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Abstract- In this paper, we present Orchestrator, an active 

resource orchestration framework for mobile context 

monitoring. Emerging pervasive environments will introduce a 

PAN-scale sensor-rich mobile platform consisting of a mobile 

device and many wearable and space-embedded sensors. In 

such environments, it is challenging to enable multiple context­

aware applications requiring continuous context monitoring to 

simultaneously run and share highly scarce and dynamic 

resources. Orchestrator enables multiple applications to 

effectively share the resources while exploiting the full capacity 

of overall system resources and providing high-quality service 

to users. For effective orchestration, we propose an active 

resource use orchestration approach that actively finds 

appropriate resource uses for applications and flexibly utilizes 

them depending on dynamic system conditions. Orchestrator is 

built upon a prototype platform that consists of off-the-shelf 

mobile devices and sensor motes. We present the detailed 
design, implementation, and evaluation of Orchestrator. The 

evaluation results show that Orchestrator enables applications 

in a resource-efficient way. 

I. INTRODUCTION 

Smart mobile devices have been the pivot for personal 
services. Many diverse sensors around the mobile device will 
enable highly proactive services with the help of a lot of 
personal context-aware applications, e.g., u-Trainer, dietary 
monitoring, and health monitoring. In such PAN-scale 
sensor-rich environments, mobile devices will serve as the 
common computing platform which accommodates diverse 
wearable sensors or nearby space-embedded sensors, e.g., e­
watch, sensing garments, and textile electrodes in bed sheets. 
Then a mobile device will usually run multiple context­
aware applications at a time which mainly focus on 
continuous monitoring of users' context with diverse sensors 
[19]. The context monitoring often requires multi-step and 
complex processing over multiple devices at the same time, 
e.g., for a 'running' context, sensing of body-worn 
accelerometers, filtering, FFT-based feature extraction, and 
classifying the features through a decision tree [20]. 

The challenge in this new environment is that the 
platform should simultaneously support a number of 
applications with highly scarce and dynamic resources. 
Greedy and injudicious resource use would significantly 
aggravate contention among multiple applications and 
accelerate skewed use of some specific devices. This can 
also lead to reduced overall system capacity. Especially, we 
note that most of the devices have highly constrained 
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resources, often less than the capacity required for a context 
monitoring. More challenging, availability of such resources 
dynamically changes due to their wearable forms and 
mobility of users. Sensors join or leave the platform 
frequently as users may take off a sensor-equipped smart 
watch [21], or enter a new sensor-embedded smart office. 
Also, resource usage by running applications or 
environmental factors such as interference continuously 
affects the resource availability. 

It is almost impossible for each application to address the 
challenges without system-level supports. First, context 
monitoring entails very complex processing, and often 
involves burdensome device-level exploration [19][20]. 
Second, it is more challenging to ensure applications' steady 
running under highly scarce and dynamic resource 
availability. To achieve this, each application should 
efficiently share the constrained resources with other 
applications. Without system-level support, however, each 
individual application has an extremely limited view of the 
existence or resource uses of other applications, and further 
cannot negotiate with the concurrent applications for 
coordinated and efficient resource utilization. Thus, system­
level support is compelling for the effective and coordinated 
use of scarce computing resources among multiple 
applications. 

In this paper, we propose a novel active resource 
orchestration system, Orchestrator for the PAN-scale sensor­
rich mobile computing platform. Actively interplaying 
between context-aware applications and scarce dynamic 
resources, Orchestrator enables the mobile platform to host a 
number of applications stably, exploiting its full resource 
capacity in a holistic manner. More specifically, it helps 
applications efficiently share resources and processing as 
much as possible. It also seamlessly adapts the applications 
to dynamic resource availability by resolving resource 
contention between applications or selecting the best 
processing plan according to the resource availability at that 
time. In addition, Orchestrator can apply a system-level 
policy such as energy optimization with an integrated view 
of the total resource uses and status. With such system 
supports, applications become capable of providing mobile 
users with seamless, long-running high-quality service under 
dynamic circumstances with scarce resources. 

To design effective resource orchestration, we take an 
active resource use orchestration approach that actively finds 
out the best combination of resources for requested context 



monitoring under the current status of resources and 
applications. This is substantially different from an existing 
approach, passive resource use management [3][4][7][10]. A 
key feature of the active approach is to decouple 
application's logical resource demand from physical resource 
allocation. It enables postponing resource selection and 
binding until resources' availability is sufficiently explored. 
Under this active approach, applications do nothing but turn 
in high-level context specifications to the system, and 
comply with the system's decision on resource allocation. 
Most of mobile and sensor systems, on the other hand, have 
taken passive resource use management approaches based on 
application-driven decision in resource selection and binding. 
In such approaches, applications should explicitly specifY the 
type and amount of resources as in resource ticket [10] and 
resource descriptor [3]. A system simply allocates the 
requested resources if available. If not, applications would 
change their resource use plans according to predefined code 
blocks, e.g., by trading off data or functional fidelity. 
However, these approaches impose huge burdens on the 
programmer, and their flexibility cannot be fully utilized in 
practice since it is almost impossible for applications to 
estimate dynamic resource status and prepare well adapted 
code blocks for all the cases. 

