
evaluate the accuracy of the net power estimation of Power-
Forecaster with Monsoon power monitor in diverse user sce-
narios (Section 8.2). Second, we investigate the system
overhead of PowerForecaster on the mobile and cloud side
(Section 8.2.3). Third, we perform the real deployment study
and observe the performance of PowerForecaster under two-
week long user behaviors (Section 8.3). Last, we study how
the similar segment skipping mechanism reduces the server
cost of power emulation (Section 8.4).

8.1 Evaluation Setup

Phones and Servers. We used Nexus S (Android 4.1.2) and
Nexus 5 (Android 4.4.4) phones for our experiments; we
used Nexus S phones by default. For emulation, we used 12
desktop servers (with i7-2600k CPU and 16 GB RAM), each
of which was configured to run one or more emulator
instances in parallel. Handling a single power estimation
request costs 5-10 percent of the average CPU utilization
per each emulator instance. We discuss the server-side
resource use in more details in Section 8.4. We did not apply
optimization techniques by default.

Sensing Apps. We mainly used three sensing apps, i.e., a
commercial pedometer app, Accupedo [3], and the two
research apps we developed, MyPath and ChatMon [5]. The
hardware components that Accupedo uses are an accelerom-
eter and CPU. While diverse sensing apps have been pro-
posed in the research community, only a few types are
commercialized, e.g., pedometers. To cover more diverse
hardware usage, we selected MyPath and ChatMon. The for-
mer uses an accelerometer, GPS, and CPU and the latter uses
Bluetooth, amicrophone, andCPU.

Comparison. We used Monsoon power monitors to mea-
sure the ground truth of the net power increase (mW) of a
target sensing app. It is obtained as the difference between
power consumed when running the target app with existing
apps and when running existing apps only. For comparison,
we made three alternatives that can be potentially used to
provide the power impact of sensing apps:

Global-single measures the power consumption using a
power monitor while running the target app only under a
specific user behavior scenario, and provides it as an estima-
tion result.

Global-average measures the power consumption of the
target app under multiple user behavior scenarios. It takes
an average value to provide a representative estimation.
Note that this does not consider the shared power use with
other apps.

Global-single-shared measures the power consumption
while running simultaneously the target app and apps used
in a specific user behavior scenario. Under this scenario, it
provides an estimation taking into consideration the shared
power use with other apps. Note that this baseline is equiv-
alent to the ground truth of the chosen scenario.

User Behavior Scenario. We performed scenario-based
experiments to evaluate power estimation accuracy. We
crafted multiple one-hour scenarios with four parameters:
mobility, encounter, indoor/outdoor status, and phone
usage. We determined the parameter values and their com-
binations based on real user data described in Section 3.
Table 4 summarizes the five scenarios used for the experi-
ments. Fig. 7 describes Scenario 4 with detailed sequences of
user activities and phone usages. Other ones are made
similarly.

Measurement and Trace Collection Setup. To make com-
parison fair, we should assure that the same user behaviors
are applied while evaluating all the alternative techniques
including the ground truth. We devise a setup to easily con-
duct experiments over a set of alternatives. Fig. 8 shows the
setup with four phones (Phone A, B, C, and D) and three
power monitors. We used Phone A and B for ground truth
measurements; Phone A and B measures power consump-
tion while running a target sensing app with existing apps
and while running existing apps only, respectively. We
calculated the ground truth by subtracting the power con-
sumption of Phone A from that of B. For the estimation by

TABLE 4
Summary for Five User Behavior Scenarios

ID User Activity Moving Indoor Encounter App
usage

1 Graduate
(M, 30 s)

Shopping
alone

50 min 60 min 0 min 5 min

2 Undergraduate
(M, 20 s)

Moving
and class

10 min 45 min 15 min 20 min

3 Office worker
(F, 30 s)

Moving
and lunch

20 min 40 min 60 min 15 min

4 Office worker
(M, 20 s)

Going out 30 min 30 min 40 min 30 min

5 Homemaker
(F, 50 s)

Going out 30 min 30 min 40 min 1 min

Fig. 7. User behavior scenario 4.

Fig. 8. Experimental setup.

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1457

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

PowerForecaster, we configured Phone C to run existing apps
and to collect sensor and device usage traces. Phone D meas-
ures power while running the target app only. Global-single
(ScenarioID) andGlobal-single-shared(ScenarioID) use the power
measured for a specific scenario while Global-average uses
the average power measured across the five scenarios. For
measurement, an experimenter drove the cart with the phones
and powermonitors following each scenario.We used a script
to run the same apps (a web browser, a video player, an email
client, and amap) at the same timings.

8.2 Performance Analysis of Power Emulation

8.2.1 Accuracy of Net Power Estimation

We measure the power estimation of PowerForecaster for
three sensing apps in five scenarios. The experimental results
show that net power increases by sensing apps are accurately
estimated. Fig. 9 depicts that the average error rate is
6.6 percent. More specifically, the average error for Accu-
pedo, MyPath, and ChatMon is 5.3, 6.8, and 7.7 percent,
respectively. This indicates that PowerForecaster captures
the power use of the target sensing apps accurately for
various scenarios. Interestingly, the net power increase is dif-
ferent across the scenarios even for the same app because
user activities and phone usages are different. For example,
the ground truth of the net power increases by the ChatMon
app is within a range between from 29 to 227mW.

