
Orchestrator: An Active Resource Orchestration Framework
for Mobile Context Monitoring in Sensor-rich Mobile Environments

Seungwoo Kang
'
, Youngki Lee

'
, Chulhong Min

'
, Younghyun Ju

'
,

. * . * + * Talwoo Park , Jmwon Lee , Yunseok Rhee , Junehwa Song
'
Computer Science, KAIST, Daejeon, Korea

{swkang, youngki, chulhong, yhju, twpark, jcircle, junesong}@nclab.kaist.ac.kr
+Electronics & Information Eng., Hankuk University of Foreign Studies, Yongin, Korea

rheeys@hufs.ac.kr

Abstract- In this paper, we present Orchestrator, an active

resource orchestration framework for mobile context

monitoring. Emerging pervasive environments will introduce a

PAN-scale sensor-rich mobile platform consisting of a mobile

device and many wearable and space-embedded sensors. In

such environments, it is challenging to enable multiple context

aware applications requiring continuous context monitoring to

simultaneously run and share highly scarce and dynamic

resources. Orchestrator enables multiple applications to

effectively share the resources while exploiting the full capacity

of overall system resources and providing high-quality service

to users. For effective orchestration, we propose an active

resource use orchestration approach that actively finds

appropriate resource uses for applications and flexibly utilizes

them depending on dynamic system conditions. Orchestrator is

built upon a prototype platform that consists of off-the-shelf

mobile devices and sensor motes. We present the detailed
design, implementation, and evaluation of Orchestrator. The

evaluation results show that Orchestrator enables applications

in a resource-efficient way.

I. INTRODUCTION

Smart mobile devices have been the pivot for personal
services. Many diverse sensors around the mobile device will
enable highly proactive services with the help of a lot of
personal context-aware applications, e.g., u-Trainer, dietary
monitoring, and health monitoring. In such PAN-scale
sensor-rich environments, mobile devices will serve as the
common computing platform which accommodates diverse
wearable sensors or nearby space-embedded sensors, e.g., e
watch, sensing garments, and textile electrodes in bed sheets.
Then a mobile device will usually run multiple context
aware applications at a time which mainly focus on
continuous monitoring of users' context with diverse sensors
[19]. The context monitoring often requires multi-step and
complex processing over multiple devices at the same time,
e.g., for a 'running' context, sensing of body-worn
accelerometers, filtering, FFT-based feature extraction, and
classifying the features through a decision tree [20].

The challenge in this new environment is that the
platform should simultaneously support a number of
applications with highly scarce and dynamic resources.
Greedy and injudicious resource use would significantly
aggravate contention among multiple applications and
accelerate skewed use of some specific devices. This can
also lead to reduced overall system capacity. Especially, we
note that most of the devices have highly constrained

978-1-4244-5328-3/09/$25.00 ©2009 IEEE 135

resources, often less than the capacity required for a context
monitoring. More challenging, availability of such resources
dynamically changes due to their wearable forms and
mobility of users. Sensors join or leave the platform
frequently as users may take off a sensor-equipped smart
watch [21], or enter a new sensor-embedded smart office.
Also, resource usage by running applications or
environmental factors such as interference continuously
affects the resource availability.

It is almost impossible for each application to address the
challenges without system-level supports. First, context
monitoring entails very complex processing, and often
involves burdensome device-level exploration [19][20].
Second, it is more challenging to ensure applications' steady
running under highly scarce and dynamic resource
availability. To achieve this, each application should
efficiently share the constrained resources with other
applications. Without system-level support, however, each
individual application has an extremely limited view of the
existence or resource uses of other applications, and further
cannot negotiate with the concurrent applications for
coordinated and efficient resource utilization. Thus, system
level support is compelling for the effective and coordinated
use of scarce computing resources among multiple
applications.

In this paper, we propose a novel active resource
orchestration system, Orchestrator for the PAN-scale sensor
rich mobile computing platform. Actively interplaying
between context-aware applications and scarce dynamic
resources, Orchestrator enables the mobile platform to host a
number of applications stably, exploiting its full resource
capacity in a holistic manner. More specifically, it helps
applications efficiently share resources and processing as
much as possible. It also seamlessly adapts the applications
to dynamic resource availability by resolving resource
contention between applications or selecting the best
processing plan according to the resource availability at that
time. In addition, Orchestrator can apply a system-level
policy such as energy optimization with an integrated view
of the total resource uses and status. With such system
supports, applications become capable of providing mobile
users with seamless, long-running high-quality service under
dynamic circumstances with scarce resources.

To design effective resource orchestration, we take an
active resource use orchestration approach that actively finds
out the best combination of resources for requested context

monitoring under the current status of resources and
applications. This is substantially different from an existing
approach, passive resource use management [3][4][7][10]. A
key feature of the active approach is to decouple
application's logical resource demand from physical resource
allocation. It enables postponing resource selection and
binding until resources' availability is sufficiently explored.
Under this active approach, applications do nothing but turn
in high-level context specifications to the system, and
comply with the system's decision on resource allocation.
Most of mobile and sensor systems, on the other hand, have
taken passive resource use management approaches based on
application-driven decision in resource selection and binding.
In such approaches, applications should explicitly specifY the
type and amount of resources as in resource ticket [10] and
resource descriptor [3]. A system simply allocates the
requested resources if available. If not, applications would
change their resource use plans according to predefined code
blocks, e.g., by trading off data or functional fidelity.
However, these approaches impose huge burdens on the
programmer, and their flexibility cannot be fully utilized in
practice since it is almost impossible for applications to
estimate dynamic resource status and prepare well adapted
code blocks for all the cases.

Orchestrator realizes the proposed approach as follows.
First, it prepares multiple alternative resource use plans, each
of which can process a high-level context from applications.
Such alternatives result from the diversity of semantic
translation. That is, a context can be derived by utilizing
many different sensing modalities as well as feature
extraction and classification methods. For instance, when a
context quality required by an application is conditionally
tolerable under a particular situation, a 'running' context is
monitored with diverse methods, e.g., utilizing DC and
energy features from acceleration data [20], or statistical
features from GPS location data. Second, at runtime, it
dynamically adapts a processing plan to reflect resource
availability, running applications' requests, system-level
policies in a holistic manner. Such flexibility and adaptation
enable Orchestrator to support multiple context-aware
applications, extending their running time while balancing
their resource usage, in environments with highly limited and
dynamic resources.