Orchestrator realizes the proposed approach as follows. 
First, it prepares multiple alternative resource use plans, each 
of which can process a high-level context from applications. 
Such alternatives result from the diversity of semantic 
translation. That is, a context can be derived by utilizing 
many different sensing modalities as well as feature 
extraction and classification methods. For instance, when a 
context quality required by an application is conditionally 
tolerable under a particular situation, a 'running' context is 
monitored with diverse methods, e.g., utilizing DC and 
energy features from acceleration data [20], or statistical 
features from GPS location data. Second, at runtime, it 
dynamically adapts a processing plan to reflect resource 
availability, running applications' requests, system-level 
policies in a holistic manner. Such flexibility and adaptation 
enable Orchestrator to support multiple context-aware 
applications, extending their running time while balancing 
their resource usage, in environments with highly limited and 
dynamic resources. 

To the best of our knowledge, Orchestrator is an initial 
attempt to provide an active resource orchestration system, 
recognizing the PAN-scale sensor-rich mobile platform as a 
common underlying computing platform. Recently, many 
systems have been proposed for effective resource 
management of mobile devices [3][4][5][6][7] and sensors 
[8][9][10] comprising PAN. They are mostly designed to 
manage resources, especially battery in most cases, for 
applications on a single computing device. Such device­
centric resource management, however, can hardly be 
utilized in our target environment, in which multiple sensors 
and a mobile device cooperatively serve multiple 
applications. 

This paper is organized as follows. We discuss related 
work in Section II. Section III and IV describe the 
architecture and main functions of Orchestrator, respectively. 
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Section V presents the implementation of Orchestrator 
prototype. We discuss experimental results in Section VI. 
Finally, we conclude the paper in Section VII. 

II. RELATED WORK 

Recently, sensor-enabled mobile applications have been 
emerging in diverse application domains [1][2]. They 
provide useful mobile services based on the contexts of a 
user and her surroundings that are captured using diverse 
sensors such as accelerometers, microphones, and GPS. As 
many applications emerge to run on a mobile device with a 
variety of sensors, common underlying frameworks such as 
Orchestrator will be increasingly necessary to coordinate 
multiple applications and allow them to efficiently share 
resources in a systematic way. 

There have been broad research efforts to effectively 
manage the use of limited resources in different 
environments. Some research proposed systems to manage 
the resources of a mobile device, to name a few, Odyssey 
[3][4][5], ECOSystem [6], and Chameleon [7]. Also, there 
have been ongoing research efforts to efficiently manage and 
utilize the limited resources of a sensor node such as Levels 
[8], Eon [9], and Pixie [10]. Some research has also been 
made to manage resource use in sensor networks. To 
increase the lifetime of the whole sensor network, algorithms 
for energy-efficient routing, filtering, and in-network 
processing have been proposed [11][12][13]. There has been, 
however, relatively little attention to develop a platform or to 
address issues for PAN-scale sensor-rich mobile environments. 
Orchestrator emphasizes a holistic view of resources of 
multiple devices as well as mUltiple applications that share 
the resources. Through the holistic approach, it effectively 
orchestrates the resource use of the applications. 

Several systems such as Pixie [10], Odyssey [3], and 
Chameleon [7] have taken an application-driven approach to 
resource management. They expose APls for resource 
allocation to applications. Applications determine the types 
and amounts of resources required to execute program codes, 
and explicitly request the resources through the provided 
APIs. The systems play a rather simple role to bind and 
allocate the use of the requested resources. 

We consider that a system-driven approach [8][9][6] is 
more suitable as the solution of the target environment as it 
gets too complex and dynamic for individual applications to 
deal with. This approach hides from applications the details 
of complex resource management. As such, they can focus 
on specifYing their application logics. Instead, systems 
determine and allocate the required resources at runtime, 
reflecting resource status and system policies. However, 
many of the existing systems with this approach are still 
application-aided, e.g., Eon [9], Levels [8]. Applications 
provide multiple program code blocks, each mapped to 
highly abstracted resource levels. 

There has also been research to support adaptive context 
data provision. Titan [14] [15] supports context recognition in 
dynamic BAN environments. However, it allows only a 
single recognition algorithm to run at a time. Activity 
recognition techniques proposed in [16][17][18] allow 
performing recognition processes adaptively to improve 
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Figure I. Architecture of Orchestrator. 

energy efficiency. Their focus was on reducing energy 
consumption only for activity recognition. None of the 
mentioned research tackles challenging issues arising when 
multiple applications run simultaneously and share dynamic 
and scarce resources over multiple devices. 

SeeMon [19] was our early attempt at a context 
monitoring platform for a PAN-scale sensor-rich mobile 
environment. While it proposed important techniques, e.g., 
locality-aware context processing and ESS (essential sensor 
set)-based energy control, it did not address complicated 
issues of resource management. Thus, while the proposed 
orchestration framework can broadly be used as a platform 
for many context monitoring systems, it also forms the 
resource management stratum underneath the SeeMon 
framework. 

Other than sensor-based context-aware applications, 
there have been research efforts for general middleware 
approaches to enable applications such as media streaming 
and instant messaging in dynamic pervasive environments 
[27][28][29][30]. They adaptively build and run applications 
by dynamically composing available components (e.g., RTP 
stream sources and sinks). Reflecting changing conditions, 
e.g., failure of components used, they reselect appropriate 
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components to continue the execution of applications. 
However, they are not directly applicable to our target 
environments; they were developed and tested mainly in 
rather powerful desktop environments. Also, since their 
focus was on developing techniques to make a pervasive 
application adaptive to dynamic environments, they hardly 
consider problems due to scarce resources shared by multiple 
applications such as resolving resource contention and 
achieving high efficiency. 