Different from PowerForecaster, the accuracy of the three
alternatives is much lower. For example, Global-average
shows the average error rate of 99 percent across all scenarios
and apps. The average error of Global-single(Scenario4) is 116
percent, i.e., misestimating the app’s power cost bymore than
double the ground truth. In the case of Global-singlewith Sce-
nario2 and Scenario3, the average error rates are reported as
59 and 128 percent, respectively. The results show that
Global-single estimates the net power increase of a target app
based on a single specific scenario only and the approach itself
is error-prone for different scenarios. Surprisingly, the error

rates of Global-single(Scenario4) are high even for the same
scenario (Scenario4), e.g., 86 percent for Accupedo. The main
reason is that Global-single does not take the effect of resource
sharing with the existing app usage into consideration.
Global-single-shared(Scenario4) takes the sharing effect into
account, but still produces the high average error rate, i.e.,
60 percent. For instance, Global-single-shared(Scenario2) and
Global-single-shared(Scenario3) reports the error rate of 45
and 83 percent, respectively. When considering the sharing
effect, the error becomes 0 percent if the same scenario is cho-
sen for the baseline and estimation, but the error is made
largely and differently depending on the behavior modeled
in other scenarios.

We further investigate the applicability of PowerForecas-
ter to two more commercial pedometer apps, NoomWalk
and Pedometer2.0, and a more device, Nexus 5. Similarly,
PowerForecaster provides an accurate net power estima-
tion. First, the estimations for NoomWalk and Pedometer2.0
with Scenario 4 are 11 and 105 mW while the ground truths
are 9 and 103 mW, respectively. Second, it achieves 6 per-
cent of average error rate using Nexus 5 with the three sens-
ing apps: Accupedo, MyPath, and ChatMon with Scenarios
4, 1, and 2, respectively.

8.2.2 Effect of Emulation Acceleration

We investigate the effect of the emulation acceleration regard-
ing the tradeoff between time and accuracy. We chose 10, 5, 2,
and 1min for the segment sizes of the parallel execution.

Parallel Execution with Idle Time Skipping. The experimental
results show that PowerForecaster still achieves a low error
rate even with the acceleration. Fig. 10 shows the results with
different segment sizes; in the figure, w/o skip and w/ skip
represent the casewhen the parallel execution is appliedwith-
out and with idle time skipping, respectively. More specifi-
cally, w/o skip andw/ skip produces the average error rate of
10.4 and 11.2 percent, respectively. The error increases slightly
compared to the case without the acceleration but is still rea-
sonable. The estimation accuracy is affected by the segment
size. For example, the error rates of Accupedo are less than 10
percent regardless of the segment size, but MyPath and Chat-
Mon show the relatively large errors with the 1-min segment.
This ismainly due to the characteristics of their sensing logic.

We further examine the elapsed time, i.e., the period to
be taken to finish the emulation. We measure the elapsed
time for three sensing apps and all five scenarios with 2-min
segments. Interestingly, the emulation is mostly completed
within 20 sec. More specifically, the emulation of 30 percent
of segments for Accuepedo is completed within 10 sec and

Fig. 9. Accuracy of net power estimation by PowerForecaster.

Fig. 10. Effect of parallel execution and idle time skipping.

1458 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

the time for 70 percent of segments of MyPath is 20 sec.
ChatMon shows a similar trend to Accupedo.

Progressive Estimation.Westudy the error of the progressive
estimation over time when 2-min segment parallel execution
is applied with idle time skipping. The error of MyPath and
Accupedo quickly goes down and stabilizes within 10 sec.
After 20 sec, the error of MyPath becomes 9 percent while the
error of Accupedo does 19 percent. The error almost saturates
in 30 sec. For ChatMon, it takes relatively longer time, 60 sec,
for the saturation, but differently depending on the scenarios.
The error of ChatMon with Scenario3 and Scenario4 is satu-
rated within 12 sec with the error of 5 percent. ChatMon’s
high average error before saturating is attributed to the high
error rate in Scenario 1. Its net power increase is very small
compared to others, 28.9 mW. Thus, even a small difference in
estimation such as 10mW, results in a large error.