To the best of our knowledge, Orchestrator is an initial
attempt to provide an active resource orchestration system,
recognizing the PAN-scale sensor-rich mobile platform as a
common underlying computing platform. Recently, many
systems have been proposed for effective resource
management of mobile devices [3][4][5][6][7] and sensors
[8][9][10] comprising PAN. They are mostly designed to
manage resources, especially battery in most cases, for
applications on a single computing device. Such device
centric resource management, however, can hardly be
utilized in our target environment, in which multiple sensors
and a mobile device cooperatively serve multiple
applications.

This paper is organized as follows. We discuss related
work in Section II. Section III and IV describe the
architecture and main functions of Orchestrator, respectively.

136

Section V presents the implementation of Orchestrator
prototype. We discuss experimental results in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

Recently, sensor-enabled mobile applications have been
emerging in diverse application domains [1][2]. They
provide useful mobile services based on the contexts of a
user and her surroundings that are captured using diverse
sensors such as accelerometers, microphones, and GPS. As
many applications emerge to run on a mobile device with a
variety of sensors, common underlying frameworks such as
Orchestrator will be increasingly necessary to coordinate
multiple applications and allow them to efficiently share
resources in a systematic way.

There have been broad research efforts to effectively
manage the use of limited resources in different
environments. Some research proposed systems to manage
the resources of a mobile device, to name a few, Odyssey
[3][4][5], ECOSystem [6], and Chameleon [7]. Also, there
have been ongoing research efforts to efficiently manage and
utilize the limited resources of a sensor node such as Levels
[8], Eon [9], and Pixie [10]. Some research has also been
made to manage resource use in sensor networks. To
increase the lifetime of the whole sensor network, algorithms
for energy-efficient routing, filtering, and in-network
processing have been proposed [11][12][13]. There has been,
however, relatively little attention to develop a platform or to
address issues for PAN-scale sensor-rich mobile environments.
Orchestrator emphasizes a holistic view of resources of
multiple devices as well as mUltiple applications that share
the resources. Through the holistic approach, it effectively
orchestrates the resource use of the applications.

Several systems such as Pixie [10], Odyssey [3], and
Chameleon [7] have taken an application-driven approach to
resource management. They expose APls for resource
allocation to applications. Applications determine the types
and amounts of resources required to execute program codes,
and explicitly request the resources through the provided
APIs. The systems play a rather simple role to bind and
allocate the use of the requested resources.

We consider that a system-driven approach [8][9][6] is
more suitable as the solution of the target environment as it
gets too complex and dynamic for individual applications to
deal with. This approach hides from applications the details
of complex resource management. As such, they can focus
on specifYing their application logics. Instead, systems
determine and allocate the required resources at runtime,
reflecting resource status and system policies. However,
many of the existing systems with this approach are still
application-aided, e.g., Eon [9], Levels [8]. Applications
provide multiple program code blocks, each mapped to
highly abstracted resource levels.

There has also been research to support adaptive context
data provision. Titan [14] [15] supports context recognition in
dynamic BAN environments. However, it allows only a
single recognition algorithm to run at a time. Activity
recognition techniques proposed in [16][17][18] allow
performing recognition processes adaptively to improve

Application Broker
'---A�p"'ph ;-::· ca:7' ti-on--' , I , .-, -------, Result Manager Message Parser

Interface
lill Results

Plan Processor

Raw data/Feature data � � � �

1 Requests •
Processing Planner

Plan Generator

Plan Selector

� Sensor availability/status

Sensor detection/control, Data/status report

ACl.."e.leronleters �
• • • BVP/GSR

SensorsinBANjPAN
(a) Architecture on a mobile device

Resource Monitor

� GPS

Voltage ' I ADC Clock TinuOS

(b) Architecture on a sensor

Figure I. Architecture of Orchestrator.

energy efficiency. Their focus was on reducing energy
consumption only for activity recognition. None of the
mentioned research tackles challenging issues arising when
multiple applications run simultaneously and share dynamic
and scarce resources over multiple devices.

SeeMon [19] was our early attempt at a context
monitoring platform for a PAN-scale sensor-rich mobile
environment. While it proposed important techniques, e.g.,
locality-aware context processing and ESS (essential sensor
set)-based energy control, it did not address complicated
issues of resource management. Thus, while the proposed
orchestration framework can broadly be used as a platform
for many context monitoring systems, it also forms the
resource management stratum underneath the SeeMon
framework.

Other than sensor-based context-aware applications,
there have been research efforts for general middleware
approaches to enable applications such as media streaming
and instant messaging in dynamic pervasive environments
[27][28][29][30]. They adaptively build and run applications
by dynamically composing available components (e.g., RTP
stream sources and sinks). Reflecting changing conditions,
e.g., failure of components used, they reselect appropriate

137

components to continue the execution of applications.
However, they are not directly applicable to our target
environments; they were developed and tested mainly in
rather powerful desktop environments. Also, since their
focus was on developing techniques to make a pervasive
application adaptive to dynamic environments, they hardly
consider problems due to scarce resources shared by multiple
applications such as resolving resource contention and
achieving high efficiency.

III. ORCHESTRATOR ARCHITECTURE

We design the architecture of Orchestrator to enable
active resource use orchestration. The architecture spans a
mobile device and multiple sensors (Fig. 1).

Plan generation and selection: The processing planner
located in the mobile device plays a key role as a control
center for resource use orchestration. It includes two major
components: the plan generator and the plan selector. The
plan generator dynamically creates a variety of applicable
plans based on available sensors and their processing
capability at runtime. Among the generated plans, the plan
selector decides a set of plans to execute, which supports
maximal application requests with available resources and
best meets an orchestration policy enforced by the policy
manager. The selection changes adaptively, reflecting
dynamic resource status of sensors and the mobile device.

Plan execution: Orchestrator employs the plan
processors in both the mobile device and sensors to execute
the selected plans. They cooperatively process the plans,
often involving sensing, feature extraction, and context
recognition tasks. The plan processor in a sensor performs
sensing tasks and optionally executes feature extraction tasks
so that processing is offloaded onto the sensor. The plan
processor in the mobile device executes the rest of the plan,
i.e., feature extraction and context recognition tasks or the
latter only, and completing plan execution. Note that we
develop the plan processors to dynamically compose and
share diverse processing modules for plan execution.

Resource monitoring: The resource monitors keep track
of available resource status of sensors and a mobile device,
respectively. They continuously monitor the status of CPU,
memory, energy, and bandwidth. The status is periodically
reported to the plan selector for runtime adaptation. The
monitors are designed to minimize monitoring overhead while
keeping reasonable level of accuracy.

