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An Active Resource Orchestration Framework
for PAN-Scale, Sensor-Rich Environments

Youngki Lee, Chulhong Min, Younghyun Ju, Seungwoo Kang, Yunseok Rhee, and Junehwa Song

Abstract—In this paper, we present Orchestrator, an active resource orchestration framework for a PAN-scale sensor-rich mobile
computing platform. Incorporating diverse sensing devices connected to a mobile phone, the platform will serve as a common base to
accommodate personal context-aware applications. A major challenge for the platform is to simultaneously support concurrent
applications requiring continuous and complex context processing, with highly scarce and dynamic resources. To address the
challenge, we build Orchestrator, which actively coordinates applications’ resource uses over the distributed mobile and sensor
devices. As a key approach, it adopts an active resource use orchestration, which prepares multiple alternative plans for application
requests and selectively applies them according to resource availability and demands at runtime. Through the selection, it resolves
resource contention among applications and helps them efficiently share resources. With such system-level supports, applications
become capable of providing long-running services under dynamic circumstances with scarce resources. Also, the platform can host a
number of applications stably, exploiting its full resource capacity. We build an Orchestrator prototype on off-the-shelf mobile devices
and sensor motes and show its effectiveness in terms of application supportability and resource use efficiency.

Index Terms—Context monitoring, active resource orchestration, PAN-scale sensor-rich environments

1 INTRODUCTION

A smart mobile device expands its role as a gateway for
personal pervasive services. It will form a PAN-scale
sensor rich environment with diverse wearable or space-
embedded sensors, for example, e-watch, sensing garments,
and textile electrodes in bed sheets [18], [23]. As a common
platform, a mobile device will accommodate various
personal context-aware applications, for example, dietary
monitoring, life assistant [28], and elderly support [29].
The applications monitor user contexts continuously [16],
and provide highly proactive and situational services. The
context monitoring often requires multistep complex
processing across the mobile and sensor devices (e.g., for
a “running” context, acceleration sensing on multiple body-
worn sensors, FFT-based feature extraction, and classifying
the features through a decision tree [17]).

This new environment raises an important challenge; the
platform should run a number of concurrent applications
with highly scarce and dynamic resources. Greedy resource
use by an application would significantly aggravate con-
tentions among multiple applications and deepen skewed
uses of specific devices. This can lead to substantial
reduction of overall system capacity. Specifically, we first
note that many tiny sensor devices have strictly constrained
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resources. For example, a MicaZ mote has 8 MHz CPU and
4 KB RAM; it is even incapable of running a light FFT
library, kiss_fft [25], often used to extract frequency-domain
features. More challenging, availability of sensor devices
changes dynamically due to their wearable forms and
mobility of users. For example, a user may take off a sensor-
equipped watch, or enter a sensor-embedded office. Also,
changes in applications and their requests continuously
affect resource availability of sensor devices.

It is almost impossible for individual applications to
address these challenges and ensure applications” steady
running. Without system-level supports, an application has
an extremely limited view on the resource uses of other
applications, and hardly negotiates with them for coordi-
nated resource use. Moreover, individual applications
hardly adapt to the joins and leaves of heterogeneous
sensors, and the starts and stops of other applications. For
example, consider an application monitoring a user activity
using an accelerometer. It fails to run when the very
accelerometer is unavailable, for example, occupied by
other concurrent applications or no longer reachable. Even
succeeding, the application may redundantly compute the
same tasks, wasting limited computational resources.

In this paper, we propose Orchestrator, a novel active
resource orchestration framework. Actively interplaying
multiple context-aware applications and scarce, dynamic
resources within a PAN, Orchestrator hosts concurrent
applications stably, exploiting its full resource capacity.
More specifically, it helps applications share in resources
and processing with a holistic view on the applications and
resources. Also, it resolves resource contention among
applications. Moreover, it provides continuous context
monitoring services, adapting to dynamic sensor member-
ship and their resource availability. With such system
supports, applications can provide mobile users with
seamless and long-running services by delegating complex
resource management details to the system.

Published by the IEEE CS, CASS, ComSoc, IES, & SPS
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Fig. 1. Active resource use orchestration.

1.1 Active Resource Use Orchestration Approach
To enable effective resource orchestration, we take an active
resource use orchestration approach. A key of this approach is
to decouple actual resource selection and binding from
applications’ logical resource demands. Once applications
turn in high-level context specifications to the system, the
system actively finds the best combination of resources to
process the contexts on-the-fly under the current status of
resources and applications.

This is substantially different from an existing approach,
passive resource use management, adopted in many mobile
and sensor systems [5], [6], [9]. Such systems are designed
based on application-driven decision in resource selection
and binding. Applications explicitly specify the types and
amounts of required resources, for instance, as a resource
ticket [9], [5]. A system then takes a passive action,
allocating the requested resources if available. If not,
applications themselves reduce their resource use in
different ways, for example, by trading off data fidelity or
deactivating certain functionalities, and re-request reduced
amount of resources. These approaches impose huge
burden to application developers in a sensor-rich PAN
environment; it is hardly possible to predict complex
resource dynamics and prepare alternative logics matching
to individual cases.

To address the problem, Orchestrator takes an active
orchestration approach and realizes it as follows (see
Fig. 1): First, it prepares alternative resource use plans to
monitor a high-level context. Each plan utilizes different
combination of sensor devices and their resources, provid-
ing opportunities to flexibly adjust applications’ resource
use. Second, at runtime, Orchestrator selects and executes
the best combination of plans for concurrent requests,
holistically considering diverse system inputs; 1) the
resource demands of applications, 2) resource availability
of devices, and 3) system-wide policies. The plans are
selected in a way to resolve contentions among concurrent
applications and maximize sharing to save resources.
Orchestrator flexibly changes executing plans to adapt to
dynamic system events such as sensor join/leave. Such
holistic coordination and flexible adaptation enable to

support multiple context-aware applications as long and
balanced as possible.

To generate alternative resource use plans, Orchestrator
exploits the diversity of semantic translation. A context can
be derived from different sensing modalities, feature sets,
and classification methods. For instance, a “running”
context can be monitored with diverse methods, for
example, utilizing DC and energy features from accelera-
tion data [17] or statistical features from GPS location data
(see Section 4.2 for more details). Alternative plans utilize
different combination of devices and their resources. They
provide high flexibility in resource coordination compared
to the methods that simply underutilize the designated
devices by trading off fidelity or controlling execution
period [7], [8], [15].

There have been prior systems to facilitate the resource
use adaptation, for instance, Level [7] and Eon [8] for a
sensor device and Odyssey [3], [4] for a mobile device. In
these works in common, applications register alternative
code blocks to the system. At runtime, the systems
selectively apply one of them, to best adapt application
behavior to changing resource availability. The use of
alternatives is a common approach for adaptation, but the
proposed active orchestration approach shows uniqueness
in terms of preparing and utilizing alternative plans. A key
difference is that plans in Orchestrator are mapped to
different combination of sensor devices (interdevice plans),
while the alternatives of other systems are tied to a specific
device (intradevice plans), for example, changing execution
periods or data fidelity only. Such relaxed association with
devices is especially effective in a sensor-rich PAN, where
sensors join or leave the platform dynamically and their
capacity is easily overloaded due to their resource scarcity.
Second, Orchestrator utilizes its plans to handle resource
conflicts on sensor devices among concurrent applications.
Most prior systems utilize the alternatives to quickly adapt
to changing resource situations; for example, reducing
video quality upon bandwidth reduction [3], or turning off
functionality when battery drains sooner than expected [7].

The contribution of this paper is summarized as
follows: First, it proposes a new resource coordination
system for distributed personal sensor devices in a PAN.
The system newly handles resource scarcity and dynamics
problem while monitoring multiple contexts for concurrent
applications. Second, we propose an active resource
orchestration approach; it relaxes the association between
applications and devices, and thus enables flexible co-
ordination and adaptation. Third, to realize the approach,
we provide a novel planning mechanism including the
two-phase translation, plan selection and adaptation.
Importantly, it provides the system primitives to acquire
resource demands of alternative plans and resource
availability of sensor devices. Finally, we implement an
Orchestrator prototype over off-the-shelf mobile and
sensor devices and extensively show its coordination and
adaptation capabilities.

In the remainder of this paper, we first discuss related
work in Section 2. Section 3 motivates our work. Section 4
describes the architecture and techniques of Orchestrator. In
Section 5, we present the implementation and show
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evaluation in Section 6. Finally, we conclude the paper in
Section 7.

2 RELATED WORK AND BACKGROUND

2.1 Context Monitoring Systems

As diverse context-aware applications emerge [1], [2], [24], a
common underlying platform is increasingly required to
coordinate resource use of applications. As early efforts,
Titan has been proposed to enable context recognition in
dynamic BAN environments [12], [13]. It dynamically
reconfigures sensor nodes to adapt the execution of tasks
for activity recognition. However, it considers only a single
application to run at a time, and does not address
complicated issues arising with concurrent applications.