8.2.3 System Overhead for Power Emulation

Mobile-Side Cost.We investigate the energy overhead and stor-
age size on themobile side.We omitted the network cost since
PowerForecaster uploads the trace onlywhile the smartphone
is connected to Wi-Fi and charged. For the measurement, we
consider two sensor sets, one with GPS, accelerometer, and
Bluetooth (a basic set), and the other with all available sensors
on the smartphone we use for experiments (a full set). Table 5
shows the cost when 1/12 duty cycle is applied, which we
obtain fromour experiment in Section 6.5; we set the sampling
rate of accelerometer, light, proximity, magnetometer to
delay_fastest, the sampling rate of gyroscope to delay_game,
and the sensing interval of GPS, BT, 3G,WiFi to 1min.We cal-
culate the decrease of the battery life under the assumption
that the battery life with the fully charged battery is 15 hours.
The battery capacity of Nexus S and Nexus 5 is 1,500 and
2,300 mAh, respectively. The results show that the overall
power costs for both sensor sets are not significant. The bat-
tery life is expected to decrease by one hour on Nexus S even
with a full sensor set. The power cost to collect the sensor data
during the collection is 390 mW, but the average power
becomes 32 mW due to duty cycling. The mobile-side cost to
collect the device usage trace is negligible. It is important to
note that the overall mobile-side cost is acceptable because, if
PowerForecaster collects the trace once, it can use the col-
lected trace for various different apps.

Server-Side Cost. The major operations and costs on the
server-side as follows. First, prior to a request, the user behav-
ior traces are stored and managed in the emulator manager.
The cost of the network and storage is not large because the
trace for a single day of a user is about 35MB at themaximum.
Second, once a request is given, PowerForecaster emulates
power behaviors with the pre-segmented traces on multiple

phone emulators in a parallel way. A single emulator instance
on our server consumes about 5 percent of CPU and 400 MB
of memory. We figure out that the cost is mostly to emulate a
virtual phone image and the additional cost to replay the trace
is marginal. Last, the power impact is estimated based on the
hardware usage statistics collected from the emulators. The
calculation takes less than one sec.

8.3 Real Deployment Experiment

Experimental Setup. 6 graduate students and 1 researcher (P1)
were recruited on campus in Nov. 2014. For a two-week
period, each participant replaced his/her primary phone with
a Nexus S phone that we provided. They installed their own
SIM cards and all the apps they use. To collect their daily sen-
sor datawithout affecting their phones’usual power consump-
tion, we provided each of themwith another Nexus S that just
keeps collecting sensor data. To ensure that both phones are
under the same user behaviors and environmental conditions,
we taped them up for each participant to carry them together.
Every day, we collected the full sensor data from 8 am until 2
am the next day. Each participant was compensated KRW
200,000 (USD 179). In the first week, we collected prior infor-
mation to estimate power impact, e.g., sensor traces, device
usage traces, hardware usage statistics, and battery levels.
Upon beginning the second week, each participant installed
one of three sensing apps, Accupedo, MyPath, or ChatMon.
Since then we measured the decrease of the battery life due to
this extra sensing app they began using. For ChatMon, two
students from the same project groupwere recruited and their
ChatMonswere configured to detect each other.

User-Friendly Power Impact Estimation. We further process
netPapp in a more user-friendly way, by converting it into
the expected decrease in the battery life (in hours) of the
user’s phone by the formula:

decreaseðappÞ ¼ battery lifewithout app � battery lifewith app

¼ capacity

Pwithout app
� capacity

ðPwithout app þ netPappÞ ;

where capacity is the phone’s full battery capacity and
Pwithout app is the average power use of the phone without
the target sensing app. netPapp is the net power increase of
the app outputted by our emulator. For user-friendly out-
put, our collector logs phones’ battery levels to estimate
battery-lifewithout app. We use a simple method to calculate
battery-lifewithout app: the reciprocal of the battery drain rate
(%/h), computed by using the consecutive samples of <
timestamp, battery level > as in [22].

Results. Table 6 shows the battery-life decrease per sens-
ing app, per participant. The decrease was 12.1 hours on
average. Even a commercial app, Accupedo reduces battery
life by 5.3-14.7 hours.

To study the estimation accuracy, we asked the partici-
pants to select two days during the first week, each with dif-
ferent IDs in Table 7. Note that it is impossible to measure
exact estimation accuracy without completing regeneration
of a day’s user behavior. Instead, we indirectly compare the
estimated battery life with average battery life during the sec-
ond week. For each selected day, Table 7 shows Power-
Forecaster’s observed battery life and estimated future life,
taking the user trace on that day into the input. It also shows

TABLE 5
Mobile-Side Cost

Data Storage
(MB)

Avg. power
(active period
power) (mW)

Expected
battery-life
decrease (h)

Nexus S Nexus 5 Nexus S Nexus 5

device usage 0.24 <1 (<1) <1 (<1) - -
sensor (basic) 11.1 23 (276) 25 (296) 0.8 0.5
sensor (full) 34.6 32 (390) 26 (315) 1.1 0.6

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1459

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

the actual second week battery life when the user used the
sensing app. PowerForecaster estimates battery-life decreases
with high accuracy even in uncontrolled real-life settings,
over 90 percent for 10 cases out of 14. Even for Accupedo, the
accuracies were over 90 percent for all six cases.