Communication protocols: For effective cooperation
between the mobile device and sensors, we develop a range
of communication protocols. For example, a sensor detection
protocol enables the mobile device to automatically detect
available sensors. The detected sensors report heartbeat
messages and resource status through a status reporting
protocol. The mobile device sends diverse control messages
based on a control message protocol

Application interface: The application broker in the
mobile device interacts with applications through
Orchestrator APIs. Fig. 2 shows the APIs. Using
registerCMQO, applications specify contexts of interests as a
form of a query statement and register the query along with
two callback functions to receive query results and status.

Context
CMQjD = registerCMQ (CMQ_statement,
query result handler, query status handler)

Monitoring deregisterCMQ (CMQ_ID)
APIs updateCMQ (CMQjD, CMQ_statement)

Figure 2. Orchestrator APIs.

The query specification is extended from the Context
Monitoring Query presented in our previous work [19]. For
example, assume that an application wants to know if a user
is running with more than 90% of accuracy. Then, the
developer specifies the query as below.

registerCMQ("CONTEXT Activity == running
ACCURACY 90% DURATION 7 days",
callbackJor Jesuit, callbackJor _status).

Applications are notified of query results via the specified
callback functions. Also, they are provided with query
evaluation status, e.g., "not activated" in case that the
processing planner cannot find any available processing plan
for query evaluation. Note that the APIs allow application
developers to specify high-level contexts only without caring
about low-level resource status.

IV. ACTIVE RESOURCE USE ORCHESTRATION

A. Processing Plan Generation

The plan generator creates a wide variety of processing
plans regarding each context to monitor. The plans utilize
different combinations of devices and their resources, and
thus, serve as a basis for effective orchestration. A key idea
to obtain diverse plans is to exploit the diversity of context
recognition methods and sensing modalities. For example,
Orchestrator detects a 'running' activity with frequency
domain features from acceleration data and a decision tree
classifier [20]. Another method is possible with time-domain
statistical features and a NaIve Bayes classifier [21]. Also,
each method can utilize different combinations of
accelerometers located on various body positions [16][17]
[21]. Moreover, there are alternative ways to derive affective
state of individuals with different sensing modalities. It is
possible to recognize the state using biomedical sensors such
as BVP, GSR, and ECG and features such as heart rate, heart
rate variability, and inter-beat interval [24]. The state can be
also identified by voice-related features such as pitch [25].

To generate diverse processing plans, we develop a two
phase translation method, including a logical translation and
a physical translation. First, the logical translation maps a
context into mUltiple logical processing plans, LPlans. An
LPlan represents a set of processing modules to derive the
context. It often consists of sensing, feature extraction, and
recognition modules, and optionally includes the accuracy of
context recognition. Second, the physical translation
associates an LPlan with different sensors and computing
resources to run the modules of the LPlan, accordingly
generating physical processing plans, PPlans. Together with
logical translation, this second translation increases the
possibility to prepare for a number of resource usage options.

Fig. 3 shows example LPlans. In the example, running
activity and spine posture are monitored. There are two LPlans
for the 'running' context. LPlanj utilizes acceleration data from

138

Figure 3. Examples of logical plans (LPlans).

Figure 4. Examples of physical plans (PPlans) for LPlanl.

a left wrist, extracts two frequency-domain features, DC and
energy, and runs a decision tree classifier. On the other hand,
LPlan2 utilizes acceleration data from a left thigh and a left
wrist, extracts two time-domain statistical features, RMS (root
mean square) and MAD (mean absolute deviation), and finally
recognizes the context through a NaiVe Bayes classifier. For the
'spine posture' context, there is an LPlan, LPlanJ.

New LPlans can be easily incorporated in Orchestrator by
specifying them with the relevant description and adding
corresponding modules. The plan processor is designed to
flexibly adopt and execute new modules, which will be
required to support the new LPlans.

The plan generator dynamically performs the physical
translation for available LPlans. It is necessary since available
sensors and their resource status continuously change at
runtime. When sensors are newly registered or deregistered, the
plan generator updates available PPlans with the sensors.
Orchestrator readjusts plan execution with the updated PPlans.

To increase the number of available PPlans, the plan
generator maximally exploits the possibility of diverse
hardware resource mapping through a sensor mapping and a
distribution mapping. The sensor mapping contributes to the
diversity by examining different sensors that are eligible to
serve adequate sensor data and processing modules for an
LPlan. The distribution mapping exploits the different
distributions of modules into sensors and a mobile device.

Fig. 4 shows example PPlans for LPlan]. The plan
generator is aware of two available sensors, a watch-embedded
accelerometer and a sleeve-attached one on a left wrist. It
makes four different PPlans. PPlan] and PPlan2 use an
accelerometer on the watch, while PPlan3 and PPlaI4 use a

sleeve-attached one. PPlan] and PPlan3 perform the feature
extraction in the mobile device. PPlan2 and PPlan4 do in the
sensor. PPlans for LPlan2 and LPlan3 cannot be generated since
there is no available sensor on the left thigh and waist.

B. Holistic Resource-aware Plan Selection

The key of the effective orchestration is to properly select
PPlans to execute among diverse alternatives. Through the
plan selection, Orchestrator resolves �ontentio�s . and
maximizes sharing in resource use of multiple applicatIOns,
and thus, supports application requests maximally �ith
highly limited computing resources. At the same tIm�,
Orchestrator meets a system-wide policy for resource use ill
system operation, e.g., minimizing the total e�ergy consumption.

For clear description of the plan selectIOn, we define the
selection problem as follows. Given C={Ci I Ci is a context to
monitor} and P={Pi,j I Pi,j is a/h PPlan for a context Ci}, the
plan selector determines Pe, a subset of P to execute. Among
all possible subsets, Pe should support the most number of
queries under given resources constraints while t�e cost of Pe,
Cost(Pe) is minimized. Here, the cost functIOn, CostO,
describes a system policy that should be satisfied to achieve
desired system operation.

Fig. 5 shows overall plan selection proce�s. It consis�s of
two major processing steps, i.e. (1) detectIOn of maxImal
PPlan sets, and (2) selection of the minimum cost set. .