III. ORCHESTRATOR ARCHITECTURE 

We design the architecture of Orchestrator to enable 
active resource use orchestration. The architecture spans a 
mobile device and multiple sensors (Fig. 1). 

Plan generation and selection: The processing planner 
located in the mobile device plays a key role as a control 
center for resource use orchestration. It includes two major 
components: the plan generator and the plan selector. The 
plan generator dynamically creates a variety of applicable 
plans based on available sensors and their processing 
capability at runtime. Among the generated plans, the plan 
selector decides a set of plans to execute, which supports 
maximal application requests with available resources and 
best meets an orchestration policy enforced by the policy 
manager. The selection changes adaptively, reflecting 
dynamic resource status of sensors and the mobile device. 

Plan execution: Orchestrator employs the plan 
processors in both the mobile device and sensors to execute 
the selected plans. They cooperatively process the plans, 
often involving sensing, feature extraction, and context 
recognition tasks. The plan processor in a sensor performs 
sensing tasks and optionally executes feature extraction tasks 
so that processing is offloaded onto the sensor. The plan 
processor in the mobile device executes the rest of the plan, 
i.e., feature extraction and context recognition tasks or the 
latter only, and completing plan execution. Note that we 
develop the plan processors to dynamically compose and 
share diverse processing modules for plan execution. 

Resource monitoring: The resource monitors keep track 
of available resource status of sensors and a mobile device, 
respectively. They continuously monitor the status of CPU, 
memory, energy, and bandwidth. The status is periodically 
reported to the plan selector for runtime adaptation. The 
monitors are designed to minimize monitoring overhead while 
keeping reasonable level of accuracy. 

Communication protocols: For effective cooperation 
between the mobile device and sensors, we develop a range 
of communication protocols. For example, a sensor detection 
protocol enables the mobile device to automatically detect 
available sensors. The detected sensors report heartbeat 
messages and resource status through a status reporting 
protocol. The mobile device sends diverse control messages 
based on a control message protocol 

Application interface: The application broker in the 
mobile device interacts with applications through 
Orchestrator APIs. Fig. 2 shows the APIs. Using 
registerCMQO, applications specify contexts of interests as a 
form of a query statement and register the query along with 
two callback functions to receive query results and status. 



Context 
CMQjD = registerCMQ (CMQ_statement, 
query result handler, query status handler) 

Monitoring deregisterCMQ (CMQ_ID) 
APIs updateCMQ (CMQjD, CMQ_statement) 

Figure 2. Orchestrator APIs. 

The query specification is extended from the Context 
Monitoring Query presented in our previous work [19]. For 
example, assume that an application wants to know if a user 
is running with more than 90% of accuracy. Then, the 
developer specifies the query as below. 

registerCMQ("CONTEXT Activity == running 
ACCURACY 90% DURATION 7 days", 
callbackJor Jesuit, callbackJor _status). 

Applications are notified of query results via the specified 
callback functions. Also, they are provided with query 
evaluation status, e.g., "not activated" in case that the 
processing planner cannot find any available processing plan 
for query evaluation. Note that the APIs allow application 
developers to specify high-level contexts only without caring 
about low-level resource status. 

IV. ACTIVE RESOURCE USE ORCHESTRATION 

A. Processing Plan Generation 

The plan generator creates a wide variety of processing 
plans regarding each context to monitor. The plans utilize 
different combinations of devices and their resources, and 
thus, serve as a basis for effective orchestration. A key idea 
to obtain diverse plans is to exploit the diversity of context 
recognition methods and sensing modalities. For example, 
Orchestrator detects a 'running' activity with frequency­
domain features from acceleration data and a decision tree 
classifier [20]. Another method is possible with time-domain 
statistical features and a NaIve Bayes classifier [21]. Also, 
each method can utilize different combinations of 
accelerometers located on various body positions [16][17] 
[21]. Moreover, there are alternative ways to derive affective 
state of individuals with different sensing modalities. It is 
possible to recognize the state using biomedical sensors such 
as BVP, GSR, and ECG and features such as heart rate, heart 
rate variability, and inter-beat interval [24]. The state can be 
also identified by voice-related features such as pitch [25]. 

To generate diverse processing plans, we develop a two­
phase translation method, including a logical translation and 
a physical translation. First, the logical translation maps a 
context into mUltiple logical processing plans, LPlans. An 
LPlan represents a set of processing modules to derive the 
context. It often consists of sensing, feature extraction, and 
recognition modules, and optionally includes the accuracy of 
context recognition. Second, the physical translation 
associates an LPlan with different sensors and computing 
resources to run the modules of the LPlan, accordingly 
generating physical processing plans, PPlans. Together with 
logical translation, this second translation increases the 
possibility to prepare for a number of resource usage options. 

Fig. 3 shows example LPlans. In the example, running 
activity and spine posture are monitored. There are two LPlans 
for the 'running' context. LPlanj utilizes acceleration data from 
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Figure 3. Examples of logical plans (LPlans). 