Few outlying cases exhibit relatively lower accuracy, e.g.,
for P5 with the trace 5-4. P5 mentioned he did not use the
phone as usual nor move much since it was a weekend day.
Our data indicates that P5’s battery life was about 20 hours
on average during the first week, but 33 hours in trace 5-4.
This observation advises us to separately estimate power
behaviors on weekends. We will extend PowerForecaster to
make progressive classification of user’s daily life patterns.

Nowwe examine the estimation accuracy with all the optimi-
zation techniques applied. For 1/12 duty cycling, we sampled 2-
min data out of every 24-min traces. Power emulation was per-
formed on the sampled traces with 2-min segment parallel exe-
cution and idle time skipping. Fig. 11 shows the progressive
estimation errors over time with trace 4-1 and 7-3, compared to
the baseline using the whole trace and no acceleration technique.
Even sampling only 1/12 of the trace enables PowerForecaster to
achieve quite low errors of 8.5 and 3.4 percent, respectively. This
supports our intuition that the sampled data well-represents the
rest thanks to the context continuity. The trace 4-1 exhibits
decreasing errors over time, 13 and 10 percent at 20 and 30 sec,
respectively. For trace 7-3, it converges to 3 percent after 5 sec.

8.4 Effect of Similar Segment Skipping

We further evaluate how effectively PowerForecaster reduces
the cost of power emulation with a similar segment skipping
mechanism. We measure its effectiveness regarding power
estimation accuracy and server load reduction. The power
estimation accuracy represents the accuracy of power estima-
tion with the similar segment skipping compared to the
power estimated with a full data trace as ground truth. For
the server load reduction, we use the cost reduction ratio
(CRR), which is one minus the ratio of the number of emula-
tor instances used for power estimation to the number of orig-
inally required instances. For the current implementation, the
number of instances needed to process an 18-hour-long trace
is 540 as we take a 2-minute segment size for parallel execu-
tion. For example, if our mechanism uses 135 instances only
for the power emulation, CRR is 0.75.

For the evaluation,we used the dataset collected in our real
deployment experiment; we used two user behavior traces for
each sensing app and conducted the cross-validation, i.e.,
using one trace to make a similarity function and the other to
apply the similar segment skipping method for evaluation,
and vice versa. We currently use a single 18-hour-long trace
for the similarity function, but PowerForecaster can leverage
more traces if available. It is important to note that, if the
similarity function is once made, it can be generally used for
different user requests.

For the power estimation after segment clustering, Power-
Forecaster randomly selects one segment in each cluster and
estimates the overall power impact using the power values
derived from the emulation of the selected segments. We
repeated such a clustering and estimation process for 100
times under the same trace and parameter settings, and
reported the average results.

8.4.1 Overall Performance

Fig. 12 shows the accuracy and CRR for each sensing app;
each app has two cases of cross-validation. The

TABLE 6
Summary of Real-Deployment Experiment

ID Age 2nd-week
sensing
app

1st-week
avg. battery

life (h)

2nd-week
avg. battery

line (h)

avg. battery
life decrease

(h)

P1 37
Accupedo

26.6 21.3 5.3
P2 26 49.6 34.8 14.7
P3 32 30.5 17.5 13.0

P4 32
MyPath

30.2 19.7 10.5
P5 23 19.0 15.3 3.7

P6 33
ChatMon

29.1 16.6 12.5
P7 24 39.3 14.8 24.5

TABLE 7
Estimation of Battery Life

ID TraceID Battery
life (h)

Estimated (future)
battery life (h)

2nd-week avg. battery
line (h) / stdev

P1
1-4 24.5 21.1

21.3 / 0.91-6 26.2 22.7

P2
2-5 50.0 37.0

34.8 / 2.42-7 47.5 35.7

P3
3-4 24.6 17.7

17.5 / 2.93-7 22.4 17.2

P4
4-1 33.2 24.1

19.7 / 2.74-7 24.8 20.0

P5
5-4 33.6 24.1

15.3 / 2.65-5 17.7 15.3

P6
6-1 24.5 15.2

16.6 / 1.96-5 45.6 18.1

P7
7-2 41.3 18.0

14.8 / 1.87-3 42.7 19.6

Fig. 11. End-to-end performance with P4’s 4-1 and P7’s 7-3.

Fig. 12. Performance of similar segment skipping.

1460 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

experimental results show that our similar segment skip-
ping method significantly reduces the server load, while
preserving the high accuracy of the power estimation. Com-
pared to the estimation with the full-length trace, our
method used only 40 percent of the originally required
instances on average, i.e., 60 percent of CRR, but still
achieved 96 percent of the power estimation accuracy.

The CRR varies depending on the sensing app, while the
accuracy remains mostly high. The average CRR of the Accu-
pedo is 0.81, but that of MyPath and ChatMon is 0.55 and
0.48, respectively. It is because the segments are clustered dif-
ferently depending on the hardware components that the
app uses. Even for the same sensing app, CRR is different
depending on the composition of the contexts in the user
behavior trace used for making a similarity function. For
example, the CRR of ChatMon-1 and ChatMon-2 is 0.77 and
0.19, respectively. The trace used formaking a similarity func-
tion of ChatMon-2 contained a limited set of user behaviors
and thus the generated similarity function does not well esti-
mate the distance between segments for a similar, but unseen
pattern. We again emphasize that our method guarantees the
high accuracy of the power estimation regardless of the clus-
tering performance. Also, the CRR can improve if our service
is deployed and a sufficient amount of traces is available for
making a similarity function.