In the first step, the plan selector detects the maximal
PPlan sets, each of which supports maximum number of
queries with available resources. To obtain the sets, the plan
selector computes the number of supportable queries for

every possible PPlan set, Ps E f, and selects the ones
supporting maximum queries. The computation involves
three sub-steps as in the Fig. 5. In the first su?-step,. t�e
resource demand to execute Ps is calculated. Basically, It IS
computed by aggregating the resou.rce demand of �ach plan.
In the calculation, the module sharIng among multiple plans
are importantly considered; if more than two PPlans In Ps
execute the same processing modules in the same device, t
he resource demand to execute the module is taken into
account only once. In the second sub-step, it is examined if
the resource demand of Ps exceeds the available amount of
system resources. Through the process, it filters out the
PPlan sets that violate resource constraints. The last sub-step
calculates the number of supportable queries for the plan sets
that pass the constraint check. Here, the. accura�y co�d.itions
are also checked for the queries specIfied With mInImUm
accuracy requirement. Finally, the plan selector selects the
ones that support maximum number of queries.

In the second step, the plan selector determines the
minimum cost set among the candidate maximal PPlan sets.
It is likely that there often exist multiple maximal PPlan sets.
This step calculates the cost corresponding to each set and
selects the one with minimum cost. Here, diverse cost
functions can be employed from the policy pool. Note that
the module sharing is also considered in the cost calculation.

Orchestrator provides a couple of system primitives that
abstract the resource demand of applications and the real
time resource availability of the system. First, a function,
GetRDMatrix(Ps), provides the resource demand to execute a

139

Resolving contention

: Step1. aximal PPlan set detection

! .
P,

c t __ _

RDMatrix I

Policy pool Imposing system policy

Figure 5. Plan selection process.

RAMah'ixjol' available devices l

Maximal
PPlan Sets

PPlan set to
execute,Pe

CPU(".) MCI1I(U) BW(pkl/_' Encrg)lmJ/s)
CPU(", Mem{K� BW(pkt/s) Energy{J)

Mob;!, 1 3.32 4571K 2 4 .1 25 6621] Aceel. 11.
71 20 21 29.2 8 on LWI"i ,

Acce!. 97.8 3 1.064 25.5 8 253
MO

.
bile � 3

.

.2

.

2 5628

.

5 25.5

.

9256J -.?n_�td1 _ _ ___ _ __ . __ ._ _ ____ _
Ac<.-cl. 3.4 3 768 4.125 25.64
on RThigh Aceel" 5.25 1.925 25.5 1025 onWdlst

Figure 6. Examples ofRDMatrix and RAMatrix.

Function: Cost(Ps)
Input: Ps,a candidate maximal plan set
Output: cost of Ps

I. RDMatrix � GetRDMatrix(Ps)

2. IOlalEnergyConslimplion � 0
3. for V0 where 0 is a device in RDMalrix

IOlalEnergyConslimplion � IOlalEnergyConslimplion +
RDMatrix(d;, ENERGY»

4. Retum IOlalEnergyConslimplion

Figure 7. A cost function to minimize total engergy consumption

set of PPlans, P" in the form of a matrix. Second,
GetRAMatrixO returns the list of available devices and status
of their resources such as CPU, memory and energy as a
matrix. Fig. 6 shows examples of RDMatrix and RAMatrix.
Note that the system primitives facilitate the specification of
cost functions for various policies. For example, the policy to
minimize total energy consumption can be easily specified as
shown in Fig. 7.

C. Dynamic Plan Adaptation

Orchestrator adapts to changes in resource availability
and application requests at runtime by continuously altering
P a set of PPlans to execute. The adaptation enables
O�chestrator to support application requests seamlessly, to
resolve newly occurring resource contentions, and to best
meet the system policy continuously.

Orchestrator performs the plan selection process again
when there are changes in a set of contexts to monitor, C, or
in the set of corresponding PPlans, P. This is because the
changes in C or P could disqualify the previously selected
PPlan set from the best choice for execution. Also, changes
in resource status could trigger the selection process
regardless of changes in C or P. For example, the energy
drain of devices periodically triggers the process when

TABLE I. ADAPT A nON EVENT

Event Inputs (Cnew' PneoV> for plan reselection
Registration of a query Cliew = CoidU {ell}
(regarding a context c,,) P"ew = Paid U {p"J I p"J is aJ'" PPlan for c,,}

Deregistration of a query C"ew = Colr {Cd}
(regarding a context, Cd) P"ew = Paid - {Pd' I Pd ·is ajth PPlan for Cd}

Join of a sensor (s,,) P"ew = Paid U {PiJ I PiJ is a new j'h PPlan for a
context, Ci' enabled by the new sensor, s,,}

Leave of a sensor (Sd) P"ew = Paid - {PiJ I PiJ isf' PPlan for a context,
Ci' that utilizes the leaved sensor, Sd}

Resource status changes, No changes in C and P e.g., energy drain of devices
Orchestrator applies a policy to minimize skewness among
remaining energy of devices.

Five types of events trigger the selection process of
Orchestrator. When an event occurs, Orchestrator performs
the plan selection described in Section IV.B with new inputs,
Cnew and Pnew, changed by the event. Table I summarizes the
event types and corresponding changes in the inputs of the
plan selection. First, upon a registration of a query regarding
a new context, Cn. the selection process is performed by
adding Cn to C and corresponding PPlans to P. Deregistration
of a context is handled similarly as shown in Table I. Second,
the join or leave of a sensor triggers the selection process as
it changes the available PPlan set, P; some queries might be
newly supportable with the new PPlans, and other queries
may not be supported anymore with old PPlans. Upon a join
of a new sensor, the newly available PPlans are inserted in P
and the plan selection is executed. On the other hand, upon a
leave of a sensor, the PPlans enabled by the sensor are
removed from P. Finally, in case of events by resource status
changes, Orchestrator just reselects the PPlans with previous
P and C once again.

For efficient adaptation, Orchestrator also adopts an
incremental plan selection method. When there are a number
of contexts to monitor and corresponding PPlans, it might be
costly to reselect the whole Pe upon every event and
redeploy new processing modules. To address the issue, the
plan selector employs an incremental selection method as an
effective heuristic solution. When the heuristic solution is
used, Orchestrator periodically performs global selection to
avoid errors that might accumulate due to repeated
incremental selection.

The heuristic finds subset of contexts, Cub C C, and

corresponding PPlans, Psub C P that are directly affected by
the triggering events. Then, it locally applies the selection
process only for the subset. The selection is performed as
follows upon each event. First, upon a query registration,
Orchestrator performs the selection with only the requested
context and corresponding PPlans. If the context has been
already monitored, the executed PPlan is shared. Upon the
query deregistration, Orchestrator simply stops executing the
processing modules of the corresponding PPlans unless the
modules are shared to support other queries; it does not
perform plan selection again. Third, upon the sensor join,
Orchestrator first generates new PPlans utilizing the sensor.
In case that the new PPlans enable some of the queries that
cannot be processed with the previously generated plans,
Orchestrator executes the new PPlans. Also, if the new

140

T p (Period to calculate CPU utilization, e.g. 1 second)

Figure 8. Example of CPU utilization.