Figure 4. Examples of physical plans (PPlans) for LPlanl. 

a left wrist, extracts two frequency-domain features, DC and 
energy, and runs a decision tree classifier. On the other hand, 
LPlan2 utilizes acceleration data from a left thigh and a left 
wrist, extracts two time-domain statistical features, RMS (root 
mean square) and MAD (mean absolute deviation), and finally 
recognizes the context through a NaiVe Bayes classifier. For the 
'spine posture' context, there is an LPlan, LPlanJ. 

New LPlans can be easily incorporated in Orchestrator by 
specifying them with the relevant description and adding 
corresponding modules. The plan processor is designed to 
flexibly adopt and execute new modules, which will be 
required to support the new LPlans. 

The plan generator dynamically performs the physical 
translation for available LPlans. It is necessary since available 
sensors and their resource status continuously change at 
runtime. When sensors are newly registered or deregistered, the 
plan generator updates available PPlans with the sensors. 
Orchestrator readjusts plan execution with the updated PPlans. 

To increase the number of available PPlans, the plan 
generator maximally exploits the possibility of diverse 
hardware resource mapping through a sensor mapping and a 
distribution mapping. The sensor mapping contributes to the 
diversity by examining different sensors that are eligible to 
serve adequate sensor data and processing modules for an 
LPlan. The distribution mapping exploits the different 
distributions of modules into sensors and a mobile device. 

Fig. 4 shows example PPlans for LPlan]. The plan 
generator is aware of two available sensors, a watch-embedded 
accelerometer and a sleeve-attached one on a left wrist. It 
makes four different PPlans. PPlan] and PPlan2 use an 
accelerometer on the watch, while PPlan3 and PPlaI4 use a 



sleeve-attached one. PPlan] and PPlan3 perform the feature 
extraction in the mobile device. PPlan2 and PPlan4 do in the 
sensor. PPlans for LPlan2 and LPlan3 cannot be generated since 
there is no available sensor on the left thigh and waist. 

B. Holistic Resource-aware Plan Selection 

The key of the effective orchestration is to properly select 
PPlans to execute among diverse alternatives. Through the 
plan selection, Orchestrator resolves �ontentio�s . and 
maximizes sharing in resource use of multiple applicatIOns, 
and thus, supports application requests maximally �ith 
highly limited computing resources. At the same tIm�, 
Orchestrator meets a system-wide policy for resource use ill 
system operation, e.g., minimizing the total e�ergy consumption. 

For clear description of the plan selectIOn, we define the 
selection problem as follows. Given C={Ci I Ci is a context to 
monitor} and P={Pi,j I Pi,j is a/h PPlan for a context Ci}, the 
plan selector determines Pe, a subset of P to execute. Among 
all possible subsets, Pe should support the most number of 
queries under given resources constraints while t�e cost of Pe, 
Cost(Pe) is minimized. Here, the cost functIOn, CostO, 
describes a system policy that should be satisfied to achieve 
desired system operation. 

Fig. 5 shows overall plan selection proce�s. It consis�s of 
two major processing steps, i.e. (1) detectIOn of maxImal 
PPlan sets, and (2) selection of the minimum cost set. . 

In the first step, the plan selector detects the maximal 
PPlan sets, each of which supports maximum number of 
queries with available resources. To obtain the sets, the plan 
selector computes the number of supportable queries for 

every possible PPlan set, Ps E f, and selects the ones 
supporting maximum queries. The computation involves 
three sub-steps as in the Fig. 5. In the first su?-step,. t�e 
resource demand to execute Ps is calculated. Basically, It IS 
computed by aggregating the resou.rce demand of �ach plan. 
In the calculation, the module sharIng among multiple plans 
are importantly considered; if more than two PPlans In Ps 
execute the same processing modules in the same device, t 
he resource demand to execute the module is taken into 
account only once. In the second sub-step, it is examined if 
the resource demand of Ps exceeds the available amount of 
system resources. Through the process, it filters out the 
PPlan sets that violate resource constraints. The last sub-step 
calculates the number of supportable queries for the plan sets 
that pass the constraint check. Here, the. accura�y co�d.itions 
are also checked for the queries specIfied With mInImUm 
accuracy requirement. Finally, the plan selector selects the 
ones that support maximum number of queries. 

In the second step, the plan selector determines the 
minimum cost set among the candidate maximal PPlan sets. 
It is likely that there often exist multiple maximal PPlan sets. 
This step calculates the cost corresponding to each set and 
selects the one with minimum cost. Here, diverse cost 
functions can be employed from the policy pool. Note that 
the module sharing is also considered in the cost calculation. 

Orchestrator provides a couple of system primitives that 
abstract the resource demand of applications and the real­
time resource availability of the system. First, a function, 
GetRDMatrix(Ps), provides the resource demand to execute a 
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Function: Cost(Ps) 
Input: Ps,a candidate maximal plan set 
Output: cost of Ps 

I. RDMatrix � GetRDMatrix(Ps) 

2. IOlalEnergyConslimplion � 0 
3. for V0 where 0 is a device in RDMalrix 

IOlalEnergyConslimplion � IOlalEnergyConslimplion + 
RDMatrix(d;, ENERGY» 

4. Retum IOlalEnergyConslimplion 

Figure 7. A cost function to minimize total engergy consumption 

set of PPlans, P" in the form of a matrix. Second, 
GetRAMatrixO returns the list of available devices and status 
of their resources such as CPU, memory and energy as a 
matrix. Fig. 6 shows examples of RDMatrix and RAMatrix. 
Note that the system primitives facilitate the specification of 
cost functions for various policies. For example, the policy to 
minimize total energy consumption can be easily specified as 
shown in Fig. 7. 