8.4.2 Performance Breakdown

Effect of the Number of Segments per Cluster.We investigate the
effect of the number of segments per cluster, used for the
power emulation; we used one segment for each cluster by
default. Figs. 13a and 13b show CRR and the accuracy while
increasing the number of segments per cluster from 1 to 5,
respectively. The results show that more number of segments
does not much contribute to accuracy improvement. This
implies that our similarity function between segments well
reflects their power impact and thus the segments are well
clustered in terms of the power estimation. However, CRR
decreases considerably. For example, the CRR of Accupedo-1

decreases from 0.81 to 0.60, while the accuracy increases by
0.01, i.e., 0.97 to 0.98. Note that the CCR does not decrease lin-
early proportional to the number of segments because some
clusters have less number of segments than the specified
number. From this result, we can see that a small number of
segments to emulate is sufficient for accurate power estima-
tion, while guaranteeing high CRR.

Impact of Bin Size.We investigate the effect of the bin size on
the power estimation. The bin size is time length to be used to
generate an activation list and set to one second for the current
implementation. Based on this, we can expect that the smaller
bin size increases the number of bins for a segment and
accordingly is able to define the activation list in a more fine-
grained way. This implies that the smaller size may help
more accurate power clustering, but less contributes to the
server cost reduction. Figs. 14a and 14b show CRR and the
accuracy, respectively. The results show that there is no com-
mon trend in CRR with varying bin size. This is mainly
because the user behavior has a temporal locality and thus the
activation list wasmade similarly regardless of the bin size.

9 DISCUSSION

Daily Variation of User Behaviors. Our focus in this paper is on
providing an accurate estimate of power impact due to a tar-
get sensing app given users’ behavioral traces of a specific
day. However, one may argue that the real power impact in
the future cannot be well represented by the estimation for a
past specific day. From our study, we observe both possibili-
ties and limitations. The deployment study result discussed
in Section 8.3 shows that the estimation accuracy is reasonably
good. This implies that users are likely to have similar behav-
ioral patterns over days. At the same time, there are also cases
that show noticeable deviation from the estimate for some
users. From the results, it might be difficult to provide a single
representative estimate based on one-day-long traces in the
face of daily variations of behaviors. A potential approach to

Fig. 13. Effect of number of segments per cluster.

Fig. 14. Effect of bin size (seconds).

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1461

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

address the problem is to collect user traces for several days
(possibly periodically) and make an estimate in a more
detailed form, e.g., a reasonable range rather than a single
value. While this can increase the cost imposed on the mobile
side, it might be a useful option for users who are not both-
ered by collecting traces for a longer period of time.Moreover,
if it is possible, it may be able to detect their behavioral pat-
terns and model their behaviors as studied in [40], [41], [42].
Once such a model is derived, we can provide power impact
of sensing appsmore systematically.

Power Estimation of Advanced Techniques for Sensing Apps.
To estimate power consumption of sensing apps, we
focused on the local processing model, i.e., sensing apps
relying on their built-in logic to sample sensor values and
process the data repeatedly. However, some apps could
rely on more heterogeneous processing models, such as off-
loading to the cloud [46] or utilizing separate low-power
processors [47]. To address such apps, it is required to track
their network usage and/or take account of different power
models for network usage and low power processors. We
will extend our system to track network-relevant factors
and reproduce them in the emulator [16] as well as incorpo-
rate additional power models for low power processors.

Privacy. Given the nature of PowerForecaster analyzing
users’ sensor and device usage data on the cloud, a next ques-
tion to ask would be about privacy concerns. Ultimately, such
concerns would be about benefit-risk tradeoff, i.e., does the
system offer sufficient benefit given the risk levels [48]. Many
users already let cloud services manage their private data,
e.g., photos and emails for convenience and usability reasons.
In fundamental, however, privacy is still a very subjective
and sensitive issue [49]. To relieve the concern, a lot of
research efforts have been put, e.g., allowing users to control
the access and granularity of the data [50], securely encrypt-
ing the data [51], and leveraging the secure authentication
[52]. Our systemwill adopt such solutions.

10 CONCLUSION

We present PowerForecaster, a system that provides person-
alized power impact of mobile sensing apps prior to installa-
tion and actual use. We show that individual user behaviors
are important to understand power impact of sensing apps.
We build a user behavior-aware power emulator that accu-
rately estimates net power increase by sensing apps based on
user’s behavioral traces. Furthermore, we develop a novel
solution to saving the resource use required for emulation in
order to efficiently deal with large-scale requests for power
impact prediction. We implement and extensively evaluate
the PowerForecaster prototype in terms of estimation accu-
racy, speed, and the reduction of resource use.