PPlans are more cost-effective than the currently executed
PPlans, the new PPlans replace the current ones. Finally,
when a sensor leaves, some of the running PPlans may be
disabled. In this case, Orchestrator finds new PPlans for the
affected queries and replaces the currently executing plans
with new ones.

D. Resource Detection, Monitoring and Demand Profiling

Orchestrator continuously updates RAMatrix and builds
RDMatrix for resources orchestration. As a base to update
RAMatrix, Orchestrator identifies sensors that become newly
available or unavailable. Then, it updates RAMatrix by
monitoring resource availability of the detected sensors and a
mobile device in real-time. RDMatrix is generated through
the off-line profiling. The following briefly describes the
main ideas and methods implemented in Orchestrator.

Dynamic Sensor Detection Protocol: The protocol enables
Orchestrator to dynamically detect available sensors in real
time. It is designed with a sensor-initiated approach, which
achieves a high level of energy efficiency for energy
constrained sensors. The sensors need to turn on their radio
transceivers only for a short period of time in order to send a
heartbeat message and wait for corresponding ACK
messages. We omit the protocol details.

Resource Status Monitoring: Resource monitors
continuously track the availability of energy, CPU, memory,
and bandwidth. For a mobile device, Orchestrator simply
utilizes the resource information provided by resource
monitoring tools in operating systems. For sensors, we
develop our own monitors targeting MicaZ Motes.

For energy monitoring of sensors, Orchestrator adopts a
voltage-based method [8]. It estimates remaining energy
from voltage readings based on pre-built voltage-energy
translation maps.

The CPU cycle is mostly occupied by two major
operations: executing assigned tasks and handling timer
interrupts for sensing, storing and transmission (See Fig. 8).
Among them, the CPU monitor only considers the CPU
cycle for task execution. More specifically, the monitor
measures CPU utilization as (Itacrive_i ITp). To measure tactivej,
we record timestamps right before and after a task execution.

The available memory size, Mav' is obtained as Mmax - Ii
Mused(taski), where Mmax is the maximum available memory

and Mused(taski) is memory used for a taski. Ii Mused(taski) is

computed as Ii (MF(taski)) + Max(Mr(taski)), where MF(taski)
and Mr(taski) denote the size of Fixed and Temporary Space
for a taski' respectively. Fixed Space is continuously
occupied by a task to store sensor readings and some internal
states until the task is deregistered. Temporary Space is

Figure 9. Hardware setup.

Feature Context type Context
Sensor location Sampling

Feature generation (# of possible value Sensor
(sensor 101 rate

rate values) examples

Four2-axis
Right(3)wrist, DC, Energy,

Run,Sit,
Right thigh(4), Left 50Hz x 8 RMS,MAD, O.78Hzx 8 Activity (4)

walk, Stand accelerometer
wrist(S). Waist (6) Percentile

Two light Body(2).
O.7BHzx 2 Illumination O.78Hzx 2 Ught(7) Dark., Bright

Sensors Space(102)

Two temperatu re Body(1).
O.78Hzx 2 Temperature O.78Hzx 2 Temperature(S) Cool, Hot

Sensors Space(101)

Two humidity Body(1).
O.7BHzx 2 Humidity O.78Hzx 2 Humidity(S) Dry, Humid

sensors Space(101)

Figure 1 0. Sensor, feature, context profile used in the prototype.

allocated and used temporarily only when the task IS
scheduled to run.

Wireless network bandwidth is a shared resource for all
sensors and a mobile device. The available bandwidth for all
devices is measured and managed in the mobile device. An
available bandwidth, Bav is measured as Bmax - Bused, where
Bmax is the maximum available bandwidth and Bused is the
bandwidth being currently utilized.

Resource Demand Profiling: We collect resource demand
profiles of processing modules used for PPlans before
runtime. The total demand is calculated by adding up the
demands of all relevant modules to the baseline resource
demand.

V. IMPLEMENTATION

We have implemented the Orchestrator architecture as a
prototype system. First, we implemented the architecture of a
mobile device in two platforms: (1) standard C/C++ over
Linux, (2) Open C/C++ over S60 SDK and Symbian OS.
Their total lines are about 13,000. Second, the sensor
architecture is implemented in NesC on top of TinyOS
1.1.11. The total lines are about 2,300.

We deployed the prototype system on various types of
mobile devices and sensors. Fig. 9 shows a snapshot of
currently used hardware. First, we have deployed t?e
prototype on two different mobile devices, (1) Ultra MobIle
PC (UMPC), SONY VAIO UX27LN with Intel® U1500
133 0Hz CPU and 1GB RAM, and (2) a smart phone, Nokia
N96 with Dual ARM9 264MHz processor and 128MB RAM.
Second, we have incorporated various wireless sensors that
have been widely adopted for context-aware applications (See
Fig. 10 for sensor details). Considering the wearability and
controllability, we mainly use eight of USS-2400 sensor
nodes (MicaZ clone), i.e., four 2-axis accelerometers, two
light, and two temperatureihumidity sensors. They . are
equipped with Atmega 128L MCU, CC2420 RF transceIver
supporting 2.40Hz band ZigBee protocol, and TinyOS as an
operating system. To provide communication between the
mobile device and sensors, we attach one base sensor node to

141

E1: Entera smart lab
(Spac_mbedded 5etlSOn 5101,S102 arenewty available)

Time E2: Run u-reminder E3:Take off e-watch (Q2 is newty l"e9istef"e<l) (Cn-body 5enso� 55
be(omes�yallable)

Figure I I. A short part of processing log.

the mobile device. The node receives sensor data from other
sensor nodes and forwards the data to a mobile device. Also,
it transmits control messages to the sensor nodes on behalf of
the mobile device.

Currently, the plan processor in the mobile-side
architecture includes eight feature extraction modules (See
Fig. 10 for feature details). We used kiss_fft [26], a Fa.st
Fourier Transform library, to derive frequency-domam
features. It also provides a recognition module implementing
a decision tree algorithm. To generate diverse plans to
monitor activity contexts, we combine diverse feature and
sensor sets. As feature sets, we use frequency-domain
features (e.g., DC, Energy) and time-domain statistical
features (e.g., RMS, PRC, MAD). For sensor sets, we use all
combinations of sensors on the left wrist, right wrist, right
thigh, and waist. We trained the acti.vity contexts �ia
annotation-based learning [20]. The learnmg was done wIth
C4.5 decision tree by Weka, a Java-based open source
machine learning tool [22]. We implemented feature
extractors on sensor nodes to offload feature extraction tasks.
We used a highly optimized avr-fft library which is written
in an assembly language for FFT computation on sensors.