SeeMon [16] is our early attempt to build a context
monitoring platform. Orchestrator significantly extends
SeeMon with new essential functionalities. First, Orchestra-
tor supports generic sensor devices that have multiple
sensing modules and processing capability while SeeMon
considers sensors as mere data sources. Orchestrator thus
incorporates distributed architecture to utilize such generic
capability of sensor devices. With the architecture, diverse
tasks constituting a processing pipeline can be flexibly
offloaded to sensors, for example, to reduce communication
costs. With this design, however, a new important challenge
arises; concurrent applications may easily conflict for the use
of resource-scarce sensor devices. In SeeMon, sensors only
determine whether to sense and send data. Orchestrator
resolves such conflicts through interdevice planning, which
is clearly distinguished from SeeMon that improves energy
efficiency by simply turning off sensors. Second, Orches-
trator newly deals with resource dynamics problem when
sensors join and leave. Such sensor dynamics would be
common in daily lives due to user mobility and wearable
form factors of sensors.

There have also been research efforts to improve energy
efficiency for context monitoring [31], [32], [33]. They reduce
energy consumption while maintaining a reasonable accu-
racy by changing a set of used sensors [31], data sampling
rates [45], or offloaded tasks [32]. Unlike Orchestrator, most
works focus on reducing the energy usage only for a single
context on a single device; they do not address the
complicated resource problems occurring when diverse
contexts should be monitored over multiple distributed
devices. Recently, a technique is proposed to select the best
set of sensors and their parameters considering multiple
concurrent contexts [33]. While it shares the high level idea
with Orchestrator, it focuses on problem modeling and
algorithm design whereas Orchestrator addresses system
design issues including plan generation and selection,
adaptation, and resource profiling.

2.2 Resource Management Systems

Significant research efforts have been made to effectively
manage the use of limited resources of mobile and sensor
devices [3], [4], [5], [6], [7], [8], [9]. The potential approaches
to design resource management systems can be classified
into two different ones, i.e., an application-driven and system-
driven management. While the former tries to give full control
over the resource use to the applications, the latter actively

involves in the resource use of applications and controls it
in a system level.

2.2.1 Systems with Application-Driven Approach

Several systems such as Pixie [9], ECOSystem [5], and
Chameleon [6] have taken the application-driven approach.
They expose APIs for resource allocation to applications.
Applications determine the types and amounts of resources
required to execute program codes, and explicitly request
the resources through the APIs. For example, Pixie provides
resource tickets, for example, <Energy, 700 m], 10 sec>, and
Chameleon provides systems calls such as set-speed() to
control CPU speed directly. These systems play a passive
role to bind and allocate the requested resources. In general,
the application-driven approach provides applications with
high flexibility to control their resource use while imposing
much burden to applications.

This approach, however, has limitations to be applied for
PAN-scale sensor-rich environment. The complexity in
context processing incurs high burden on programming,
compromising potential flexibility allowed to developers.
Also, considerable efforts are required to identify and
specify resource demands for intended context processing.
Moreover, it is difficult that the developers should imple-
ment different adaptation and coordination strategies
suitable to various resource situations.

2.2.2 Systems with System-Driven Approach

We consider that a system-driven approach [7], [8], [5] is
more suitable as the solution of our target environment.
This approach hides applications from the details of
complex resource management. As such, they can focus
on application-specific logics such as UL

However, many existing sensor systems with this
approach are still application-aided, for example, Eon [8§],
Levels [7]. Applications need to provide multiple code
blocks, each of which corresponds to high-level resource
states; then the systems help applications adapt its energy
use to changing battery status. Also, these systems are
limited in dealing with contention among concurrent
applications or dynamic sensor availability; they focus on
a single application under fixed sensor membership.

Orchestrator shares a high-level design with Odyssey [3]
in that both systems selectively use alternative logics for
adaptation and conflicts resolution. However, Orchestrator
has several unique features. First, it targets emerging
context-aware applications, while Odyssey targets conven-
tional applications such as a web browser and a video
player. To handle highly scarce sensor resources and
dynamics, Orchestrator creates alternatives in a way to
leverage different combinations of sensor devices. In
Odyssey, on the other hand, applications mostly control
data fidelity altering the resource use within a device.
Second, in Odyssey, alternatives are mainly used for agile
adaptation over sudden fluctuations in resource availability
such as sudden bandwidth drop. Instead, Orchestrator
applies alternatives to coordinate sensor resource use of
competing applications, in addition to the adaptation to
dynamic sensor availability. Although Odyssey considers
concurrent applications, its coordination is a lot simpler
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only considering proportional, static distribution of band-
width on a single mobile device.

In the literature of sensor network, coordinating energy
use over multiple nodes has been importantly studied.
Many works propose techniques to balance the commu-
nication loads of sensors for routing [10], [11]. This can be
considered as a system-driven approach in that sensor
systems apply alternative routing path to balance the use of
energy resources. However, it is hard to take such a
balancing approach in Orchestrator environment since
multiple competing applications utilize heterogeneous
sensor nodes with different resource use characteristics. It
is significantly different from traditional WSNs in which
homogeneous sensor nodes work for a single application.

Recently, a high-level service orchestration model [30]
has been proposed to provide a service over mobile ad-hoc
networks (MANET). It provides a model to determine
mapping between high-level services and low-level re-
sources, considering the dynamic construction of MANET.
However, it does not consider models for multiple con-
current applications and their coordination, while focusing
more on mobility awareness and adaptation to support a
single application. Also, the main focus of the work is to
build a mathematical model while ours try to build real
system design and empirical experiments.

3 MOTIVATING CASES

Souneil, a middle-aged man, wears a u-watch that
incorporates an accelerometer, a BVP, and a GSR sensor.
He uses a CalorieMonitor for his weight control every day. It
continuously recognizes user activities such as running and
walking by sensing acceleration data from the watch,
extracting frequency-domain features with FFT and classi-
fying the activities with a decision tree. When running
CalorieMonitor only, Orchestrator plans to offload the
feature extraction logic to the wrist sensor such that data
communication and battery consumption is reduced.

Scene 1: He goes to a fitness room to run on a treadmill.
As he gets easily bored with treadmill running, he prefers to
play an exer-game, SwanBoat [26]. SwanBoat leverages his
arm and hand gestures as gaming interaction, to make the
running more fun and social. For gesture recognition, the u-
watch needs to sense acceleration data at a high frequency
and send 20 packets/sec. to the mobile device for further
processing. While CalorieMonitor is in operation, SwanBoat
cannot send the additional data due to conflict in
bandwidth use. The situation is overcome with Orchestrator
at work. It identifies that the two applications can share the
raw acceleration data although, the data are processed
afterwards through different inference logics (FFT and
decision tree for CalorieMonitor, and heuristic wave form
analysis for SwanBoat). Thus, by moving the FFT proces-
sing for CalorieMonitor from the u-watch to the mobile
device, the u-watch is able to transfer just a single stream of
the raw acceleration data, throttling the bandwidth con-
sumption below the availability.

Scene 2: After running and taking a shower, he wears a
u-shirt, embedding a 3-axis accelerometer on the waist,
and goes to his office, a space where sympathetic
interactions are enabled with smart objects (See Fig. 2).
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Fig. 2. Motivating cases of Orchestrator (Scene 2).
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With SympaThings running on his mobile device, the lamp
and the picture frame adapt their color and contents to his
affective states which are recognized by processing sensing
data from GSR and BVP sensors in the u-watch.

SympaThings consumes about 126 J/hour in the u-watch
to sense the data. (The u-watch has already been
operating for CalorieMonitor, consuming battery at the rate
of 41 J/hour.) Equipped with a small coin battery, the u-
watch has remaining energy of 525 J at the moment, and can
support the two applications just for 3.1 additional hours.
Meanwhile, the calorie expenditure monitor can alterna-
tively operate using another accelerometer in the u-shirt
which has more available energy.

As shown in Fig. 2, Orchestrator identifies the new u-
shirt sensor and resolves unnecessary battery contention on
the u-watch. Identifying that the new sensor has 450 ] of
available battery, it hands over the acceleration sensing and
feature extraction tasks to the sensor. The u-watch sensor,
then, can run SympaThings tasks only. This balanced
energy use stretches the duration of SympaThings and
CalorieMonitor to 4.2 and 10 hours, respectively.

4 ARCHITECTURE DESIGN

4.1 Architecture Overview

We design the Orchestrator architecture to enable the active
orchestration approach. The architecture spans a mobile
device and multiple sensor devices (see Fig. 3).

To use the platform, mobile applications register their
requests via APIs (see Section 4.2). The application broker
manages interactions with applications, including request
registration/deregistration, delivery of processing result,
and notification of processing failure.

Given the registered requests, the processing planner
decides how to process the requests with the available
devices and resources. It plays a key role as a control
center for resource use orchestration and consists of two
major subcomponents: the plan generator and the plan
selector. The plan generator dynamically updates applicable
plans based on available sensors and their capabilities (see
Section 4.3). Among the generated plans, the plan selector
decides a set of plans to execute, which supports maximal
requests with available resources and best meets an
orchestration policy (see Section 4.4). The selection changes
adaptively, reflecting dynamic availability of devices and
their resources (Section 4.5).
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Fig. 3. Orchestrator architecture.