C. Dynamic Plan Adaptation 

Orchestrator adapts to changes in resource availability 
and application requests at runtime by continuously altering 
P a set of PPlans to execute. The adaptation enables 
O�chestrator to support application requests seamlessly, to 
resolve newly occurring resource contentions, and to best 
meet the system policy continuously. 

Orchestrator performs the plan selection process again 
when there are changes in a set of contexts to monitor, C, or 
in the set of corresponding PPlans, P. This is because the 
changes in C or P could disqualify the previously selected 
PPlan set from the best choice for execution. Also, changes 
in resource status could trigger the selection process 
regardless of changes in C or P. For example, the energy 
drain of devices periodically triggers the process when 



TABLE I. ADAPT A nON EVENT 

Event Inputs (Cnew' PneoV> for plan reselection 
Registration of a query Cliew = CoidU {ell} 
(regarding a context c,,) P"ew = Paid U {p"J I p"J is aJ'" PPlan for c,,} 

Deregistration of a query C"ew = Colr {Cd} 
(regarding a context, Cd) P"ew = Paid - {Pd' I Pd ·is ajth PPlan for Cd} 

Join of a sensor (s,,) P"ew = Paid U {PiJ I PiJ is a new j'h PPlan for a 
context, Ci' enabled by the new sensor, s,,} 

Leave of a sensor (Sd) P"ew = Paid - {PiJ I PiJ isf' PPlan for a context, 
Ci' that utilizes the leaved sensor, Sd} 

Resource status changes, No changes in C and P e.g., energy drain of devices 
Orchestrator applies a policy to minimize skewness among 
remaining energy of devices. 

Five types of events trigger the selection process of 
Orchestrator. When an event occurs, Orchestrator performs 
the plan selection described in Section IV.B with new inputs, 
Cnew and Pnew, changed by the event. Table I summarizes the 
event types and corresponding changes in the inputs of the 
plan selection. First, upon a registration of a query regarding 
a new context, Cn. the selection process is performed by 
adding Cn to C and corresponding PPlans to P. Deregistration 
of a context is handled similarly as shown in Table I. Second, 
the join or leave of a sensor triggers the selection process as 
it changes the available PPlan set, P; some queries might be 
newly supportable with the new PPlans, and other queries 
may not be supported anymore with old PPlans. Upon a join 
of a new sensor, the newly available PPlans are inserted in P 
and the plan selection is executed. On the other hand, upon a 
leave of a sensor, the PPlans enabled by the sensor are 
removed from P. Finally, in case of events by resource status 
changes, Orchestrator just reselects the PPlans with previous 
P and C once again. 

For efficient adaptation, Orchestrator also adopts an 
incremental plan selection method. When there are a number 
of contexts to monitor and corresponding PPlans, it might be 
costly to reselect the whole Pe upon every event and 
redeploy new processing modules. To address the issue, the 
plan selector employs an incremental selection method as an 
effective heuristic solution. When the heuristic solution is 
used, Orchestrator periodically performs global selection to 
avoid errors that might accumulate due to repeated 
incremental selection. 

The heuristic finds subset of contexts, Cub C C, and 

corresponding PPlans, Psub C P that are directly affected by 
the triggering events. Then, it locally applies the selection 
process only for the subset. The selection is performed as 
follows upon each event. First, upon a query registration, 
Orchestrator performs the selection with only the requested 
context and corresponding PPlans. If the context has been 
already monitored, the executed PPlan is shared. Upon the 
query deregistration, Orchestrator simply stops executing the 
processing modules of the corresponding PPlans unless the 
modules are shared to support other queries; it does not 
perform plan selection again. Third, upon the sensor join, 
Orchestrator first generates new PPlans utilizing the sensor. 
In case that the new PPlans enable some of the queries that 
cannot be processed with the previously generated plans, 
Orchestrator executes the new PPlans. Also, if the new 
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T p (Period to calculate CPU utilization, e.g. 1 second) 

Figure 8. Example of CPU utilization. 

PPlans are more cost-effective than the currently executed 
PPlans, the new PPlans replace the current ones. Finally, 
when a sensor leaves, some of the running PPlans may be 
disabled. In this case, Orchestrator finds new PPlans for the 
affected queries and replaces the currently executing plans 
with new ones. 

D. Resource Detection, Monitoring and Demand Profiling 

Orchestrator continuously updates RAMatrix and builds 
RDMatrix for resources orchestration. As a base to update 
RAMatrix, Orchestrator identifies sensors that become newly 
available or unavailable. Then, it updates RAMatrix by 
monitoring resource availability of the detected sensors and a 
mobile device in real-time. RDMatrix is generated through 
the off-line profiling. The following briefly describes the 
main ideas and methods implemented in Orchestrator. 

Dynamic Sensor Detection Protocol: The protocol enables 
Orchestrator to dynamically detect available sensors in real­
time. It is designed with a sensor-initiated approach, which 
achieves a high level of energy efficiency for energy­
constrained sensors. The sensors need to turn on their radio 
transceivers only for a short period of time in order to send a 
heartbeat message and wait for corresponding ACK 
messages. We omit the protocol details. 