ACKNOWLEDGMENTS

The authors thank Sangwon Choi, Pillsoon Park, Seungpyo
Choi, and Seungchul Lee for their valuable aid in implementa-
tion, data collection, and analysis. This work was in part sup-
ported by the National Research Foundation of Korea (NRF)
grant (No. 2017R1C1B1010619, No. 2019R1C1C1006088), Next-
Generation Information Computing Development Program
(NRF-2017M3C4A7066473) through the National Research

Foundation of Korea (NRF) funded by the Korea government
(MSIT). An earlier version of this paper was presented at
SenSys 2015 [5].

REFERENCES

[1] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” IEEE Com-
mun. Mag., vol. 48, no. 9, pp. 140–150, Sep. 2010.

[2] Y. Lee, S. Iyengar, C. Min, Y. Ju, S. Kang, T. Park, J. Lee, Y. Rhee,
and J. Song, “MobiCon: A mobile context-monitoring platform,”
Commun. ACM, vol. 55, no. 3, pp. 54–65, 2012.

[3] Accupedo. [Online]. Available: https://play.google.com/store/apps/
details?id=com.corusen.accupedo.te, Accessed on: Oct. 26, 2018.

[4] C. Min, C. Yoo, I. Hwang, S. Kang, Y. Lee, S. Lee, P. Park, C. Lee,
S. Choi, and J. Song, “Sandra helps you learn: The more you walk,
the more battery your phone drains,” in Proc. ACM Int. Joint Conf.
Pervasive Ubiquitous Comput., 2015, pp. 421–432.

[5] C. Min, Y. Lee, C. Yoo, S. Kang, S. Choi, P. Park, I. Hwang, Y. Ju,
S. Choi, and J. Song, “PowerForecaster: Predicting smartphone
power impact of continuous sensing applications at pre-installa-
tion time,” in Proc. 13th ACM Conf. Embedded Netw. Sensor Syst.,
2015, pp. 31–44.

[6] C. Min, Y. Lee, C. Yoo, S. Kang, I. Hwang, and J. Song, “Pow-
erForecaster: Predicting power impact of mobile sensing app-
lications at pre-installation time,” GetMobile: Mobile Comput.
Commun., vol. 20, pp. 30–33, 2016.

[7] C. Min, S. Lee, C. Lee, Y. Lee, S. Kang, S. Choi, W. Kim, and
J. Song, “PADA: Power-aware development assistant for mobile
sensing applications,” in Proc. ACM Int. Joint Conf. Pervasive Ubiq-
uitous Comput., 2016, pp. 946–957.

[8] Android emulator. [Online]. Available: https://developer.
android.com/studio/run/emulator, Accessed on: Oct. 26, 2018.

[9] iOS simulator. [Online]. Available: https://help.apple.com/
simulator/mac/current/#/deve44b57b2a, Accessed on: Oct. 26, 2018.

[10] Y. Lee, C. Min, C. Hwang, J. Lee, I. Hwang, Y. Ju, C. Yoo,
M. Moon, U. Lee, and J. Song, “SocioPhone: Everyday face-to-face
interaction monitoring platform using multi-phone sensor
fusion,” in Proc. 11th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2013,
pp. 375–388.

[11] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “TRAC:
Truthful auction for location-aware collaborative sensing in mobile
crowdsourcing,” in Proc. IEEE INFOCOM, 2014, pp. 1231–1239.

[12] Y. Ju, Y. Lee, J. Yu, C. Min, I. Shin, and J. Song, “SymPhoney: A
coordinated sensing flow execution engine for concurrent mobile
sensing applications,” in Proc. 10th ACM Conf. Embedded Netw.
Sensor Syst., 2012, pp. 211–224.

[13] S. Kang, J. Lee, H. Jang, Y. Lee, S. Park, and J. Song, “A scalable
and energy-efficient context monitoring framework for mobile
personal sensor networks,” IEEE Trans. Mobile Comput., vol. 9,
no. 5, pp. 686–702, May 2010.

[14] Y. Lee, C. Min, Y. Ju, S. Kang, Y. Rhee, and J. Song, “An active
resource orchestration framework for PAN-scale, sensor-rich envi-
ronments,” IEEE Trans. Mobile Comput., vol. 13, no. 3, pp. 596–610,
Mar. 2014.

[15] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codes. Syst.
Synthesis, 2010, pp. 105–114.

[16] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” in Proc. 18th Annu. Int. Conf.
Mobile Comput. Netw., 2012, pp. 317–328.

[17] A. Pathak, Y. C.Hu, andM.Zhang, “Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with
Eprof,” inProc. 7th ACMEur. Conf. Comput. Syst., 2012, pp. 29–42.

[18] M. Dong and L. Zhong, “Self-constructive high-rate system
energy modeling for battery-powered mobile systems,” in Proc.
9th Int. Conf. Mobile Syst. Appl. Serv., 2011, pp. 335–348.

[19] F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: Fast self-constructive
power modeling of smartphones based on battery voltage dynam-
ics,” in Proc. 10th USENIX Symp. Netw. Syst. Des. Implementation,
2013, pp. 43–55.