For effective planning, the resource monitors keep track of
the status of CPU, memory, energy, and bandwidth on
sensors and a mobile device (Section 4.6). The status is
periodically reported to the plan selector for runtime
adaptation. The monitors are designed to minimize mon-
itoring overhead while providing a reasonable accuracy.

Once plans are selected, the plan processors in the
mobile device and sensors cooperatively process the plans.
The sensor-side processor performs the early-stage tasks
of the context processing pipeline such as sensing and
feature extraction tasks. The processor in the mobile
device executes the rest, i.e., feature extraction and context
recognition tasks or the latter only, and completing the
plan execution. Note that we develop the plan processor
in the mobile device to dynamically compose and share
diverse processing modules for plan execution. In our
current implementation, the unit tasks comprising all the
usable plans are statically stored in the plan processors of
the mobile and sensor devices; at runtime, the plan
selector simply triggers the associated sensors to execute
the selected tasks. We can further extend the sensor
system to dynamically load new processing modules at
runtime by adopting over-the-air programming (OTAP).

4.2 Application Programming Interface

Orchestrator provides applications with programming
interfaces that abstract complicated low-level resources,

CMQ_ID = registerCMQ (CMQ_statement,
Context query_result _handler, query_status_handler)
Monitoring | geregisterCMQ (CMQ_ID)
APIs updateCMQ (CMQ_ID, CMQ_statement)

Cf. query_result_handler (CMQ_ID, query_result)
query_status_handler (CMQ_ID, query_status)

Fig. 4. Orchestrator APIs.

while providing rich semantics for context monitoring.
Applications do not need to specify which sensors to use,
what types of data to collect, how often to collect, which
feature extraction and classification modules to apply, and
where to execute modules. Fig. 4 shows a set of the APIs
currently supported by Orchestrator.

registerCMQ() is a key API. Using this API, applications
easily specify a context of interest as a form of query
statement, called Context Monitoring Query [16]. We add
an “ACCURACY” condition, which specifies the minimal
accuracy requirement on the specified context value. For
example, assume that an application wants to know if a user
is running with more than 90 percent of accuracy. Then, the
developer specifies the query as follows:

registerCMQ(“CONTEXT Activity == running,
ACCURACY 90%, DURATION 7 days”,
callback_for_result, callback_for_status).

Once the query is registered, Orchestrator notifies the
application of query results whenever the condition starts or
ends to be satisfied by calling the callback_for_result function.
Via the callback_for_status function, Orchestrator notifies
query status, for example, the query becomes no longer
activated or the currently achievable accuracy is 92 percent.
updateCMQ() allows applications to change a registered
query if necessary upon the update of query status.

4.3 Plan Generation

As a first step to resource orchestration, the plan generator
prepares alternative plans for resource uses. A plan is the
basic abstraction that represents the resource use to handle
a request over distributed devices. It is also associated with
the expected accuracy of context recognition. A key idea to
obtain alternative plans is to exploit the diversity of context
recognition methods. First, a context can be recognized by a
variety of processing methods. For example, a “running”
activity can be inferred with frequency-domain features of
acceleration data and a decision tree [17], as well as with
time-domain statistical features and Naive Bayes [18].
Second, the same context can be recognized by different
sensing modalities. For instance, affective states of indivi-
duals can be recognized by biomedical sensors such as BVP,
GSR, and ECG [21]. It can be also done by using a
microphone with voice-related features such as pitch and
formant [22]. Lastly, a context can be monitored with
different combinations of sensor devices, for example,
different positions of accelerometers for activity recognition
[14], [15], [18].

We develop a two-phase translation method to prepare a set
of usable plans at runtime. The method first loads multiple
logical plans (LPlans) for each context, prepared by system
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developers in advance. An LPlan represents a set of sensing
and processing modules to derive the corresponding
context. At runtime, the logical plans for the context of
interests are translated into physical plans (PPlans); each
LPlan then associated with available physical resources.
The concept of translating context-level queries is also
proposed in SeeMon [16], but used differently. SeeMon
translates a context into a fixed plan, i.e., feature-level range
query upon that shared processing is enabled. Orchestrator,
however, translates a context into multiple alternative plans
with which Orchestrator flexibly substitutes the resource
use to monitor the context.

Fig. 5 shows three example LPlans in graph representa-
tion: two for running “context” and one for “spine posture”
context. For the “running”, L Plan; utilizes acceleration data
from a left wrist, extracts two frequency-domain features,
DC and energy, and runs a decision tree classifier. On the
other hand, LPlan, utilizes two time-domain statistical
features, RMS and MAD, and a Naive Bayes classifier. To
incorporate diverse LPlans, Orchestrator provides plan
developers with a simple description language as well as
a variety of processing modules commonly used for context
monitoring.

The plan generator translates such LPlans into PPlans by
associating available sensor devices at runtime. It max-
imizes the diversity of PPlans by using sensor mappings and
distribution mappings. The sensor mapping utilizes the
multiple sensors for an LPlan that are eligible to serve the
sensing and processing tasks in the LPlan. For this,
Orchestrator allows plan developers to specify the require-
ments on sensors, for example, sensor data type and
sampling rate, sensor position, and processing capability.
For example, in Fig. 5, the sensor of LPlan; is described as

‘ PPlan, ‘ ‘ PPlan, | ‘ PPlan, | ‘ PPlan,
Mobile-side Mobile-side ¢ i/~ Mobile-side " Mobile-side
Decision tree Decision tree Decision tree Decision tree
for running for running for running for running
activity 1 activity { activity activity
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“accelerometer, left wrist, 50 Hz”. At runtime, Orchestrator
identifies the sensors satisfying the requirements. The
distribution mapping exploits the distributions of proces-
sing modules into sensors and a mobile device. Fig. 6 shows
four example PPlans for an LPlan; when the user has two
available sensors, a watch-embedded accelerometer and a
sleeve-attached one on a left wrist.

4.4 Plan Selection

The core of the effective orchestration is to properly select
PPlans to execute. Through the plan selection, Orchestrator
supports application requests maximally even with highly
limited resources. Also, it meets a system-wide policy and
the accuracy requirements of applications.

For clear description, we define the selection problem as
follows: Given C = {¢; | ¢; is a context to monitor } and
P={pij|pi; is a jth PPlan for a context c¢;}, the plan
selector determines F,, a subset of P to execute. Among all
possible subsets, P, should support the maximal number of
queries under given resource constraints while the cost of
P., Cost(P.) is minimized. Here, the cost function, Cost(),
describes the system policy that should be satisfied to
achieve desired system operations, for example, minimizing
energy consumption or maximizing recognition accuracy.

For the selection, Orchestrator provides common system
primitives that abstract the resource demand of applications
and the real-time resource availability. First, a function,
GetRDMatriz(P;), provides the resource demand to exe-
cute a set of PPlans, P,, in the form of a matrix, ie.,
RDMatrix. Second, GetRAMatrix() returns the list of avail-
able devices and their resource status such as CPU, memory
and energy as a matrix, i.e., RAMatrix. Fig. 7 shows
examples of RDMatrix and RAMatrix.

Fig. 8 illustrates the plan selection process. It consists of
two major processing steps, i.e., 1) detection of maximal
PPlan sets and 2) selection of the minimum cost set.

Consideration of sharing Resolving contention

i Step1.Maximal PPlan set detection

Maximum supportable query calculation fora Py
E RDMatrix No. of sul 'iyéortable | ‘
P c—" Resource Resource Query L) Selectthe || , Maximal
’ ' deman_d [—*| constraint ] supportability [=f~*] maximum F=>pp| 1 Sets
' calculation check check sets H
: RAMatrix —
e

I_, Step2. Minimum cost set selection !
RAMatrix, RDMatrix ———> ———, :

1 X Cost i
Minimizing Minimizing ||| Costcalculation =~ Select |!
skewness ener for each maximal the best set [ PPlan setto
= — | PPlan set 1 execute, P,
aximizing Maxlmlzmg H !
’ App. running time ‘ accuracy ‘ ””””” T
Policy pool Imposing system policy

Fig. 8. Plan selection process.
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Step 1. Maximal PPlan set detection

Input: C={cy, ¢z, ..., €} P=AP11s s D}
Output: {P),}, a set of maximal PPlan sets

1. {P,<€a{P.}€a maxQueries=0
2. for V Ps;, where Ps; 2P // 2P is the power set of P

3. /I Calculate resource demand

4. RDMatrix = GetRDMatrix(Ps;)

5. /I Check resource constraints with RDMatrix and RAMatrix
6. if resource demand <available resources

7. add Ps; to {P,}

8. /I Check query supportability

9. nSupportable Queries = NumSupportableQueries(Ps;)
10. maxQueries = Max(maxQueries, nSupportableQueries)
11. for V Ps;, where Ps; ={P,}

12. if maxQueries = NumSupportableQueries(Ps;)

13. add Ps; into {P)}

14. return {P,}

Fig. 9. Pseudocode for the maximal PPlan set detection.