Resource Status Monitoring: Resource monitors 
continuously track the availability of energy, CPU, memory, 
and bandwidth. For a mobile device, Orchestrator simply 
utilizes the resource information provided by resource 
monitoring tools in operating systems. For sensors, we 
develop our own monitors targeting MicaZ Motes. 

For energy monitoring of sensors, Orchestrator adopts a 
voltage-based method [8]. It estimates remaining energy 
from voltage readings based on pre-built voltage-energy 
translation maps. 

The CPU cycle is mostly occupied by two major 
operations: executing assigned tasks and handling timer 
interrupts for sensing, storing and transmission (See Fig. 8). 
Among them, the CPU monitor only considers the CPU 
cycle for task execution. More specifically, the monitor 
measures CPU utilization as (Itacrive_i ITp). To measure tactivej, 
we record timestamps right before and after a task execution. 

The available memory size, Mav' is obtained as Mmax - Ii 
Mused(taski), where Mmax is the maximum available memory 

and Mused(taski) is memory used for a taski. Ii Mused(taski) is 

computed as Ii (MF(taski)) + Max(Mr(taski)), where MF(taski) 
and Mr(taski) denote the size of Fixed and Temporary Space 
for a taski' respectively. Fixed Space is continuously 
occupied by a task to store sensor readings and some internal 
states until the task is deregistered. Temporary Space is 



Figure 9. Hardware setup. 
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Figure 1 0. Sensor, feature, context profile used in the prototype. 

allocated and used temporarily only when the task IS 
scheduled to run. 

Wireless network bandwidth is a shared resource for all 
sensors and a mobile device. The available bandwidth for all 
devices is measured and managed in the mobile device. An 
available bandwidth, Bav is measured as Bmax - Bused, where 
Bmax is the maximum available bandwidth and Bused is the 
bandwidth being currently utilized. 

Resource Demand Profiling: We collect resource demand 
profiles of processing modules used for PPlans before 
runtime. The total demand is calculated by adding up the 
demands of all relevant modules to the baseline resource 
demand. 

V. IMPLEMENTATION 

We have implemented the Orchestrator architecture as a 
prototype system. First, we implemented the architecture of a 
mobile device in two platforms: (1) standard C/C++ over 
Linux, (2) Open C/C++ over S60 SDK and Symbian OS. 
Their total lines are about 13,000. Second, the sensor 
architecture is implemented in NesC on top of TinyOS 
1.1.11. The total lines are about 2,300. 

We deployed the prototype system on various types of 
mobile devices and sensors. Fig. 9 shows a snapshot of 
currently used hardware. First, we have deployed t?e 
prototype on two different mobile devices, (1) Ultra MobIle 
PC (UMPC), SONY VAIO UX27LN with Intel® U1500 
133 0Hz CPU and 1GB RAM, and (2) a smart phone, Nokia 
N96 with Dual ARM9 264MHz processor and 128MB RAM. 
Second, we have incorporated various wireless sensors that 
have been widely adopted for context-aware applications (See 
Fig. 10 for sensor details). Considering the wearability and 
controllability, we mainly use eight of USS-2400 sensor 
nodes (MicaZ clone), i.e., four 2-axis accelerometers, two 
light, and two temperatureihumidity sensors. They . are 
equipped with Atmega 128L MCU, CC2420 RF transceIver 
supporting 2.40Hz band ZigBee protocol, and TinyOS as an 
operating system. To provide communication between the 
mobile device and sensors, we attach one base sensor node to 

141 

E1: Entera smart lab 
(Spac_mbedded 5etlSOn 5101,S102 arenewty available) 

Time E2: Run u-reminder E3:Take off e-watch (Q2 is newty l"e9istef"e<l) (Cn-body 5enso� 55 
be(omes�yallable) 

Figure I I. A short part of processing log. 

the mobile device. The node receives sensor data from other 
sensor nodes and forwards the data to a mobile device. Also, 
it transmits control messages to the sensor nodes on behalf of 
the mobile device. 

Currently, the plan processor in the mobile-side 
architecture includes eight feature extraction modules (See 
Fig. 10 for feature details). We used kiss_fft [26], a Fa.st 
Fourier Transform library, to derive frequency-domam 
features. It also provides a recognition module implementing 
a decision tree algorithm. To generate diverse plans to 
monitor activity contexts, we combine diverse feature and 
sensor sets. As feature sets, we use frequency-domain 
features (e.g., DC, Energy) and time-domain statistical 
features (e.g., RMS, PRC, MAD). For sensor sets, we use all 
combinations of sensors on the left wrist, right wrist, right 
thigh, and waist. We trained the acti.vity contexts �ia 
annotation-based learning [20]. The learnmg was done wIth 
C4.5 decision tree by Weka, a Java-based open source 
machine learning tool [22]. We implemented feature 
extractors on sensor nodes to offload feature extraction tasks. 
We used a highly optimized avr-fft library which is written 
in an assembly language for FFT computation on sensors. 