A. Example Scenario and Operation a/Orchestrator

We test and inspect the operations of Orchestrator under
real situation. A student in our lab carried the UMPC and 6
sensors running an Orchestrator prototype while entering
/Ieaving smart spaces or wearing/taking off wearable sensors
on campus for 2 hours. Fig. 11 shows a short part of the
processing log in his Orchestrator, describing query and
sensor status according to changes in application requests
and sensors. At 2:30 p.m., 6 sensors and 4 queries were
registered. During 8 minutes, three events occurred; two
sensor changes (El and E3) and an application request
change (E2). Accordingly, processing plans were adaptively
changed. For example, at 2:33 p.m., he entered a smart lab.
Then, a processing plan using on-body sensors replaced the
plan using space-embedded sensors for energy optimization.

VI. EVALUATION

A. Experimental Setup

We demonstrate the effectiveness of Orchestrator under
dynamic changes in resources and application requests. For

'" 8
:; 6
� 4 � 2 '0 .. 0

0

20
� 15
.� 10 " 0' 5
'0 .. 0

0

A hase B phase
(MIN:2. MAX::4)

20 40 Time (min) 60
Figure 1 2. Dynamic sensor avaialblity.

A ohase
(MIN=O, MAX=5)

B ohase
(MIN=5, MAX=10) 1 ,.J

C ohase
(MIN=10, MAX=lS)

20 40 Time (min) 60
Figure 1 3 . Dynamic query workload.

TABLE II. QUERY MODEL
Parameter Default value

#of queries 20
of context types per query 1

0 hase
(MIN=6. MAX=8)

o ohase
(MIN=15, MAX=20)

Distribution of context type Activity (50%), Other Contexts (50%)
Distribution of context value Uniform distribution

Distribution of Uniform distribution

Accuracy (only for activity) (min and max from training data)

80

80

the experiments, we used the UMPC and the eight USS-2400
sensor nodes described in Section V.

Sensor availability: To make the environment dynamic
for experiments, we continuously vary the number of
available sensors as shown in Fig. 12. For the total 80min
period, we randomly add or delete a sensor every 2.5 min in
average among 8 sensors. To examine the effect of number
of available sensors, we divide the total time into four 20 min
phases such that each phase predefines different MINIMAX
sensor numbers. Note that sensor composition is diverse
even with the same number of sensors.

Query workloads: We also generate a dynamic query
workload as shown in Fig. 13. We add or delete a query
every 1.5 min in average. Also, we set the MINIMAX
numbers of queries for each phase. Note that the queries are
generated by carefully reflecting our previous example
scenario. Table II summarizes the parameters and default
values used for the query generation.

Alternatives: We compare Orchestrator with
Conventional Context Recognizer (CCR) which models
existing context-aware systems [23] lacking of resource
orchestration functionalities. CCR supports a query with a
single and fixed recognition method that provides the best
recognition accuracy with designated devices. All employed
sensors are always turned on and send raw data. A mobile
device extracts features from the sensor data and runs
recognition modules. Note that CCR does not utilize newly
joined sensors nor deals with sensor leaves. For Orchestrator,
we use the orchestration policy that minimizes the total
energy consumption of available sensors as a default policy.

Metrics: We measure the effectiveness of Orchestrator
in terms of application support and resource utilization.
First, we measure the level of application support through
query activation. We regard that a query is activated if a
processing plan exists for the query and is executed with
available resources. To quantity the query activation, we use
Number of Activated Queries (NAQ) and Query Activation
Ratio (QAR). QAR is formally defmed as follows.

142

200 800 0.8
+-==-----..,-Dmi-..mitor----t:�-+ 0.6

'77r---=="'h1-oH 0.4
150 0.75
100 0.5

50 0.25
0

(a) EC and OAR per phase

600
400
200

0
EC OAR

(b) Overall EC and OAR

0.2
o

20
0' 15 f---

--
--. ;<:g���h=.s=tra=to�r

i,_-- _J _ ' -_ -- _ -- _

' _ _ '--_ --_ -
i_ + 111

1-
-

-11----
::;l 1O ,_r j-mnL.�,---r-L:::::::Jr-- -r-.J.L----l----

5 f--!=� i I
10 20 30 Time (min) 40 50

(C) NAO over time
8

60 70 80

� 4 z
0 Time (min) 0 10 20 30 40 50 60 70

(d) NAS over time

Figure 1 4. Orchestration under dynamic sensor availablity.

QAR
ITA (q;) q; is an i'h query in a registered query set, Q ITR(q;) ,

TA (q;) : total activation time of q;
TR (q;) : total registration time of q;

80

As the metrics for resource utilization, we use Number of
Activated Sensors (NAS) and the Energy Consumption (EC)
of sensors in Joule (1). We regard that an available sensor is
activated if the sensor executes certain tasks comprising any
PPlan. In CCR, all available sensors are considered to be
activated since CCR does not control the sensors. In general,
higher NAS over time results in higher EC since the number
of activated sensors is the dominant factor of energy
consumption.

B. Resource Orchestration under Dynamic
Env ironm ents

1) Dynamic Sensor Availablity
In this section, we evaluate Orchestrator under the dynamic

sensor availability. The number of queries is fixed at 20.
Fig. 14 (a) shows QAR and EC per phase where more

sensors are available as phase changes from A to D. In the
graph, we can observe the key characteristics of Orchestrator.
Under phase A and B where available sensors are scarce,
Orchestrator activates more queries than CCR, while
consuming almost the same amount of energy. It demonstrates
that Orchestrator coordinates resource use well to support
applications under resource-scarce environments. In contrast,
under phase C and 0 where available sensors are plentiful,
Orchestrator concentrates on energy optimization since the
QAR of Orchestrator is already saturated to the maximum, 1.
It shows that Orchestrator coordinates resource use well to
maximize utilization under resource-abundant environments.