Step 1. The plan selector detects the maximal PPlan sets,
each of which supports maximum number of queries with
available sensors. Fig. 9 shows the pseudocode. To obtain
the sets, the selector first computes the number of
supportable queries for every possible PPlan set, P, € 27.
The computation involves three substeps, resource demand
calculation, resource constraint check, and query support-
ability check.

First, GetRDMatrixz(P;) calculates the resource demand
of P, by aggregating the resource demand of each PPlan
which belongs to P;. If more than two PPlans in P, execute
the same processing modules in the same device, the
resource demand for the module is taken into account only
once. Second, with the RDMatrix, resource constraints are
checked considering the resource availability exposed by
GetRAMatrix(). This filters out the PPlan sets that violate
resource constraints. The constraints are satisfied only if
every device in RDMatrix exists in RAMatrix and every
element in the RDMatrix is smaller than the corresponding
one in the RAMatrix. Since the supportability of each PPlan
is highly dependent on that of other PPlans, we check the
constraint of a PPlan set as a whole, not as an individual
PPlan. Given the plan sets that passed the previous
constraint check, the last step selects the ones that support
the maximum number of queries. Here, the accuracy
conditions for the queries are also checked.

Step 2. In the second step, the plan selector determines
the minimum cost set among candidate maximal PPlan sets.
It is likely that there often exist multiple maximal PPlan sets
since Orchestrator prepares diverse PPlans for contexts and
utilizes various combinations of them. Fig. 10 shows the
pseudocode. This step calculates the cost corresponding to
each maximal PPlan set and selects the one with the
minimum cost. The cost is calculated with the RDMatrix of
the plan set, as well as RAMatrix. Diverse cost functions can
be employed from the policy pool.

4.4.1 Resource Use Policies

Orchestrator supports diverse resource use policies, accord-
ing to the operation goals of the system. Due to energy
limitation of devices, policies are often specified with
respect to energy use on devices or running time of
applications. Orchestrator adopts several representative

Step 2. Minimum cost set selection

Input: {P,,}, a set of maximal PPlan sets
Output: P,, a set of PPlans that minimizes the cost
function

P,<o
cost & ©
for V Ps;, where Ps; € {Py}
if cost> Cost(Ps;)
cost & Cost(Ps;)
P, & Ps;
return P,

T

Fig. 10. Pseudocode for the minimum cost set selection.

cost functions for effective energy utilization, for example,
minimizing the total energy consumption, maximizing the
sum of query running time, minimizing the skewness of
remaining battery of devices. For high-quality services, it
deploys a policy to maximize context recognition accuracy.
The policies are specified in the form of cost functions.
The functions are easily specified by utilizing the system
primitives, GetRDMatrix() and GetRAMatrix(). Consider the
policy to maximize the sum of query running time as in
Fig. 11. In the function, the RDMatrix is firstly retrieved for
the given P; to figure out the energy demand. For each
PPlan, p; € P,, the expected running times of queries are
calculated with the RDMatrix and the remaining energy of
devices from the RAMatrix. The running times of p; are
determined by the device which supports p; for the least
time among all required devices to execute p;. Finally, the
function calculates the total sum of the running times.

4.5 Plan Adaptation

Continuous changes in resource availability and application
requests affect the operation of Orchestrator. For example,
an application may request new contexts, and a wearable
watch or u-shirt may join Orchestrator. Due to such
changes, the selected PPlans at a time do not guarantee
the optimal behavior at another time. To continuously
adjust to the new resource demands and availability, the
plans are adaptively reselected at runtime. Through the
plan adaptation, Orchestrator keeps supporting application
requests seamlessly, resolves newly occurring resource
contentions, and continues to best meet the system policy.
Note that the adaptation in PAN-scale sensor-rich environ-
ments is hardly addressed in previous context monitoring

Function: Cost(Ps)
Input: Ps, a candidate maximal plan set
Output: cost of Ps

1. RDMatrix & GetRDMatrix(Ps)

2. totalEvaluationTime € 0

3. for Vp;, where p; € Ps,
planEvaluationTime € o
for Vd; where d; is a device to execute p;

planEvaluationTime < Min(planEviuationTime,
(RAMatrix(d;, ENERGY) /| RDMatrix(d;, ENERGY))
totalEvaluationTime € totalEvaluationTime +
planEvalutaionTime
4. Return (1 / totalEvaluationTime)

Fig. 11. A cost function to maximize the query running time.
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TABLE 1
Adaptation Events

Event Inputs (C,e.ps Prew) for plan reselection

old Y {Cn}

Poows = Poia U APy | Pnjis a jt PPlan for c,}
Crew= Cota- car o

Prow=Poia~ {Pa; | Pajis aj* PPlan for cg}
Py = Poiq U {p;j | pijis a new j PPlan for a
context, c;, enabled by the new sensor, s}

Registration of a query Crow =
(regarding a context c,)

Deregistration of a query
(regarding a context, cy)

Join of a sensor (s,,)

Py = Poig - {pij| pyj is " PPlan for a context,

Leave of a sensor (s;) ¢;, that utilizes the leaved sensor, szt

Resource status changes,

e.g., energy drain of devices No changes in Cand P

systems [1], [16]; they mainly work under the assumption
that sensor devices are always available.

For effective adaptation, it is important to determine
when to reselect the plans. It is clear that new plans should
be applied when there are changes in the set of contexts to
monitor, C, and the set of available PPlans, P. This is
because C' and P are the major inputs of the plan selection,
and the changes in C' and P may disqualify the previously
selected PPlan set. Also, changes in resource status could
trigger the plan selection. For example, the energy drain of
devices periodically needs to trigger the adaptation since it
could change the costs of PPlan sets.

Five types of events trigger the adaptation process. When
an event occurs, the plan selection is performed with new
inputs, Cpey and P, changed by the event. P, is
obtained considering all LPlans, which enables flexible
use of LPlans during the adaptation. Table 1 summarizes
the event types and corresponding changes in the inputs.

4.5.1 Incremental Adaptation

For efficient adaptation, Orchestrator adopts an incremental
adaptation method. When there are a number of contexts to
monitor and corresponding PPlans, it might be costly to
reselect the new plan set by considering whole available
PPlans upon every event and redeploy new processing
modules. To address the issue, we develop an effective
heuristic solution. When the heuristic solution is used,
Orchestrator periodically performs global selection to avoid
errors that might be accumulated due to repeated incre-
mental selection.

The heuristics find the subset of contexts and corre-
sponding PPlans that are directly affected by the triggering
events. Then, it locally applies the selection process only for
the subset upon each event. First, upon a query registra-
tion, Orchestrator performs the selection only with the
requested context and corresponding PPlans. If the context
has been already monitored, the executed PPlan is shared.
Second, upon the query deregistration, Orchestrator simply
stops executing the corresponding PPlans; it does not
perform plan selection again. Third, upon the sensor join,
Orchestrator first generates new PPlans utilizing the sensor.
If some of queries are newly enabled by the new PPlans,
Orchestrator executes the new PPlans. Also, if the new
PPlans are more cost effective than the currently executed
PPlans, the new PPlans replace the current ones. Finally,
when a sensor leaves, some of the running PPlans may

be disabled. In this case, Orchestrator finds new PPlans for
the affected queries and replaces the disabled plans with
new ones.

4.6 Resource Monitoring and Demand Profiling

Resource availability and demand information are essential
for Orchestrator to select the best plans. To obtain up-to-
date and accurate information, Orchestrator develops
resource status monitor to obtain diverse resource status
and resource demand profiler to estimate the resource
consumption for each PPlan. Using these, Orchestrator
maintains resource information on RAMatrix and RDMa-
trix. Moreover, it adopts a sensor detection protocol to
identify up-to-date sensor availability. The detection pro-
cess is initiated by the heartbeat messages periodically
generated by sensors. The mobile device listens to the
messages and detects new and dead/out-of-scope sensors.

4.6.1 Resource Status Monitoring

We design and implement resource monitors in sensors and
mobile devices for energy, CPU, memory, and bandwidth.
For mobile devices, Orchestrator simply utilizes the
information provided by resource monitoring tools of
operating systems. For sensors, we develop our own light-
weight monitors. We describe the sensor-side resource
monitor below in detail. Currently, we target the MicaZ
motes using ZigBee protocols and Tiny OS.

Energy monitor. For energy monitoring of sensors,
Orchestrator adopts a voltage-based method [7]. This is
practical since many of widely-used sensors such as MicaZ
provide real-time voltage readings. It estimates remaining
energy from voltage readings based on prebuilt voltage-
energy translation maps. However, we find out that the
method can cause estimation errors since the voltage
reading provided by a sensor could be different from
the real voltage up to 5 percent. The 5 percent error in
voltage readings can cause 27.8 percent error in the
estimated energy since the voltage-energy conversion
function is nonlinear. We compensate the errors based on
an additional map between voltage readings and real
voltages. By applying the map, the energy monitor achieves
a high level of accuracy, i.e., the errors under 0.85 percent.