[20] L. Guo, T. Xu, M. Xu, X. Liu, and F. X. Lin, “Power sandbox:
Power awareness redefined,” in Proc. 13th EuroSys Conf., 2018,
Art. no. 37.

1462 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

https://play.google.com/store/apps/details?id=com.corusen.accupedo.te
https://play.google.com/store/apps/details?id=com.corusen.accupedo.te
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://help.apple.com/simulator/mac/current/#/deve44b57b2a
https://help.apple.com/simulator/mac/current/#/deve44b57b2a

[21] L. Sun, H. Deng, R. K. Sheshadri, W. Zheng, and D. Koutsonikolas,
“Experimental evaluation of WiFi active power/energy consump-
tion models for smartphones,” IEEE Trans. Mobile Comput., vol. 16,
no. 1, pp. 115–129, Jan. 2017.

[22] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma,
“Carat: Collaborative energy diagnosis for mobile devices,” in
Proc. 11th ACM Conf. Embedded Netw. Sensor Syst., 2013, Art. no. 10.

[23] X.Ma, P.Huang, X. Jin, P.Wang, S. Park,D. Shen, Y.Zhou, L. K. Saul,
and G. M. Voelker, “Edoctor: Automatically diagnosing abnormal
battery drain issues on smartphones,” in Proc. USENIX Conf. Netw.
Syst. Des. Implementation, 2013, pp. 57–70.

[24] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake?: Characterizing and detecting no-sleep energy
bugs in smartphone apps,” in Proc. 10th Int. Conf. Mobile Syst.
Appl. Serv., 2012, pp. 267–280.

[25] H. Wu, S. Yang, and A. Rountev, “Static detection of energy defect
patterns in android applications,” in Proc. 25th Int. Conf. Compiler
Construction, 2016, pp. 185–195.

[26] M. Wan, Y. Jin, D. Li, J. Gui, S. Mahajan, and W. G. Halfond,
“Detecting display energy hotspots in android apps,” Softw. Test-
ing Verification Rel., vol. 27, no. 6, 2017, Art. no. e1635.

[27] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: A study of battery life,” in Proc. Int. Conf.
Pervasive Comput., 2011, pp. 19–33.

[28] A. Rahmati and L. Zhong, “Human–battery interaction on mobile
phones,” Pervasive Mobile Comput., vol. 5, no. 5, pp. 465–477, 2009.

[29] D. Ferreira, E. Ferreira, J. Goncalves, V. Kostakos, and A. K. Dey,
“Revisiting human-battery interaction with an interactive battery
interface,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Com-
put., 2013, pp. 563–572.

[30] K.Athukorala, E. Lagerspetz,M.VonK €ugelgen,A. Jylh€a,A. J. Oliner,
S. Tarkoma, andG. Jacucci, “Howcarat affects user behavior: Implica-
tions for mobile battery awareness applications,” in Proc. SIGCHI
Conf. Human Factors Comput. Syst., 2014, pp. 1029–1038.

[31] L. He, Y.-C. Tung, and K. G. Shin, “iCharge: User-interactive
charging of mobile devices,” in Proc. 15th Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2017, pp. 413–426.

[32] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for large-scale dynamic analysis of
mobile apps,” in Proc. 12th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2014, pp. 204–217.

[33] K. Lee, J. Flinn, T. J. Giuli, B. Noble, and C. Peplin, “AMC: Verify-
ing user interface properties for vehicular applications,” in Proc.
11th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2013, pp. 1–12.

[34] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan,
“Automatic and scalable fault detection for mobile applications,” in
Proc. 12th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2014, pp. 190–203.

[35] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava, “SensLoc:
Sensing everyday places and paths using less energy,” in Proc. 8th
ACM Conf. Embedded Netw. Sensor Syst., 2010, pp. 43–56.

[36] C. Luo and M. C. Chan, “SocialWeaver: Collaborative inference of
human conversation networks using smartphones,” in Proc. 11th
ACM Conf. Embedded Netw. Sensor Syst., 2013, Art. no. 20.

[37] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding,
F. Zhao, and H. Cha, “Piggyback CrowdSensing (PCS): Energy
efficient crowdsourcing of mobile sensor data by exploiting smart-
phone app opportunities,” in Proc. 11th ACM Conf. Embedded
Netw. Sensor Syst., 2013, Art. no. 7.

[38] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
GPS-based positioning for smartphones,” in Proc. 8th Int. Conf.
Mobile Syst. Appl. Serv., 2010, pp. 299–314.

[39] Google fit. [Online]. Available: https://play.google.com/store/
apps/details?id=com.google.android.apps.fitness, Accessed on:
Oct. 26, 2018.

[40] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin, “Diversity in smartphone usage,” in Proc. 8th Int.
Conf. Mobile Syst. Appl. Serv., 2010, pp. 179–194.

[41] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196,
pp. 779–782, 2008.