Fig. 14 (b) shows QAR and EC for total experiment time.
To sum up, Orchestrator achieves better QAR (95%
improvement) and less EC (10.7% reduction) than CCR. Fig.
14 (c) and (d) show NAQ and NAS over time, respectively.
Most importantly, the NAQ of Orchestrator is always much
higher than that of CCR, resulting in higher QAR. This is

I�==�==�==�I 1 800
f--.:-:-'----...... �---.- 0.8
1-0---""-='''=" " '-"'=w'-�� 0.6 - .. - CCR (EC) 100 I------;;;; �",.;; .. o �'''� .. ;,.'' tor"{Erul-c; 0.4

SO ��=h���ator(QARl 0.2

20
15

� 10 z

phase A phase B phase C phase 0
(a) EC and QAR per phase

CCR
----. Orchestrator

600
400
200

0
EC OAR

(b) Overall EC and QAR

..Ef.- -

0.8
0 .6
0.4
0.2

5 .r � o LL __ �� ____ �_�� ________ �
o 10 20 Time4 lmin) 30 0 50 60 70 80

(c) NAQ over time
8

'" 6 -CCR � 4 r-==-ofCfl<oes .. "tra""tNor------._-___ -__ -__ -__ -__ -__ -__ -___ -__ -__ -__ -__ -__ -___ -__ -__ -__ -__ -__ -__ -___ -__ :j_
2 r--:-J----------U--------------------- '
o -::----------=Ti::-'m-e-;-(m-:i'n)----------'

o 10 20 � � � w m w
(d) NAS over time

Figure 1 5. Orchestration under dynamic query workload.

because Orchestrator prepares for and utilizes diverse
PPlans such that it is highly likely to support application
requests with diverse combinations of sensors. Also, the
NAS of Orchestrator is lower than that of CCR.
Orchestrator selects PPlans in a way to minimize the number
of activated sensors applying the energy optimization policy.
Specifically, we found that Orchestrator selects PPlans that
run feature extraction tasks in sensors rather than those that
send only raw data from sensors. Thus, sensor-based feature
extraction significantly reduces the overall communication
cost, which in tum reduces energy consumption.

2) Dynamic Query Workload
We examine the behavior of Orchestrator using the

dynamic query workload. The number of sensors is fixed at
6 excluding the space-embedded sensors, S 10 1 and S 102.

Fig. 15 (a) shows EC and QAR per phase where more
sensors are available as phase changes from A to D. Since
sensor resources are abundant in all phases, the QAR of both
Orchestrator and CCR are saturated to the maximum, 1.
Meanwhile, the ECs of Orchestrator and CCR are kept high,
i.e., about 200J. We look into EC per sensor, and discover
that sensor 4 consumes more energy than other sensors. In
our experimental setting, sensor 3, 4, 5, and 6 are
accelerometers for activity recognition. Based on energy
minimizing policy, Orchestrator tried to utilize sensor 4
rather than all sensors together since the accuracy
requirements of most activity queries are satisfied only with
sensor 4; sensor 4 is placed on the right thigh which is
known as the most suitable position for recognizing activities
such as running, walking, and standing [20].

Fig. 15 (b) shows EC and QAR for total experiment time.
Orchestrator achieves better EC (15% reduction) along with
slightly better QAR (8.5% improvement) than CCR. Also,
Fig. 15 (c) and (d) show NAQ and NAS over time in detail.
The NAQ of CCR is slightly lower than that of Orchestrator
in most of time. Although the number of sensors is sufficient
to activate all registered queries, some queries are
deactivated in CCR. This is because it utilizes only a single

143

_ 300 § 250 2. 200
� 150 ..
::l 100 � 50

16.477 kbps

'0 0 +--"_IIIIL_,--=-_
..

Dynamic Query Dynamic Query Dynamic Sensor

Workload Workload Ava i lab i l ity

(Orchestrator) (eeR) (Orchestrator)

Figure 1 6. Communication costs.

Dynamic Sensor

Ava i lab i l ity

ICCR)

recognition method. Thus, it does not meet the accuracy
requirements of some queries. More important, the NAS of
Orchestrator is always lower than that of CCR. This is
because all available sensors are activated in CCR whereas
Orchestrator selectively utilizes the sensors. It results in
lower energy consumption, and better resource utilization
eventually.

3) Orchestration Cost
We examine orchestration cost under the dynamic sensor

and query workloads in terms of communication and
memory cost.

First, we measure the number of messages exchanged
during the total experiment time. To investigate the
communication cost, we classity the messages into three
types: control messages, heartbeat messages including sensor
status information, and data reporting messages. Fig. 16
shows the number of messages for each message type. In
Orchestrator, the control and heartbeat messages are
additionally exchanged for active resource use orchestration,
thereby incurring a slight communication cost, e.g., about 1.5
kbps for the dynamic query case. However, Orchestrator
significantly reduces the number of data messages at the cost
of those messages. Compared to CCR, it is decreased up to
10 times. Note that the number of control and heartbeat
messages is controllable by configuring the heartbeat period.

Also, we measure the memory size consumed at runtime,
which is averaged over time. The average memory sizes in
the mobile device are 59.6KB under the dynamic sensor
availability and 56.2KB under the dynamic query workload,
respectively. The processing planner, a core component for
orchestration in the mobile device, consumes 31.5KB and
30.6KB, respectively. Considering the memory capacity of
the mobile device, they are negligible. In addition, each
sensor consumes 2768 of memory to maintain data
structures storing executed tasks. The average sizes used in
sensors vary from 278B to 7698 depending on sensor type;
the plan processor uses 512B in accelerometers and 48 in
other sensors to buffer sensor data. Note that those values
vary depending on executed tasks and runtime parameters
such as window size. Considering the memory capacity of
MicaZ, 4KB, and the memory taken by TinyOS, 3298,
Orchestrator can offload multiple tasks such as feature
extraction onto sensors.

C. Effects of Resource Orchestration Policies

We determine if Orchestrator can properly apply multiple
orchestration policies. We consider two sample policies: (1)
minimizing the total energy consumption of available
sensors and (2) maximizing the average accuracy of

registered queries. For the experiment, we use the dynamic
query workload and fix the number of sensors to 6. Then, we
measure the NAS and the average accuracy of activated queries
over time for the two policies, respectively. We only consider
the queries with activity contexts for accuracy measurement.

From the experiment, we could see Orchestrator supports
the two policies well. We could observe that the NAS of the
first policy is much lower than that of the second during the
whole experiment time. Accordingly, the energy
consumption is lower with the first policy, which shows the
desired operation of Orchestrator. On the other hand, higher
accuracy is achieved when the second policy is used, i.e.,
about 4% increases in average.