CPU monitor. In Orchestrator, the CPU cycle of a sensor
device is occupied by two major operations: 1) executing
assigned tasks and 2) handling timer interrupts for sensing,
storing, transmission (see Fig. 13). Among them, the CPU
monitor only considers the CPU cycle for task execution
since the interrupt handling cost is relatively small, i.e.,
4.5 percent in our measurements. More specifically, the
monitor measures CPU utilization as (3 ; tactive_i/ Tp), where
tactive_i 15 the execution time of a task; and T, is a period to
calculate CPU utilization; in our implementation, T}, is set
to 1 second. We measure tuivei by recording timestamps
with a system call, system.getTime32().

Memory monitor. The available memory size, M,y,
is obtained as Mpax — > ; Mused(task;), where My, is
the maximum available memory and Meq(taski) is
memory used for a task;.); Mysd(taski) is computed as
> (Mp(task;)) + Max(Mrp(task;)), where Mp(task;) and
Mr(task;) denote the size of fixed and temporary space for
a task;, respectively. Fixed space is continuously occupied



604 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

Fig. 12. Example of resource demand profiles.

by a task to store sensor readings and some internal
states until the task is deregistered. Temporary space is
allocated and used temporarily only when the task is
scheduled to run.

Bandwidth monitor. Wireless network bandwidth is a
shared resource for all sensors and a mobile device. The
available bandwidth for all devices is measured and
managed in the mobile device. An available bandwidth,
B., is measured as B — Bused, Where Bu. is the
maximum available bandwidth and B q is the bandwidth
being currently utilized. According to our experiments,
Brax is about 40 kbps for ZigBee (802.15.4).

4.6.2 Resource Demand Profiling

As described in Section 4.4, Orchestrator calculates RDMa-
trix, a matrix representation of resource demand with
respect to a set of PPlans. Calculating the RDMatrix is
twofold: 1) profiling resource demands of processing
modules used for PPlans and 2) computing the total
resource demand based on the profiles.

First, Orchestrator collects the resource demand profiles
for diverse context processing tasks in preruntime. The
offline profiling works well in our environment where the
energy consumption of sensors is stable over time, although
other methods can be also applied as discussed in [37].
Tasks for context monitoring usually perform periodic
operations such as sensing and transmitting data at the
fixed time interval. Accordingly, the energy consumption to
execute such tasks is unlikely to fluctuate over time.
PowerTutor [37] proposes online monitoring of power
consumption on smartphones; it continuously monitors
the hardware status on representative components such as
CPU and network interface and estimates the result by
aggregating the power consumption of each component.
However, it does not provide the measurement on sensor
devices, and also imposes high overheads to trace hardware
status. Fig. 12 shows a part of profiles for several tasks. For
profiling, we used a clone of MicaZ, and a SONY Ultra
Mobile PC with 1.33 GHz CPU. We scaled down the CPU
frequency to 600 MHz and the energy consumption is
profiled with a multimeter.

From the profiles, Orchestrator calculates the total
resource demand of PPlans at run time. For the purpose,
it first identifies processing modules needed to execute the
PPlans. Then, it computes the total demand of PPlans by
adding up the resource demands of all the modules to the
baseline resource demand. In our experiments, this method

Feature |Window| Feature |Device| CPU |Memory | Energy |Bandwidth Tp (Period to calculate CPU utilization, e.g. 1 second)
Type /Slide |Processing | Type (%) (bytes) | (uJ/s) | (pkts/s) ':‘ - Interrupthandling time .. T
On Sensor | Sensor | 447 576 11984 |1 s i § i i 1 3 [ (( [ 5
Frequency | 6432 Sencor | 13— 30 [ 00 . S : | —t
: onMD | Sensor [ 1L1 ) 7. 20 — — )) — e
domain MD | 2.00 184K | 158923 tactive 1 Lactive_2 tactive_7'
features On Sensor Sir/}g)r 3% l161 312( 1 ‘(‘)872%6 1.5625 (Task execution time) -
(4 features) | 128/64 Sensor | 11.13 20 | 17.019 Fig. 13. Examole of CPU utilizati
: . ig. 13. Example o utilization.
OnMD | "Mip | 194 | 242k | 126528 | 2O 9 P
oo || T | TR o | .
Statistical | 64/32 ‘ provides a reasonable accuracy; it achieves 98 percent
On MD Sensor | 11.13 20 17.019 20
;iamm T accuracy on the estimation of resource demand for the
eatures X ensor . . . . .
( ) — On Sensor | "™ | (04 207K | 16107 | 313 sensors we used. Resource demand estimation is a well-
Sensor | 11.13 20 17.019 : : : :
OnMD | PEEE| L sk | 105110 | 20 studied problem in the literature [4], [7], [6], [8]. It is beyond

the scope of this paper to fully compare to other approaches.

4.7 Limitation and Discussion

We discuss potential limitations of our planning methods.

Burden for LPlan preparation. A potential burden to realize
our planning method is to explore and implement usable
LPlans for diverse contexts. It could be costly for individual
developers to prepare such a variety of LPlans separately;
however, the cost is bearable to adopt in a common
platform like Orchestrator. Such efforts are required by
system developers only once a priori and most application
developers can simply use developed plans afterwards.
Moreover, frequently used context types are not highly
diverse and applicable inference algorithms are also limited
to a few; thus, with reasonable efforts, system developers
can identify and build multiple processing plans for
commonly interested contexts.

We currently use heuristic methods to acquire diverse
plans, and show several representative examples. In the
near future, however, we believe that a context processing
ontology can be built and diverse plans can be system-
atically managed for various context types. Such processing
ontology may be more easily built extending existing
context models [34]. Through the ontology, multiparty
developers can easily share new processing plans. Also,
necessary modules can be downloaded from clouds on
demands and loaded to the platform dynamically.

Planning optimization. Our planning method can be
further improved by adopting diverse optimization techni-
ques. A first potential optimization is to enable sharing while
processing concurrent requests. Sharing can be performed at
different levels; when multiple queries monitor the same
context, a plan is executed only once and the inferred
contexts are demultiplexed to all relevant applications.
When plans for different queries share a common operator
or a part of plans, the overlapping part can be executed once
and the intermediate results can be shared.

To enable effective sharing, we first need to organize the
context processor to flexibly share intermediate or final
results in any level. A possible way to develop such
sharable context processor is to leverage our recent work,
SymPhoney [35]; it organizes context processing pipelines
as dataflow graphs of unit operators and executes
the operators in an event-driven manner. With such
event-driven execution engine, sharing of operators or
partial subplans can be implemented easily. Another
important consideration to enable sharing is that the cost
reduction by sharing should be taken into account during
the plan selection such that sharable plans can be selected
preferably. For proper cost evaluation, we may adopt a new
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Fig. 14. Hardware setup.

technique to estimate resource demands in an operator
level; the system should be able to estimate resource
consumption of diverse combinations of operators that
can be shared among multiple queries.

Another interesting optimization technique can be
devised to support composite queries such as conjunction
or disjunction of contexts, as in SeeMon [16] or Deamon
[36]. For example, if a query asks for user activities when he
is at a company, the system does not need to monitor the
user activity when he is outside of company. Leveraging
composite query structure as in the example, Orchestrator
can deactivate monitoring of some contexts that do not
influence the result generation. A similar idea has been
proposed in SeeMon to turn off unnecessary sensors, and
we can generalize the idea for the resource use planning in
Orchestrator. It is also possible to apply other common
intradevice techniques such as duty cycling or sensor data
sampling; we could potentially adopt the technique
proposed in SymPhoney to intelligently adjust execution
periods of highly complex processing pipelines.

Quality of services. In terms of applications, the quality of
services (QoS), for example, recognition accuracy, provided
by Orchestrator might vary from time to time. We believe
that the slight QoS difference caused by different plans does
not cause severe problem for many noncritical daily
applications; current Android sensing APIs do not also
guarantee fine-granule QoS for GPS and accelerometer
sensing services. For hard QoS requirements, Orchestrator
may conservatively initiate plan adaptation or check QoS
condition further during plan selection process.

5 IMPLEMENTATION

We implemented the Orchestrator architecture as a proto-
type system. First, we implemented the architecture of a
mobile device in two platforms: 1) standard C/C++ over
Linux, 2) Open C/C++ over S60 SDK and Symbian OS. Their
total lines are about 13,000. Second, the sensor architecture
is implemented in NesC on top of TinyOS 1.1.11. The total
lines are about 2,300.