A. Example Scenario and Operation a/Orchestrator 

We test and inspect the operations of Orchestrator under 
real situation. A student in our lab carried the UMPC and 6 
sensors running an Orchestrator prototype while entering 
/Ieaving smart spaces or wearing/taking off wearable sensors 
on campus for 2 hours. Fig. 11 shows a short part of the 
processing log in his Orchestrator, describing query and 
sensor status according to changes in application requests 
and sensors. At 2:30 p.m., 6 sensors and 4 queries were 
registered. During 8 minutes, three events occurred; two 
sensor changes (El and E3) and an application request 
change (E2). Accordingly, processing plans were adaptively 
changed. For example, at 2:33 p.m., he entered a smart lab. 
Then, a processing plan using on-body sensors replaced the 
plan using space-embedded sensors for energy optimization. 

VI. EVALUATION 

A. Experimental Setup 

We demonstrate the effectiveness of Orchestrator under 
dynamic changes in resources and application requests. For 
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Figure 1 3 .  Dynamic query workload. 

TABLE II. QUERY MODEL 
Parameter Default value 

#of queries 20 
# of context types per query 1 

0 hase 
(MIN=6. MAX=8) 

o ohase 
(MIN=15, MAX=20) 

Distribution of context type Activity (50%), Other Contexts (50%) 
Distribution of context value Uniform distribution 

Distribution of Uniform distribution 

Accuracy (only for activity) (min and max from training data) 

80 

80 

the experiments, we used the UMPC and the eight USS-2400 
sensor nodes described in Section V. 

Sensor availability: To make the environment dynamic 
for experiments, we continuously vary the number of 
available sensors as shown in Fig. 12. For the total 80min 
period, we randomly add or delete a sensor every 2.5 min in 
average among 8 sensors. To examine the effect of number 
of available sensors, we divide the total time into four 20 min 
phases such that each phase predefines different MINIMAX 
sensor numbers. Note that sensor composition is diverse 
even with the same number of sensors. 

Query workloads: We also generate a dynamic query 
workload as shown in Fig. 13. We add or delete a query 
every 1.5 min in average. Also, we set the MINIMAX 
numbers of queries for each phase. Note that the queries are 
generated by carefully reflecting our previous example 
scenario. Table II summarizes the parameters and default 
values used for the query generation. 

Alternatives: We compare Orchestrator with 
Conventional Context Recognizer (CCR) which models 
existing context-aware systems [23] lacking of resource 
orchestration functionalities. CCR supports a query with a 
single and fixed recognition method that provides the best 
recognition accuracy with designated devices. All employed 
sensors are always turned on and send raw data. A mobile 
device extracts features from the sensor data and runs 
recognition modules. Note that CCR does not utilize newly 
joined sensors nor deals with sensor leaves. For Orchestrator, 
we use the orchestration policy that minimizes the total 
energy consumption of available sensors as a default policy. 

Metrics: We measure the effectiveness of Orchestrator 
in terms of application support and resource utilization. 
First, we measure the level of application support through 
query activation. We regard that a query is activated if a 
processing plan exists for the query and is executed with 
available resources. To quantity the query activation, we use 
Number of Activated Queries (NAQ) and Query Activation 
Ratio (QAR). QAR is formally defmed as follows. 
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Figure 1 4. Orchestration under dynamic sensor availablity. 

QAR 
ITA (q;) q; is an i'h query in a registered query set, Q ITR(q;) , 

TA (q;) : total activation time of q; 
TR (q;) : total registration time of q; 

80 

As the metrics for resource utilization, we use Number of 
Activated Sensors (NAS) and the Energy Consumption (EC) 
of sensors in Joule (1). We regard that an available sensor is 
activated if the sensor executes certain tasks comprising any 
PPlan. In CCR, all available sensors are considered to be 
activated since CCR does not control the sensors. In general, 
higher NAS over time results in higher EC since the number 
of activated sensors is the dominant factor of energy 
consumption. 

B. Resource Orchestration under Dynamic 
Env ironm ents 

1) Dynamic Sensor Availablity 
In this section, we evaluate Orchestrator under the dynamic 

sensor availability. The number of queries is fixed at 20. 
Fig. 14 (a) shows QAR and EC per phase where more 

sensors are available as phase changes from A to D. In the 
graph, we can observe the key characteristics of Orchestrator. 
Under phase A and B where available sensors are scarce, 
Orchestrator activates more queries than CCR, while 
consuming almost the same amount of energy. It demonstrates 
that Orchestrator coordinates resource use well to support 
applications under resource-scarce environments. In contrast, 
under phase C and 0 where available sensors are plentiful, 
Orchestrator concentrates on energy optimization since the 
QAR of Orchestrator is already saturated to the maximum, 1. 
It shows that Orchestrator coordinates resource use well to 
maximize utilization under resource-abundant environments. 

Fig. 14 (b) shows QAR and EC for total experiment time. 
To sum up, Orchestrator achieves better QAR (95% 
improvement) and less EC (10.7% reduction) than CCR. Fig. 
14 (c) and (d) show NAQ and NAS over time, respectively. 
Most importantly, the NAQ of Orchestrator is always much 
higher than that of CCR, resulting in higher QAR. This is 
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Figure 1 5. Orchestration under dynamic query workload. 

because Orchestrator prepares for and utilizes diverse 
PPlans such that it is highly likely to support application 
requests with diverse combinations of sensors. Also, the 
NAS of Orchestrator is lower than that of CCR. 
Orchestrator selects PPlans in a way to minimize the number 
of activated sensors applying the energy optimization policy. 
Specifically, we found that Orchestrator selects PPlans that 
run feature extraction tasks in sensors rather than those that 
send only raw data from sensors. Thus, sensor-based feature 
extraction significantly reduces the overall communication 
cost, which in tum reduces energy consumption. 