[42] A. G. Miklas, K. K. Gollu, K. K. Chan, S. Saroiu, K. P. Gummadi,
and E. De Lara, “Exploiting social interactions in mobile systems,”
in Proc. Int. Conf. Ubiquitous Comput., 2007, pp. 409–428.

[43] Sensor simulator. [Online]. Available: https://developer.samsung.
com/technical-doc/view.do?v=T000000132, Accessed on: Oct. 26,
2018.

[44] L. Gomez, I. Neamtiu, T. Azim, and T.Millstein, “RERAN: Timing-
and touch-sensitive record and replay for android,” in Proc. Int.
Conf. Softw. Eng., 2013, pp. 72–81.

[45] A. Abdullin and O. Nasraoui, “Clustering heterogeneous data
sets,” in Proc. 8th Latin Amer. Web Congr., 2012, pp. 1–8.

[46] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow,
“SociableSense: Exploring the trade-offs of adaptive sampling and
computation offloading for social sensing,” in Proc. 17th Annu. Int.
Conf. Mobile Comput. Netw., 2011, pp. 73–84.

[47] M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu, “Improving energy
efficiency of personal sensing applications with heterogeneous
multi-processors,” in Proc. ACM Conf. Ubiquitous Comput., 2012,
pp. 1–10.

[48] J.-S. Lee and B. Hoh, “Sell your experiences: A market mechanism
based incentive for participatory sensing,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun., 2010, pp. 60–68.

[49] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a service: Privacy-
aware data storage andprocessing in cloud computing architectures,”
in Proc. 8th IEEE Int. Conf. Depend. Autonomic Secure Comput., 2009,
pp. 711–716.

[50] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[51] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryp-
tion for fine-grained access control in cloud storage services,” in
Proc. 17th ACM Conf. Comput. Commun. Secur., 2010, pp. 735–737.

[52] H. Dinesha and V. K. Agrawal, “Multi-level authentication tech-
nique for accessing cloud services,” in Proc. Int. Conf. Comput.
Commun. Appl., 2012, pp. 1–4.

Chulhong Min received the PhD degree in com-
puter science from KAIST, in 2016, and joined
Nokia Bell Labs, in 2017. He is a research scien-
tist with Nokia Bell Labs, Cambridge, United
Kingdom. He is an associated editor of the ACM
Proceedings on Interactive, Mobile, Wearable
and Ubiquitous Technologies. His research inter-
ests include mobile systems and services,
machine learning, the Internet of Things, and
human behavior modeling.

Youngki Lee is an assistant professor of the
Computer Science and Engineering Department,
Seoul National University. His research focuses
on mobile and sensor systems to enable always
available and highly enriched awareness of
human behavior and contexts. Also, he has been
building innovative life-immersive mobile applica-
tions in various domains such as daily healthcare,
childcare, and education. He served as the pro-
gram and general chair of ACM UbiComp 2018
and as a member technical program committees
and organizing committees of various prestigious
conferences.

Chungkuk Yoo received the PhD degree from
KAIST, in 2018. He is a research staff member
with IBM. Within the broad spectrum of mobile
computing, his research interests lie in mobile
applications for in-situ social interaction in real
world. He is also interested in mobile systems for
visual sensing and recognition.

MIN ET AL.: SCALABLE POWER IMPACT PREDICTION OF MOBILE SENSING APPLICATIONS AT PRE-INSTALLATION TIME 1463

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://developer.samsung.com/technical-doc/view.do?v=T000000132
https://developer.samsung.com/technical-doc/view.do?v=T000000132

Inseok Hwang received the PhD degree in com-
puter science from KAIST, in 2013. He is a
research staffmember with IBMand an IBMmaster
inventor. His research interests lie in AI-powered
interactive systems embodied in physical and edge
space, driven by novel orchestration of embedded
AI, mobile/IoT/robotic platforms, and human-
computer interaction. He has been serving on the
program committees of various premier conferen-
ces. He is a recipient of the Best Paper Award in
ACMCSCW2014.

Younghyun Ju received the PhD degree in com-
puter science from KAIST. He is currently a
researcher with Hyundai Motor Company. His
research interests include mobile and pervasive
computing, technologies for mobility services,
and large-scale distributed systems.

Junehwa Song received the PhD degree in com-
puter science from the University of Maryland at
College Park. He is a professor with the School
of Computing, KAIST. His research interests
include mobile, IoT, and ubiquitous systems,
Internet technologies, and multimedia systems.

Seungwoo Kang received the PhD degree in
computer science from KAIST, in 2010, and
joined the Korea University of Technology and
Education (KOREATECH), in 2015. He is an
assistant professor with the School of Computer
Science and Engineering, KOREATECH. He is
an associated editor of the ACM Proceedings on
Interactive, Mobile, Wearable and Ubiquitous
Technologies. His research interests include
mobile and ubiquitous computing, the Internet of
Things, and mobile systems. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1464 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 6, JUNE 2020

Authorized licensed use limited to: Nokia. Downloaded on May 11,2020 at 09:21:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