We deployed the prototype system on various types of
mobile devices and sensors. Fig. 14 shows a snapshot of
currently used hardware. First, we mainly deployed the
prototype on two mobile devices, 1) a SONY UMPC, with
Intel U1500 1.33 GHz CPU and 1 GB RAM, and 2) a
smartphone, Nokia N96 with Dual ARM9 264 MHz
processor and 128 MB RAM. Second, we incorporate various
sensors widely adopted for context-aware applications. As
presented in Fig. 15, we use eight USS-2400 sensor nodes
(MicaZ clones), i.e., four 2-axis accelerometers, two light,
and two temperature/humidity sensors. They are equipped
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S locati
Sensor ensoriocation San;;::ng Feature generation | (# of possible value
(sensorID) " rate values) examples
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accelerometer Walk, Stand

wrist(5), Waist (6) Percentile

Body(2),
Space(102)
Body(1),
Space(101)

Body(1),
Space(101)

Two light

sensors 0.78Hzx 2

lllumination | 0.78Hzx 2 Light(7) Dark, Bright

Two tseerngzrrgtu re 0.78Hzx 2 | Temperature | 0.78Hzx 2 | Temperature(8)| Cool, Hot

Two humidity

sensors 0.78Hzx 2

0.78Hzx 2

Humidity Humidity (6) Dry, Humid

Fig. 15. Sensor, feature, context profile used in the prototype.
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Fig. 16. Dynamic sensor availability.
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Fig. 17. Dynamic query workload.

with Atmega 1281 MCU, CC2420 RF transceiver supporting
ZigBee, and TinyOS. For communication between the
mobile device and sensors, we attach one base sensor node
to the mobile device. The node receives sensor data from
other sensor nodes and forwards the data to a mobile device.
Also, it transmits control messages to the sensor nodes on
behalf of the mobile device.

Currently, the plan processor in the mobile-side archi-
tecture includes eight feature extraction modules (see
Fig. 15). To generate multiple plans to monitor activity, we
combine diverse feature and sensor sets. As feature sets, we
use frequency-domain features (e.g., DC, Energy) and time-
domain statistical features (e.g.,, RMS, MAD). For sensor
sets, we use all combinations of sensors on the left/right
wrist, right thigh, and waist. We trained the activity contexts
via annotation-based learning [17]. The learning was done
with C4.5 decision tree by Weka, a Java-based open source
machine learning tool [19]. We implemented feature
extractors on sensor nodes to offload feature extraction
tasks. We used a highly optimized avr-fft library written in
an assembly language for FFT computation on sensors.

6 EVALUATION

6.1 Experimental Setup
We demonstrate the effectiveness of Orchestrator under
dynamic changes in sensor devices and requests. For the
experiments, we used the devices described in Section 5.

Sensor availability: For experiments, we first vary the
number of available sensors as shown in Fig. 16. For the
total 80 minute period, we randomly add or remove a
sensor every 2.5 minute among eight sensors. To examine
the effect of number of available sensors, we divide the total
time into four 20 minute phases such that each phase
predefines different MIN/MAX sensor numbers. Note that
sensor composition is diverse even with the same number
of sensors.

Query workloads. We also generate a dynamic query
workload as shown in Fig. 17. We add or delete a query
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TABLE 2
Query Model
Parameter Defaultvalue
#of queries 20
# of contexttypes perquery 1

Distribution of contexttype Activity (50%), Other contexts (50%)

Uniform distribution

Distribution of contextvalue

Uniform distribution
(min and max from training data)

Distribution of accuracy
requirement (only foractivity)

every 1.5 minute. Also, we set the MIN/MAX numbers of
queries for each phase. Table 2 summarizes the parameters
and default values used for the query generation.

Baseline. As a baseline to evaluate Orchestrator, we
develop the system lacking of resource coordination
capability. The system supports a query with a single
fixed plan that provides the best recognition accuracy. We
denote it as conventional context recognizer (CCR), since
conventional context-aware systems mostly adopt a single
recognition method to handle a context [20]. In CCR, all
employed sensors are always on and send raw data. A
mobile device extracts features from the sensor data and
runs recognition modules. Note that CCR does not utilize
newly joined sensors and nor deals with sensor leaves. For
Orchestrator, we use the policy that minimizes the total
energy consumption of available sensors by default.

Metrics: We measure the effectiveness of Orchestrator in
terms of application supportability and resource utilization.
First, for the application supportability, we measure query
activation and quality of context. To quantify the former, we
use the number of activated queries (NAQ) and the query
activation ratio (QAR). We regard that a query is activated
if a PPlan exists for the query and is executed with
available resources. QAR is formally defined as follows:

> Tr(a)

q; 1s an ith query in a registered query set Q
T (@) :
Tk (qi) :

To quantify the quality of context, we measure the instant
accuracy and the overall accuracy. The instant accuracy
denotes the average accuracy of activated queries at a
moment. The overall accuracy (OA) is the time-averaged
instant accuracies for the whole period of experiment:

total activation time of ¢

total registration time of q;.

~ > Acco(q;)
instant accuracy = ———
YT=TNAQ
q; s an ith query in an activated query set, Q’

Acee(q;) : currently achieved accuracy of g;

2> pigAce(piy) X Ta(pig)
04= > Tala)

accuracy of pi;j

, Dij s an jth plan of g;
ACC(pi’j) :
Ta(pij) :

As the metrics for resource utilization, we use the
number of activated sensors (NAS) and the energy
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Fig. 18. Effect of sensor availability on QAR.

consumption (EC) of sensors in Joule (J). We report the
total energy consumption measured over the 80-minute
experiment period. We regard that a sensor is activated if the
sensor executes certain tasks comprising any selected
PPlans. In CCR, all available sensors are considered to be
activated since it does not control the sensors.

6.2 Query Supportability

We first evaluate the query supportability under the
variation of sensor availability. Fig. 18 shows the average
QAR with a standard deviation range as the number of
sensors increases. For a number of sensors in the X-axis, we
measure QAR of every possible combination of sensors and
plot average QAR values. For example, a result for two
sensors is obtained by averaging QARs for all combinations
of two sensors out of eight, i.e., (s1,s2), (s1,s3),...,(s7,s8).
As shown in the figure, Orchestrator shows higher QAR
than CCR for all ranges of sensor availability. This is
because Orchestrator actively identifies executable PPlans
even within limited available sensors and selects the best set
of plans that resolves the resource conflicts among
concurrent requests. On the other hand, CCR utilizes a
fixed plan for each query such that it hardly resolves
resource conflicts or adapts to dynamic sensor availability.
In particular, the QAR gap between Orchestrator and CCR
is large when sensor availability is limited. When sensor
resources are plenty, every query can be well supported
without careful coordination. However, as sensor avail-
ability becomes limited, the advantage of resource orches-
tration gets more significant.

We also evaluate QAR variation under different dis-
tributions of context types in the query workload. We
measure the average QAR for three different distributions,
each of which has different portion of “activity” contexts,
i.e., from 30 percent to 70 percent. Note that an activity
context is more likely to be supported by diverse combina-
tions of sensors on different body positions while other
contexts such as temperature have fewer plans to exploit.
Figs. 19 and 20 show the results for Orchestrator and CCR,
respectively. As shown in Fig. 20, CCR shows a large
variation of QAR over the distributions. To recognize the
activity with the best accuracy, CCR adopts a fixed plan that
uses three accelerometers on different body positions. It
cannot support activity queries if any one out of the three
becomes unavailable. As a result, the QAR with more
activity queries considerably decreases in CCR. In contrast,
the variation of Orchestrator is much smaller than that of
CCR, as shown in Fig. 19. Orchestrator shows the high and
stable QAR regardless of the context distribution. It
prepares alternative plans for the activity context, and
substitutes them when certain sensors are not available and
corresponding plans cannot be used.
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6.3 Orchestration under Dynamic Environments
6.3.1 Dynamic Sensor Availability
In this section, we evaluate Orchestrator under dynamic
sensor availability. The number of queries is fixed at 20.

Fig. 21a shows QAR and EC per phase; more sensors are
available as the phase changes from A to D. Under phase A
and B, where available sensors are scarce, Orchestrator
activates more queries than CCR, while consuming almost
the same amount of energy. The result shows that
Orchestrator well supports multiple applications with
limited sensor availability. In contrast, under phase C and
D where available sensors are plentiful, Orchestrator
concentrates on energy optimization since the QAR of
Orchestrator is already saturated to the maximum, i.e., 1.

Fig. 21b shows EC, QAR, and OA for the total
experiment time. To sum up, Orchestrator achieves the
two times more QAR with 10.7 percent reduced energy
consumption comparing to CCR. However, CCR shows
4.6 percent increased OA than Orchestrator. Figs. 21c, 21d,
and 2le show NAQ, NAS and the instant accuracy over
time, respectively. Most important, NAQ of Orchestrator is
always higher than that of CCR, resulting in higher QAR.
This is because Orchestrator utilizes diverse PPlans such
that it flexibly supports requests with diverse combinations
of sensors. For example, a “temperature” query is activated
on Orchestrator if any of temperature sensors is available,
whereas it is so on CCR only if the designated temperature
sensor is available. Also, NAS of Orchestrator is lower than
that of CCR. Orchestrator selects PPlans that minimize the
number of activated sensors applying the energy optimiza-
tion policy. In addition, Orchestrator selects PPlans that run
feature extraction tasks in sensors rather than the ones that
send raw data from sensors. Such sensor-side feature
extraction significantly reduces the communication cost,
which in turn reduces energy consumption. Interestingly,

the accuracy of CCR is higher than that of Orchestrator. By
its default policy to minimize the total energy consumption,

ﬂM
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Fig. 20. Effect of request types (CCR).
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Fig. 21. Orchestration under dynamic sensor availability.