2) Dynamic Query Workload 
We examine the behavior of Orchestrator using the 

dynamic query workload. The number of sensors is fixed at 
6 excluding the space-embedded sensors, S 10 1 and S 102. 

Fig. 15 (a) shows EC and QAR per phase where more 
sensors are available as phase changes from A to D. Since 
sensor resources are abundant in all phases, the QAR of both 
Orchestrator and CCR are saturated to the maximum, 1. 
Meanwhile, the ECs of Orchestrator and CCR are kept high, 
i.e., about 200J. We look into EC per sensor, and discover 
that sensor 4 consumes more energy than other sensors. In 
our experimental setting, sensor 3, 4, 5, and 6 are 
accelerometers for activity recognition. Based on energy 
minimizing policy, Orchestrator tried to utilize sensor 4 
rather than all sensors together since the accuracy 
requirements of most activity queries are satisfied only with 
sensor 4; sensor 4 is placed on the right thigh which is 
known as the most suitable position for recognizing activities 
such as running, walking, and standing [20]. 

Fig. 15 (b) shows EC and QAR for total experiment time. 
Orchestrator achieves better EC (15% reduction) along with 
slightly better QAR (8.5% improvement) than CCR. Also, 
Fig. 15 (c) and (d) show NAQ and NAS over time in detail. 
The NAQ of CCR is slightly lower than that of Orchestrator 
in most of time. Although the number of sensors is sufficient 
to activate all registered queries, some queries are 
deactivated in CCR. This is because it utilizes only a single 
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recognition method. Thus, it does not meet the accuracy 
requirements of some queries. More important, the NAS of 
Orchestrator is always lower than that of CCR. This is 
because all available sensors are activated in CCR whereas 
Orchestrator selectively utilizes the sensors. It results in 
lower energy consumption, and better resource utilization 
eventually. 

3) Orchestration Cost 
We examine orchestration cost under the dynamic sensor 

and query workloads in terms of communication and 
memory cost. 

First, we measure the number of messages exchanged 
during the total experiment time. To investigate the 
communication cost, we classity the messages into three 
types: control messages, heartbeat messages including sensor 
status information, and data reporting messages. Fig. 16 
shows the number of messages for each message type. In 
Orchestrator, the control and heartbeat messages are 
additionally exchanged for active resource use orchestration, 
thereby incurring a slight communication cost, e.g., about 1.5 
kbps for the dynamic query case. However, Orchestrator 
significantly reduces the number of data messages at the cost 
of those messages. Compared to CCR, it is decreased up to 
10 times. Note that the number of control and heartbeat 
messages is controllable by configuring the heartbeat period. 

Also, we measure the memory size consumed at runtime, 
which is averaged over time. The average memory sizes in 
the mobile device are 59.6KB under the dynamic sensor 
availability and 56.2KB under the dynamic query workload, 
respectively. The processing planner, a core component for 
orchestration in the mobile device, consumes 31.5KB and 
30.6KB, respectively. Considering the memory capacity of 
the mobile device, they are negligible. In addition, each 
sensor consumes 2768 of memory to maintain data 
structures storing executed tasks. The average sizes used in 
sensors vary from 278B to 7698 depending on sensor type; 
the plan processor uses 512B in accelerometers and 48 in 
other sensors to buffer sensor data. Note that those values 
vary depending on executed tasks and runtime parameters 
such as window size. Considering the memory capacity of 
MicaZ, 4KB, and the memory taken by TinyOS, 3298, 
Orchestrator can offload multiple tasks such as feature 
extraction onto sensors. 

C. Effects of Resource Orchestration Policies 

We determine if Orchestrator can properly apply multiple 
orchestration policies. We consider two sample policies: (1) 
minimizing the total energy consumption of available 
sensors and (2) maximizing the average accuracy of 



registered queries. For the experiment, we use the dynamic 
query workload and fix the number of sensors to 6. Then, we 
measure the NAS and the average accuracy of activated queries 
over time for the two policies, respectively. We only consider 
the queries with activity contexts for accuracy measurement. 

From the experiment, we could see Orchestrator supports 
the two policies well. We could observe that the NAS of the 
first policy is much lower than that of the second during the 
whole experiment time. Accordingly, the energy 
consumption is lower with the first policy, which shows the 
desired operation of Orchestrator. On the other hand, higher 
accuracy is achieved when the second policy is used, i.e., 
about 4% increases in average. 

VII. CONCLUSION 

In this paper, we described Orchestrator, a novel resource 
orchestration framework to support mobile context 
monitoring in a PAN-scale sensor-rich mobile platform. 
Orchestrator enables the platform to host multiple 
applications stably, exploiting its full resource capacity in a 
holistic manner. Thus, applications can provide users with 
seamless, long-running high-quality service under dynamic 
circumstances with limited resources. We present the design 
and implementation of Orchestrator running on off-the-shelf 
mobile devices and sensor motes, and also show its 
effectiveness in various system environments. 
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