VII. CONCLUSION

In this paper, we described Orchestrator, a novel resource
orchestration framework to support mobile context
monitoring in a PAN-scale sensor-rich mobile platform.
Orchestrator enables the platform to host multiple
applications stably, exploiting its full resource capacity in a
holistic manner. Thus, applications can provide users with
seamless, long-running high-quality service under dynamic
circumstances with limited resources. We present the design
and implementation of Orchestrator running on off-the-shelf
mobile devices and sensor motes, and also show its
effectiveness in various system environments.

ACKNOWLEDGMENT

We thank our shepherd, David J. Yates, and the
anonymous reviewers for their valuable comments to
improve the quality of this paper. This work was partially
supported by Defense Acquisition Program Administration
and Agency for Defense Development, Korea under the
contract.

REFERENCES

[1] E. Miluzzo, N.D. Lane, K. Fodor, R.A Peterson, H. Lu, M.
Musolesi, S.B. Eisenman, X. Zheng, AT. Campbel, "Sensing
Meets Mobile Social Networks: The Design Implementation and
Evaluation of the CenceMe Application," Proc. of SenSys, 2007.

[2] S.B. Eisenman, E. Miluzzo, N.D. Lane, R.A. Peterson, G.-S. Ahn,
AT. Campbell, "The BikeNet Mobile Sensing System for Cyclist
Experience Mapping," Proc. of SenSys, 2007.

[3] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J.
Flinn, and K.R. Walker, "Agile Application-Aware Adaptation
for Mobility," Proc. of SOSP, 1997.

[4] J. Flinn and M. Satyanarayanan, "Energy-aware Adaptation for
Mobile Applications," Proc. of SOSP, 1999.

[5] D. Narayanan and M. Satyanarayanan, "Predictive Resource
Management for Wearable Computing," Proc. ofMobiSys, 2003.

[6] H. Zeng, X. Fan, C. S. Ellis, A Lebeck, and A Vahdat,
"ECOSystem: Managing Energy as a First Class Operating
System Resource," Proc. of ASPLOS, 2002.

[7] X. Liu, P. Shenoy, and M.D. Comer, "Chameleon: Application
Level Power Management," IEEE Trans. on Mobile Computing,
vol. 7, no. 8, Aug. 2008.

[8] A Lachenmann, P. J. Marron, D. Minder, and K. Rothennel,
"Meeting Lifetime Goals with Energy Levels," Proc. of SenSys,
2007.

144

[9] J. Sorber, A Kostadinov, M. Garber, M. Brennan, M.D. Comer,
E.D. Berger, "Eon: A Language and Runtime System for
Perpetual Systems," Proc. of SenSys, 2007.

[1 0] K. Lorincz, B. Chen, J. Watennan, G. W. Allen, and M. Welsh,
"Resource Aware Programming in the Pixie OS," Proc. of
SenSys, 2007.

[1 1] W. Ye, J. Heidemann, and D. Estrin, "An Energy-Efficient MAC
Protocol for Wireless Sensor Networks," Proc. of IEEE
INFOCOM, 2002.

[12] K. Seada, M. Zuniga, A Helmy, and B. Krishnamachari,
"Energy-Efficient Forwarding Strategies for Geographic Routing
in Lossy Wireless Sensor Networks," Proc. of SenSys, 2004.

[1 3] W. Heinzelman, A Chandrakasan, and H. Balakrishnan, "Energy
Efficient Communication Protocol for Wireless Microsensor
Networks," Proc. of HICSS, 2000.

[14] c. Lombriser, D. Roggen, M. Stager, and G. Troster, "Titan: A
Tiny Task Network for Dynamically Reconfigurable
Heterogeneous Sensor Networks," Proc. of Fachtagung
Kommunikation in Verteilten Systemen (KiVS), 2007.

[1 5] C. Lombriser, R. Marin-Perianu, D. Roggen, P. Havinga, and G.
Troster, "Modeling Service-Oriented Context Processing in
Dynamic Body Area Networks," IEEE Journal on Selected Areas
in Communications, vol. 27, issue 1, Jan. 2009.

[1 6] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L.
Benini, and G. Troster, "Activity Recognition from On-Body
Sensors: Accuracy-Power Trade-Off by Dynamic Sensor
Selection," Proc. ofEWSN, 2008.

[1 7] K. Murao, T. Terada, Y. Takegawa, and S. Nishio, "A Context
Aware System that Changes Sensor Combinations Considering
Energy Consumption," Proc. of Pervasive, 2008.

[1 8] B. French, D.P. Siewiorek, A Smailagic, and M. Deisher,
"Selective Sampling Strategies to Conserve Power in Context
Aware Devices," Proc. of ISWC, 2007.

[1 9] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J.
Song, "SeeMon: Scalable and Energy-efficient Context
Monitoring Framework for Sensor-rich Mobile Environments,"
Proc. ofMobiSys, 2008.

[20] L. Bao and S.S. Intille, "Activity recognition from user-annotated
acceleration data," Proc. of Pervasive, 2004.

[2 1] u. Maurer, A Smailagic, D.P. Siewiorek, and M. Deisher,
"Activity Recognition and Monitoring Using Multiple Sensors on
Different Body Positions," Proc. of BSN, 2006.

[22] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nzJ-mllwekai

[23] P. Korpipaa, J. Miintyjarvi, J. Kela, H. Keranen, and E.-J. Maim,
"Managing Context Infonnation in Mobile Devices," IEEE
Pervasive Computing, 2003.

[24] A Haag, S. Goronzy, P. Schaich, and J. Williams, "Emotion
Recognition Using Bio-sensors: First Step towards an Automatic
Systems," LNCS 3068, 2004.

[25] V. Kostov and S. Fukuda, "Emotion in User Interface, Voice
Interaction System," Proc. of IEEE International Conference on
Systems, Man, and Cybernetics, 2000.

[26] Kiss FFT. http://kissffi.sourceforge.netl

[27] C. Becker, G. Schiele, H. Gubbels, and K. Rothennel, "BASE: a
Micro-Broker-Bases Middleware for Pervasive Computing," Proc.
of PerC om, 2003.

[28] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel, "PCOM
a Component System for Pervasice Computing," Proc. of
PerCom, 2004.

[29] J. Mazzola Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S.
Ward, "Structured Decomposition of Adaptive Applications,"
Proc. of PerC om, 2008.

[30] H. Pham, J. Mazzola Paluska, U. Saif, C. Stawarz, c. Tennan,
and S. Ward, "A Dynamic Platfonn for Runtime Adaptation,"
Proc. of PerC om, 2009.