Orchestrator selects energy-efficient PPlans rather than
more accurate ones.

6.3.2 Dynamic Query Workload

We examine the effectiveness of Orchestrator under the
dynamic query workload. The number of sensors is fixed at
6 excluding the space-embedded ones, S101 and S102.

Fig. 22a shows EC and QAR per phase. Since the sensor
devices are abundant in all phases, the QAR of Orches-
trator reaches to the maximum while that of CCR is almost
close to the maximum as well. Meanwhile, the ECs of
Orchestrator and CCR are kept high, i.e., about 200]. We
look into EC per sensor, and discover that a sensor 4
consumes more energy than other sensors. In our experi-
mental setting, a sensor 3, 4, 5, and 6 as described in Fig. 18
are accelerometers for activity recognition. Based on the
energy minimization policy, Orchestrator uses sensor 4
rather than using all sensors together since the accuracy
requirements of most activity queries are satisfied only
with sensor 4; sensor 4 is placed on the right thigh that is
known as the most suitable position for recognizing
activities such as running, walking, and standing [17].

Fig. 22b shows EC, QAR, and OA for the total experiment
time. Orchestrator achieves better EC (15 percent reduction)
along with slightly better QAR (8.5 percent improvement)
than CCR, whereas CCR shows marginally higher OA
(1 percent increase). Also, Figs. 22c, 22d, and 22e show
NAQ, NAS, and the instant accuracy over time, respec-
tively. The NAQ of CCR is slightly lower than that of
Orchestrator in most of time. Although, the number of
sensors is sufficient to activate all registered queries, some
queries are deactivated in CCR. This is because it utilizes
only a single recognition method for “activity” queries.
Although, CCR adopts the method to provide the best
accuracy, it does not guarantee the best accuracy for every
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Fig. 22. Orchestration under dynamic query availability.

activity instances: sitting, standing, walking, and running.
Thus, it could not meet the accuracy requirements of some
queries. More important, the NAS of Orchestrator is always
lower than that of CCR. All available sensors are activated in
CCR, whereas Orchestrator selectively utilizes only some of
the sensors to reduce battery consumption. Instead, CCR
mostly shows higher accuracy than Orchestrator.

6.3.3 Effects of Resource Orchestration Policies

We further examine if Orchestrator properly applies diverse
orchestration policies. We consider two policies: 1) mini-
mizing the total energy consumption of available sensors
and 2) maximizing the average accuracy of registered
queries. For the experiments, we use the dynamic query
workload and fix the number of sensors to six. Then, we
measure the NAS and the instant accuracy over time with
the two policies. We only consider the queries containing
activity contexts for accuracy measurement.

Figs. 23a and 23b show NAS and the instant accuracy,
respectively. In Fig. 23a, the NAS of policy 1 is much lower
than that of policy 2 during the whole experiment time.
Accordingly, the energy consumption is lower with policy 1,
which shows the desired operation of Orchestrator. On the
other hand, the higher accuracy is guaranteed when policy
2 is used, i.e., 88.8 percent overall accuracy with policy 1
and 92 percent with policy 2. In conclusion, Orchestrator
well supports diverse orchestration polices that can be
easily specified using its system primitives.

6.3.4 Resource Orchestration Costs

We look into the orchestration cost in terms of 1) resource
overhead (communication, memory, and energy), and
2) reconfiguration time taken for the plan adaptation.
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TABLE 3
Energy Consumption

Task Energy consumption (mJ/s)
Idle 15.47
Resource status reading 15.68
ResourceA stgtus reading 16.42
/transmission(0.5Hz)
Heartbeat+ACK exchange(0.5Hz) 17.51
All primitive operations 18.02

Resource overheads. we first investigate the number of
messages exchanged during the total experiment time.
Fig. 24 shows the number of messages per message type. In
Orchestrator, the control and heartbeat messages are ex-
changed for coordination, incurring slight communication
overheads, for example, 1.5 kbps under the dynamic query
workloads. Orchestrator, however, significantly reduces the
number of data messages at the cost of those messages.
Compared to CCR, it decreases the number of data
messages up to 10 times by transmitting feature values
instead of raw data and also selectively utilizing sensors.

Second, we measure the memory usage at runtime. The
average memory usage in the mobile device is 57.9 KB,
which is negligible considering its memory capacity. Each
sensor consumes 276 B of memory to maintain core data
structures for task execution. It additionally consumes 4 B
to 512 B of memory depending on sensor type for data
buffering. Note that those values vary depending on
executed tasks and runtime parameters such as window
size. Considering the memory capacity of MicaZ, i.e., 4 KB,
Orchestrator can still offload multiple tasks onto sensors.

Last, we measure the energy consumption of the sensor
devices using a multimeter. Orchestrator continuously
performs following operations on a sensor device: resource
status monitoring, resource status transmission, and heart-
beat message transmission. As shown in Table 3, the
periodic execution of primitive operations is not much



LEE ET AL.: AN ACTIVE RESOURCE ORCHESTRATION FRAMEWORK FOR PAN-SCALE, SENSOR-RICH ENVIRONMENTS 609

Context monitoring

restart for Type 1 Context monitoring

:'—T!&* restart for Type 2

Type2 ¢

System Plan : . !
event i generation/ Plan execution Initial data receptioni
K )i selection message Tx. i

|
| ] I
to t t t3

Fig. 25. Reconfiguration states and types.

attributed to energy overhead (only 2.5 mJ/s increase). All
operations utilize CPU of the sensor under 1 percent.

Reconfiguration time. we measure the reconfiguration time
for the adaptation under the dynamic query workloads and
the dynamic sensor workloads, respectively. As shown in
Fig. 25, the reconfiguration time includes the times for
replanning, executing new PPlans, and receiving initial data
upon the occurrence of the system events, for example,
sensor join/leave events. A small reconfiguration time is
preferable for seamless support for applications.

Table 4 shows the results on reconfiguration time. The
average times are 258 and 2,922 milliseconds for dynamic
query workloads and sensor workloads, respectively. They
are reasonably short in that many daily applications are
not sensitive to several-seconds delays and many
personal contexts such as activities do not change quickly.
Specifically, we classified reconfigurations into two types.
The type 1 performs the plan generation and selection only,
without plan execution and initial data reception; this case
occurs when already running PPlans are reusable for a new
query or no better PPlans are identified even with a new
sensor. In type 2, all reconfiguration steps are performed;
this case occurs when a new sensor provides better PPlans
for existing queries or a new query should be processed
with a currently inactivated PPlan. Under the dynamic
query workloads, the type 1 occurs more often than the
type 2 since PPlans can be shared by many queries; thus, the
reconfiguration time is very short.

7 CONCLUSION

In this paper, we described Orchestrator, a novel resource
orchestration framework to support mobile context mon-
itoring in a PAN-scale sensor-rich mobile platform.
Orchestrator enables the platform to host multiple
applications stably, exploiting its full resource capacity
in a holistic manner. Thus, applications can provide users
with seamless, long-running high-quality service under
dynamic circumstances with limited resources. We present
the design and implementation of Orchestrator running on
off-the-shelf mobile devices and sensor motes, and also
show its effectiveness in various system environments.

ACKNOWLEDGMENTS

The authors thank Taiwoo Part and Jinwon Lee for their
great help to setup this work initially. This work was
supported by the National Research Foundation of Korea
Grant (Nos. 2012-0005733 and 2012-0006422) funded by the
Korean Government (MEST) and the SW Computing R&D
Program of KEIT (2012-10041313, UX-oriented Mobile SW
Platform) funded by the Ministry of Knowledge Economy

TABLE 4
Reconfiguration Time
Metrics| Average Type1l/ (ti-to) / (ta-ty) / (t3-t)
Setting (ms) Type2 (ms)
Dynamic
query 258 71% 1 29% 9/697 /1600

workload

Dynamic

sensor 2922 45% / 55% (1329 /1039 / 2381
availability

of Korea. This work was done when Youngki Lee was at
KAIST. An earlier version of this paper was published in
PerCom 2010 [27].

REFERENCES

[1] E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S.B. Eisenman, X. Zheng, and A.T. Campbell, “Sensing Meets
Mobile Social Networks: The Design Implementation and Evalua-
tion of the CenceMe Application,” Proc. Int'l Conf. Embedded
Networked Sensor Systems (SenSys), 2007.

[2] S.B. Eisenman, E. Miluzzo, N.D. Lane, R.A. Peterson, G.-S. Ahn,
and A.T. Campbell, “The BikeNet Mobile Sensing System for
Cyclist Experience Mapping,” Proc. ACM Conf. Networked Sensor
Systems (SenSys), 2007.

[3] B.D.Noble, M. Satyanarayanan, D. Narayanan, ].E. Tilton, ]. Flinn,
and K.R. Walker, “Agile Application-Aware Adaptation for
Mobility,” Proc. 16th ACM Symp. Operating Systems Principles
(SOSP '97), 1997.

[4] ]. Flinn and M. Satyanarayanan, “Energy-Aware Adaptation for
Mobile Applications,” Proc. 17th ACM Symp. Operating Systems
Principles (SOSP '99), 1999.

[S] H. Zeng, CS. Ellis, AR. Lebeck, and A. Vahdat, “ECOSystem:
Managing Energy as a First Class Operating System Resource,”
Proc. 10th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS '02), 2002.

[6] X.Liu, P. Shenoy, and M. Corner, “Chameleon: Application-Level
Power Management,” IEEE Trans. Mobile Computing, vol. 7, no. 8,
pp- 995-1010, Aug. 2008.

[71 A. Lachenmann, P.J. Marrén, D. Minder, and K. Rothermel,
“Meeting Lifetime Goals with Energy Levels,” Proc. Int’l Conf.
Embedded Networked Sensor Systems (SenSys '07), 2007.

[8] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M.D. Corner,
and E.D. Berger, “Eon: A Language and Runtime System for
Perpetual Systems,” Proc. Fifth Int'l Conf. Embedded Networked
Sensor Systems (SenSys '07), 2007.

[9] K. Lorincz, B. Chen, J. Waterman, G.W. Allen, and M. Welsh,
“Resource Aware Programming in the Pixie OS,” Proc. Sixth ACM
Conf. Embedded Network Sensor Systems (SenSys '07), 2007.

[10] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari, “Energy-
Efficient Forwarding Strategies for Geographic Routing in Lossy
Wireless Sensor Networks,” Proc. Second Int’l Conf. Embedded
Networked Sensor Systems (SenSys '04), 2004.

[11] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy
Efficient Communication Protocol for Wireless Microsensor Net-
works,” Proc. 33rd Hawaii Int’l Conf. System (HICSS ’00), 2000.

[12] C.Lombriser, D. Roggen, M. Stager, and G. Troster, “Titan: A Tiny
Task Network for Dynamically Reconfigurable Heterogeneous
Sensor Networks,” Proc. 15th Fachtagung Kommunikation in
Verteilten Systemen (KiV'S '07), 2007.

[13] C. Lombriser, R. Marin-Perianu, D. Roggen, P. Havinga, and G.
Troster, “Modeling Service-Oriented Context Processing in Dy-
namic Body Area Networks,” IEEE ]. Selected Areas in Comm.,
vol. 27, no. 1, pp. 49-57, Jan. 2009.

[14] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L.
Benini, and G. Troster, “Activity Recognition from On-Body
Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selec-
tion,” Proc. European Conf. Wireless Sensor Networks (EWSN '08),
2008.

[15] K. Murao, T. Terada, Y. Takegawa, and S. Nishio, “A Context-
Aware System that Changes Sensor Combinations Considering
Energy Consumption,” Proc. Int’l Conf. Pervasive Computing
(PerCom '08), 2008.



610

[16]

(171

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]
[20]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

[30]

(371

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 3, MARCH 2014

S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J.
Song, “SeeMon: Scalable and Energy-Efficient Context Monitoring
Framework for Sensor-Rich Mobile Environments,” Proc. Int’l
Conf. Mobile Systems, Applications, and Services (MobiSys '08), 2008.
L. Bao and S.S. Intille, “Activity Recognition from User-Annotated
Acceleration Data,” Proc. Int’l Conf. Pervasive Computing, 2004.

U. Maurer, A. Smailagic, D.P. Siewiorek, and M. Deisher,
“Activity Recognition and Monitoring Using Multiple Sensors
on Different Body Positions,” Proc. Int'l Workshop Wearable and
Implantable Body Sensor Networks (BSN '06), 2006.

“Weka 3: Data Mining Software in Java,” http://www.cs.
waikato.ac.nz/~ml/weka, 2013.

P. Korpipad, J. Méantyjarvi, J. Kela, H. Kerdnen, and E.-J. Malm,
“Managing Context Information in Mobile Devices,” IEEE
Pervasive Computing, vol. 2, no. 3, pp. 42-51, July 2003.

H. Andreas, S. Goronzy, P. Schaich, and J. Williams, “Emotion
Recognition Using Bio-Sensors: First Step Towards an Automatic
Systems,” Lecture Notes in Computer Science (LNCS) 3068, 2004.

V. Kostov and S. Fukuda, “Emotion in User Interface, Voice
Interaction System,” Proc. IEEE Int’l Conf. Systems, Man, and
Cybernetics, 2000.

M.T. Jones, T.L. Martin, and B. Sawyer, “An Architecture for
Electronic Textiles,” Proc. ICST Third Int’l Conf. Body Area Networks
Bodynets, 2008.

H. Lu, W. Pan, N.D. Lane, T. Choudhury, and A.T. Campbell,
“SoundSense: Scalable Sound Sensing for People-Centric Applica-
tions on Mobile Phones,” Proc. Seventh Int’l Conf. Mobile Systems,
Applications, and Services (MobiSys '09), 2009.

Kiss FFT, http:/ /kissfft.sourceforge.net, 2009.

M. Ahn, S.P. Choe, S. Kwon, B. Park, T. Park, S. Cho, J. Park, Y.
Rhee, and J. Song, “Swan Boat: Pervasive Social Game to Enhance
Treadmill Running,” Proc. 17th ACM Int’l Conf. Multimedia, 2009.
S.Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and J. Song,
“Orchestrator: An Active Resource Orchestration Framework for
Mobile Context Monitoring in Sensor-Rich Mobile Environments,”
Proc. IEEE Int’l Conf. Pervasive Computing and Comm., 2010.

T. Sohn, K.A. Li, G. Lee, I. Smith, J. Scott, and W.G. Griswold,
“Place-Its: A Study of Location-Based Reminders on Mobile
Phones,” Proc. Conf. Ubiquitous Computing (UbiComp "05), 2005.
Q. Li, J.A. Stankovic, M. Hanson, A. Barth, J. Lach, and G. Zhou,
“Accurate, Fast Fall Detection Using Gyroscopes and Acceler-
ometer-Derived Posture Information,” Proc. Sixth Int’l Workshop
Wearable and Implantable Body Sensor Networks (BSN '09), 2009.

U. Yildiz, R. Badonnel, and C. Godart, “On Service Orchestration
in Mobile Computing Environments,” Proc. IEEE Int’l Conf.
Services Computing (SCC '08), 2008.

Y. Wang, J. Lin, M. Annavaram, Q.A. Jacobson, J. Hong, B.
Krishnamachari, and N. Sadeh, “A Framework of Energy Efficient
Mobile Sensing for Automatic User State Recognition,” Proc.
Seventh Int’l Conf. Mobile Systems, Applications, and Services
(MobiSys "09), 2009.

K.K. Rachuri, C. Mascolo, M. Musolesi, and P.J. Rentfrow,
“SociableSense: Exploring the Trade-Offs of Adaptive Sampling
and Computation Offloading for Social Sensing,” Proc. ACM
MobiCom, 2011.

N. Roy, V. Rajamani, and C. Julien, “Dynamic Selection of Sensors
Based on Multiple Concurrent Demands,” Proc. Int’l Conf.
Pervasive Computing and Comm. (PerCom), 2011.

T. Gu, HK. Pung, and D.Q. Zhang, “A Service-Oriented
Middleware for Building Context-Aware Services,” |. Network
and Computer Applications, vol. 28, no. 1, pp. 1-18, Mar. 2004.

Y. Ju, Y. Lee, J. Yoo, C. Min, L. Shin, and J. Song, “SymPhoney: A
Coordinated Sensing Flow Execution Engine for Concurrent
Mobile Sensing Applications,” Proc. ACM Conf. Embedded Net-
worked Sensor Systems (SenSys), 2012.

M. Shin, P. Tsang, D. Kotz, and C. Cornelius, “DEAMON: Energy-
Efficient Sensor Monitoring,” Proc. IEEE Comm. Soc. Conf. Sensor,
Mesh and Ad Hoc Communications and Networks (SECON), 2009.
PowerTutor, http:/ /powertutor.org, 2013.

Youngki Lee received the PhD degree in
computer science from KAIST. He joined Singa-
pore Management University as an assistant
professor in March 2013. His research interests
include mobile and sensor systems, systems for
city-scale services, and large-scale distributed
systems and operating systems.

Chulhong Min is working toward the PhD
degree at KAIST. His research interests include
mobile and pervasive computing systems, ubi-
quitous services, mobile and sensor systems,
and social and culture computing.

Younghyun Ju is working toward the PhD
degree at KAIST. His research interests include
mobile and ubiquitous computing, system sup-
port for context-awareness, and large-scale
distributed systems.

Seungwoo Kang received the PhD degree in
the Department of Computer Science at KAIST.
His research interests include mobile and
ubiquitous computing, mobile sensing systems,
mobile system support to healthcare and well-
being, and urban-scale context computing.

Yunseok Rhee is a professor in the School of
Electronics and Information Engineering, Han-
kuk University of Foreign Studies, Korea. His
research interests include distributed comput-
ing and embedded systems.

Junehwa Song received the PhD degree in
computer science from the University of
Maryland at College Park. He is a professor
in the Computer Science Department at
KAIST. His research interests include mobile
and ubiquitous systems, Internet technologies,
and multimedia systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


